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Metastasis is the leading cause of cancer death, tumor progression proceeding through

emigration from the primary tumor, gaining access to the circulation, leaving the

circulation, settling in distant organs and growing in the foreign environment. The

capacity of a tumor to metastasize relies on a small subpopulation of cells in the

primary tumor, so called cancer-initiating cells (CIC). CIC are characterized by sets of

markers, mostly membrane anchored adhesion molecules, CD44v6 being the most

frequently recovered marker. Knockdown and knockout models accompanied by loss

of tumor progression despite unaltered primary tumor growth unraveled that these

markers are indispensable for CIC. The unexpected contribution of marker molecules

to CIC-related activities prompted research on underlying molecular mechanisms. This

review outlines the contribution of CD44, particularly CD44v6 to CIC activities. A first

focus is given to the impact of CD44/CD44v6 to inherent CIC features, including the

crosstalk with the niche, apoptosis-resistance, and epithelial mesenchymal transition.

Following the steps of the metastatic cascade, we report on supporting activities of

CD44/CD44v6 in migration and invasion. These CD44/CD44v6 activities rely on the

association with membrane-integrated and cytosolic signaling molecules and proteases

and transcriptional regulation. They are not restricted to, but most pronounced in CIC

and are tightly regulated by feedback loops. Finally, we discuss on the engagement

of CD44/CD44v6 in exosome biogenesis, loading and delivery. exosomes being the

main acteurs in the long-distance crosstalk of CIC with the host. In brief, by supporting

the communication with the niche and promoting apoptosis resistance CD44/CD44v6

plays an important role in CIC maintenance. The multifaceted interplay between

CD44/CD44v6, signal transducing molecules and proteases facilitates the metastasizing

tumor cell journey through the body. By its engagement in exosome biogenesis

CD44/CD44v6 contributes to disseminated tumor cell settlement and growth in distant

organs. Thus, CD44/CD44v6 likely is the most central CIC biomarker.
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INTRODUCTION

CD44/CD44 variant isoforms (CD44v) are adhesion molecules
also described as most prominent function-relevant cancer
initiating cell (CIC) markers (Zöller, 2011; Yan et al., 2015).
To shed light on the engagement of CD44/CD44v6 in CIC
activities, we will first introduce the CD44 molecule, CIC and
exosomes (Exo) and then outline the state of knowledge on
the linkage between CD44/CD44v6 and CIC with emphasis on
the requirement of a niche (Prasetyanti et al., 2013), apoptosis
resistance (Ramdass et al., 2013; Colak and Medema, 2014;
Vlashi and Pajonk, 2015), epithelial mesenchymal transition
(EMT) (Dontu and Wicha, 2005; Wells et al., 2011) and tumor
progression (Elshamy and Duhé, 2013). Finally, the contribution
of CD44/CD44v6 to metastatic settlement being promoted by
tumor exosomes (TEX), which are suggested to transfer CIC-
features to Non-CIC, to promote angiogenesis, to prepare a
premetastatic niche and to modulate hematopoiesis toward
an immunosuppressive phenotype (Hannafon and Ding, 2015;
Minciacchi et al., 2015), will be discussed.

Abbreviations: ABC, ATP-binding cassette; AGO, argonaute; ALDH, aldehyde

dehydrogenase; Alix, ALG-2-interacting protein X; ApA, alternative cleavage and

polyadenylation; Arg, arginase; BclXl, Bcl2-like; bFGF, basic fibroblast growth

factor; BM, bone marrow; BMP, bone morphogenetic protein; C, complement;

Cadh, cadherin; CD44s, CD44 standard isoform; CD44v, CD44 variant isoforms;

CIC, cancer-initiating cell; COP, coat protein complex; COX, cytochrome C

oxidase; CRC, colorectal cancer; DCLK1, doublecortin like kinase 1; Dicer,

ribonuclease; EC, endothelial cell; ECM, extracellular matrix; EE, early endosomes;

EMT, epithelial-mesenchymal transition; ERM, ezrin-radixin-moesin family;

ESCRT, endosomal sorting complex required for transport; Exo, exosomes;

FAK, focal adhesion kinase; FASN, Fatty acid synthase; Fbg, fibrinogen; FGF,

fibroblast growth factor; FN, fibronectin; GAG, glycosaminoglycan; GEF, guanine

exchange factor; GEM, glycolipid-enriched membrane domain; GPCR, G-protein-

coupled receptors; HA, hyaluronan; HAS, hyaluronan synthase; HBEGF, heparin-

binding EGF-like growth factor HCV, hepatitis C virus; HGF, hepatocyte growth

factor; HDGF, hepatoma-derived growth factor; HH, hedgehog; HIF, hypoxia

inducible factor; HIV, human immunodeficiency virus; hnRNP, heterogeneous

ribonucleoprotein; HNSCC, head and neck squamous cell carcinoma; HS,

heparansulfate; HSC, hematopoietic stem cells; HSP, heat shock protein; Hyal,

hyaluronidase; ICD, intracellular domain; IDO, indoleamine 2,3-dioxygenase;

IGFR1, insulin-like growth factor 1 receptor; IKK, inhibitor of NFκB; ILV,

intraluminal vesicles; JAK, Janus kinase; kd, knockdown; ko, knockout; LAMP,

lysosomal associated membrane protein; Lfng, Lunatic Fringe; LGR5, leucine-

rich repeat containing G protein coupled receptor 5; LIC, leukemia-initiating

cells; LN, laminin; lnc, long non-coding; LRP6, LDL receptor related protein6;

MDR, multidrug resistance gene; MDSC, myeloid-derived suppressor cells;

Mφ, macrophage; MMP, metalloproteinase; MVB, multivesicular bodies; NFκB,

nuclear factor kappa B; OPN, osteopontin; PaC, pancreatic cancer; PAI,

plasminogen activator inhibitor; PDGFR, platelet-derived growth factor receptor;

PG, prostaglandin; PRKRA, protein activator of interferon induced protein

kinase EIF2AK2; PRL, prolactin; RISC, RNA-induced silencing complex; ROCK,

Rho kinase; ROS, reactive oxygen species; RSK, Ribosomal S6 kinase; RTK,

receptor tyrosine kinase; S1P3, sphingosine-1-phosphate receptor 3; SC, stem

cell; SDC, Syndecan; SDF1, Stroma-derived factor 1; Ship1, inositol phosphate-5-

phosphatase D; SLC9A1, Na-H-exchanger1; Smo, Smoothened; SNARE, soluble-

N-ethylmaleimide-sensitive fusion protein-attachment protein receptor; SOCS,

suppressor of cytokine signaling; STAT, signal transducer and activator of

transcription; TEX, tumor-derived Exo; TGF, transforming growth factor; TLR,

Toll like receptor; TSP; thrombospondin; VEGF, vascular endothelial growth

factor; VsP, ATPase vacuolar protein sorting; ZEB, zinc finger E-box-binding

homeobox.

CD44
The CD44 Molecule
CD44 is a type I transmembrane glycoprotein that varies in size
due to N- and O-glycosylation and insertion of alternatively
spliced exon products (Idzerda et al., 1989; Goldstein and
Butcher, 1990; Screaton et al., 1992). The hematopoietic isoform
(CD44s) has seven extracellular domains, a transmembrane,
and a cytoplasmic domain encoded by exons 9 or 10 (Peach
et al., 1993). Up to 10 variant exon products can be inserted
by alternative splicing between exons 5 and 6 (Screaton et al.,
1992). CD44 is a member of the cartilage link protein family
(Idzerda et al., 1989). The globular structure of the N-terminal
region is stabilized by conserved cysteins. Two cysteins in
the flanking region account for link domain folding (Ishii
et al., 1993). The globular domain are followed by exon
products 5–7, which are heavily glycosylated, form a stalk like
structure and contain putative proteolytic cleavage sites (Neame
and Isacke, 1993; Ruiz et al., 1995). Variable exon products
are inserted in this region (Bennett et al., 1995). Whereas
CD44s is expressed by most cells, CD44v is expressed only on
subpopulations of epithelial and hematopoietic cells, particularly
during embryogenesis and hematopoiesis, on leukocytes during
activation and frequently on CIC (Ruiz et al., 1995). Insertion
of CD44v exon products is variable, but some combinations,
i.e., the keratinocyte isoform (v8-v10) and the epidermal
isoform (exons v3-v10) are preferentially recovered in selective
tissues (Ruiz et al., 1995). The transmembrane region supports
CD44 oligomerization and recruitment into glycolipid-enriched
membrane domains (GEM). The GEM location is utmost
important for the interaction of CD44 with extracellular ligands
and the association with other transmembrane and cytoplasmic
molecules (Liu and Sy, 1997; Föger et al., 2001). The cytoplasmic
tail contains binding sites for cytoskeletal proteins (Lokeshwar
et al., 1994; Oliferenko et al., 1999) (Figure 1A).

Briefly, CD44s is a heavily glycosylated transmembrane
protein expressed by most epithelial and mesenchymal cells.
CD44v is expressed in selected tissues, but is frequently
upregulated in CIC.

CD44 Ligands
The CD44 link domain contains binding sites for collagen,
laminin (LN), fibronectin (FN), E- and L-selectin (Jalkanen
and Jalkanen, 1992; Toyama-Sorimachi and Miyasaka, 1994;
Konstantopoulos and Thomas, 2009). CD44 is the major
hyaluronan (HA) receptor. HA binds to a basic motif outside
the link domain (Aruffo et al., 1990). Not all CD44+ cells bind
HA, but binding being induced by CD44 cross-linking, indicates
conformation-dependent HA-binding (Suzuki et al., 2015). CD44
has two additional binding sites for glycosaminoglycans (GAG)
(Greenfield et al., 1999; Higman et al., 2014). The cytoplasmic
tail binds the cytoskeletal linker proteins ankyrin and ezrin,
radixin, moesin (ERM) (Lokeshwar et al., 1994; Mori et al., 2008).
Ankyrin contacts spectrin and is involved in HA-dependent
adhesion and motility (Lokeshwar et al., 1994). ERM proteins
regulate migration, cell shape and protein resorting (Fehon et al.,
2010; Stamenkovic and Yu, 2010). Activated ERM proteins bind
with the N-terminus a motif between the transmembrane region
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FIGURE 1 | CD44 molecules, prominent ligands and associated molecules.(A) Genomic organization and protein structure of CD44s and CD44v, glycosylation sites,

the location in the cell membrane and some frequently observed CD44v exon product combinations are shown. (B) Most prominent matrix protein and cellular ligands

of the globular N-terminal domains and the binding sites of the C-terminal domain to the cytoskeletal linker proteins ERM and ankyrin are indicated. Only CD44v3,

CD44v6, and CD44v10 have binding sites for cytokines and chemokines.

and the ankyrin binding site of CD44: The C-terminus binds to
F-actin (Mori et al., 2008). The ERM family protein Merlin binds
CD44, but lacks the actin-binding domain (Stamenkovic and Yu,
2010). By the binding to cytoskeletal linker proteins the range of
CD44-mediated functions expands toward downstream signaling
pathways (Mori et al., 2008; Fehon et al., 2010; Bourguignon et al.,
2014).

Several of the CD44v isoforms contain post-translational
modifications. CD44v3 has a heparan-sulfate (HS) site,
promoting growth factor binding (Bennett et al., 1995);
CD44v6 binds the hepatocyte growth factor (HGF), the vascular
endothelial growth factor (VEGF), and osteopontin (OPN)
(Kim et al., 2005; Orian-Rousseau and Ponta, 2008; Tremmel
et al., 2009; Yuan et al., 2013). The latter also binds to CD44v10
(Erb et al., 2014). Via cytokine/chemokine binding, CD44v
becomes engaged in receptor tyrosine kinase (RTK) activation
(Orian-Rousseau, 2015) (Figure 1B).

Thus, CD44 has beside HA additional cellular and
extracellular matrix (ECM) ligands. The cytoplasmic tail
promotes a linkage to the cytoskeleton and CD44v gains access
to transmembrane receptors by cytokine and chemokine binding.

CD44 and CD44v6 Associated Molecules
Of central importance to understand the multitude of
CD44/CD44v activities are the associations with several
RTK, proteases, and ATP-binding cassette (ABC) transporters.

Through HGF binding, CD44v6 comes into proximity
of MET and promotes MET activation, which requires the
interaction of the CD44 cytoplasmic tail with ERM proteins
for Ras-MAPK pathway activation (Orian-Rousseau et al.,
2007). The interaction between CD44v6, MET and ERM
proteins is vital, as MET-haploinsufficient CD44 knockout
(ko) mice die at birth by defects in synaptogenesis and
axon myelination (Matzke et al., 2007). CD44v6-ECM binding
also promotes PI3K/Akt pathway activation (Krause and Van
Etten, 2005; Weber, 2008) and MET transcription (Adamia
et al., 2005). CD44v6 crosslinking similarly affects insulin-like
growth factor 1 receptor (IGFR1) and platelet-derived growth
factor receptor (PDGFR) activation (Misra et al., 2006). The
CD44-RTK interaction can also proceed through proteases.
CD44-recruited MMP7 cleaves the proform of the heparin-
binding EGF-like growth factor (HBEGF), which binds to
CD44v3 (Bennett et al., 1995). Cleaved HBEGF binds ERBB4,
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which initiates anti-apoptotic signaling cascades (Lynch et al.,
2007).

CD44 also associates with G-protein-coupled receptors
(GPCR), e.g., CXCR4 (Katoh, 2017), with ABC transporters
(Grass et al., 2014; Kozovska et al., 2014) and additional
antiapoptotic proteins (Bates et al., 1998; Ghatak et al., 2005;
Bourguignon, 2008), with membrane bound proteases such
as MMP14 and hyaluronidase (Hyal)2 (Heldin et al., 2014).
Finally, CD44 associates with EMT-related transcription factors,
e.g., the Wnt signaling pathway via CD44-associated LRP6
(LDL receptor related protein6) (Xu et al., 2015). Of central
importance for the engagement of CD44 as a CIC marker
are the associations with non-RTK (Cooper and Qian, 2008;
Nastase et al., 2017), which can proceed via activated RTK,
GPCR, cytoskeletal linker proteins, or directly via GEM-recruited
CD44v (Ingley, 2008; Ekyalongo et al., 2015; Korcsmaros et al.,
2017).

The impact of CD44 ligand binding and lateral associations
on CIC activities are discussed in detail below for relevant
contributions to CIC maintenance, apoptosis resistance, EMT,
and the metastatic cascade.

CIC Characterization
Cancer research received a significant hub by the
identification of CIC, also defined as cancer stem cells.
CIC are a minor subpopulation within the primary tumor
mass, yet are suggested to account for tumor initiation,
propagation, recurrence, metastasis, and drug- and radiation
resistance (Elshamy and Duhé, 2013; Kozovska et al.,
2014).

Stem cells (SC) have the capacity to self renew and to
differentiate and are drug and radiation resistant. SC are located
in special niches, where they receive information from the
surrounding matrix, which are essential in stem cell maintenance
(Morrison and Scadden, 2014; Rojas-Ríos and González-Reyes,
2014; Tan and Barker, 2014; Vaidya and Kale, 2015; Katoh,
2017). This also accounts for adult SC, well-elaborated for
hematopoietic SC (HSPC) in the osteogenic and the vascular
niche (Vaidya and Kale, 2015). Virchow’s idea that cancer
may arise from embryonic-like cells (Virchow, 1858), was first
verified for human leukemia-initiating cells (LIC) developing
tumors in immunocompromised mice (Lapidot et al., 1994).
Leukemia recurrence was prevented by deletion of the HSC
factor Bmi1 (Lessard and Sauvageau, 2003). The idea of LIC/CIC
was fostered by the recovery of Oct4, Sox2, and Nanog, master
transcription factors of embryonic SC (Tárnok et al., 2010), by
changes in chromatin organization and epigenetic signatures,
important for self renewal and differentiation (Kashyap et al.,
2009; Suzuki et al., 2009; Gupta et al., 2010; Messaoudi-
Aubert et al., 2010) and by the upregulation of Notch, Wnt,
and Hedgehog (HH), which contribute to cell fate decision
(Cerdan and Bhatia, 2010).

CIC share with SC apoptosis resistance and altered expression
of transcription factors that contribute to EMT and possibly,
though still controversially discussed, the requirement of a niche.
There is evidence for CD44/CD44v6 supporting CIC in fulfilling
these tasks.

CIC and Tumor Progression
Cancer-related death is mostly due to metastasis formation
(Sun and Ma, 2015), where tumor cells leave the primary tumor
mass, invade the circulation, adhere to the vessel wall, settling
and growing in a distinct organ (Seyfried and Huysentruyt,
2013; Samatov et al., 2015). In advance of settling in distant
organs, most tumors set metastasis in the draining lymph
node, which relies on favored invasion into lymphatic vs.
blood vessels. The lymphatic route of metastasizing tumor
cells accounts particularly for gastrointestinal cancer and
is not solely a sequel of easier access due to a missing or
incomplete basement membrane. Searching for differentially
expressed genes in metastasizing tumor cells revealed that
proteins engaged in (lymph)angiogenesis were dominating
and that distinct protein pattern were recovered in tumor
cells metastasizing vs. blood or lymphatic vessels (Karaman
and Detmar, 2014; Li and Li, 2015). Nonetheless, invasion
into lymphatic or blood vessels requires de-anchoring of
individual tumor cells from the surrounding cells, one of the
processes linked to CIC (Ombrato and Malanchi, 2014; Qiao
et al., 2015; Iftakhar-E-Khuda et al., 2016). Finally, settling
in distant organs is a non-random process, most cancer
being characterized by metastatic site preference (Obenauf
and Massagué, 2015). This is facilitated by metastasizing
tumor cells creating a niche in the metastatic organ in
advance of arrival, the so called “premetastatic niche”
(Fessler et al., 2013; Chang et al., 2015). In the absence of
tumor cells, the niche can only by formed by tumor-derived
factors, which task is mostly undertaken by CIC-derived TEX
(Thuma and Zöller, 2014; Giovannetti et al., 2017).

In brief, besides contributing via EMT to the release of
tumor cells from the primary tumor mass, CIC are engaged in
metastatic settlement, which is supported by CD44/CD44v6. In
addition, there is evidence for CD44v6 modulating CIC-TEX
during biogenesis, Exo/Exo biogenesis being briefly introduced.

Exosomes
Exo, small 40–100 nm vesicles, are delivered by many cells and
abundantly by CIC (Vlassov et al., 2012) and distribute in the
body (Boukouris and Mathivanan, 2015). Exo components are
function competent and delivery of their messages (Valadi et al.,
2007; Lo Cicero et al., 2015) can modulate targets and reprogram
target cells (Hao et al., 2006; Grange et al., 2011; Abd Elmageed
et al., 2014; Meseure et al., 2014; Lo Cicero et al., 2015).

Exo biogenesis starts with the formation of early endosomes
(EE), deriving from the trans-Golgi network or from internalized
membrane microdomains, such as clathrin-coated pits, GEM,
and cholesterol- and ceramide-rich compartments (Colombo
et al., 2014). The different types of EE are guided toward
multivesicular bodies (MVB) by distinct transport machineries
(van Niel et al., 2011). During inward budding of so called
intraluminal vesicles (ILV) into MVB, vesicles receive their cargo
(Colombo et al., 2014; Villarroya-Beltri et al., 2014; Choi et al.,
2015; Abels and Breakefield, 2016). MVB are guided toward and
fuse with the plasma membrane. The released vesicles are called
Exo (Colombo et al., 2014; Abels and Breakefield, 2016).
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During invagination into MVB, the small plasma of ILV
receives its cargo. Loading is a selective process. Sphingosine-
1-phosphatase and diaglycerol are engaged in cargo sorting.
Lysophosphatidic acid together with Alix and heat shock protein
(HSP)70 promotes inward budding of ILV (Nabhan et al., 2012).
Mono-ubiquitination, acylation or myristoylation (Kajimoto
et al., 2013), or higher order oligomerization (Rana et al., 2011;
Shen et al., 2011) or sphingolipids forming ceramide (Guo
et al., 2015) facilitate protein sorting. Annexin-II supports RNA
sorting (Vedeler et al., 2012). By coupling of RISC (RNA-
induced silencing complex) and a specific EXOmotif binding to
hnRNPA2B1 (heterogeneous ribonucleoprotein A2B1), miRNA
becomes recruited (Villarroya-Beltri et al., 2013). Long non-
coding (lnc)RNA are also selectively captured (Villarroya-Beltri
et al., 2013).

Exosomes are composed of a lipid bilayer containing
transmembrane proteins. The vesicle lumen encloses proteins,
mRNA, non-coding RNA, and DNA.

The lipid envelop is enriched in sphingomyelin, cholesterol,
GM3, and phosphatidylserine (Subra et al., 2010). The most
abundant constitutive Exo proteins are tetraspanins (Zöller,
2009; Mathivanan et al., 2010; Choi et al., 2012; Rana
et al., 2012; Yue et al., 2015). Additional constitutively
expressed proteins are structural components and proteins
involved in biogenesis including trafficking. Cell type-specific
Exo proteins are most comprehensively explored for CIC.
All described CIC markers such as MART1, EGFRVIII,
MDR1 (multidrug resistance gene 1), EpCAM, MET, mutant
KRAS, tissue factor, and CD44/CD44v6 are recovered in
TEX (Al-Nedawi et al., 2008; Corcoran et al., 2012; Park
et al., 2012; Demory Beckler et al., 2013; Ji et al., 2013;
Kumar et al., 2015; Zöller, 2016). The recovery of CIC
markers in TEX extends their suggested contribution to tumor
progression.

In concern about DNA, RNA and non-coding RNA, most
information is available on miRNA. Uncovering that miRNA
is linked to prognosis, progression, local recurrence (Sato-
Kuwabara et al., 2015), and contributes to EMT (Garg, 2015),
fostered progress in oncology. In concern about CD44, miR-34a
overexpression inhibits metastasis by regulating CD44 and miR-
340 suppresses invasion and metastasis by regulating CD44-
associated c-Met and metalloproteinases (MMP) 2 and 9 (Liu
et al., 2011; Wu et al., 2011). LncRNA also affects tumor
growth and progression. Thus, MALAT-1 promotes tumor
growth and migration and prevents tumor cell apoptosis, linc-
POU3F3 induces angiogenesis, ZFAS1 promotes proliferation
and migration of cancer cells. Interestingly, co-existence of U1
and U2 ribonucleoproteins and cognate snRNA is supposed
indicating a link to splicing events in recipient cells (Kogure et al.,
2013; Chen et al., 2016; Lang et al., 2017; Pan et al., 2017; Zhang
et al., 2017). DNA recruitment and functional relevance requires
further exploration (Cai et al., 2016; Kalluri and LeBleu, 2016).

Taken together, Exo/TEX characterization affirmed that Exo
are important intercellular communicators allowing sessile cells
a systemic crosstalk. As outlined below, there is strong evidence
that CD44/CD44v6 contributes to ILV loading and via its
association with tetraspanins to the recruitment of membrane

integrated and membrane-attached cytosolic proteins (Wang
et al., 2016).

LINKING CD44/CD44V6 ACTIVITIES TO
CIC FEATURES

CD44/CD44v6 fulfills a far wider range of activities as originally
suggested for the leukocyte adhesion molecule (Idzerda et al.,
1989) that is the major HA receptor (Aruffo et al., 1990). This
is due to the multitude of isoforms by very variable patterns
of glycosylation and the insertion of diverse combinations of
alternatively spliced exons (Screaton et al., 1992). This review
will restrict to provide an overview of CD44/CD44v6 activities in
CIC with some reference to SC as CIC adopt many features from
embryonic and adult SC. We also want to mention that in many
instances a contribution of CD44 was elaborated, not taking
into account the engaged CD44 isoform. This extends to reports
on the engagement of CD44v6, where a contribution of this
alternatively spliced exon product was approved, but expression
of additional splice variant products was rarely taken into
account. Despite these restrictions, there is abundant information
on the contribution of CD44/CD44v6 to CIC activities, where we
start with CIC inherent features.

A Niche for CIC and the Contribution of
CD44
During ontogeny, the fate of SC is determined by the
position in a niche, composed of epithelial and mesenchymal
cells and extracellular substrates that harbor growth factors,
chemokines and proteases (Wolpert, 1996; Mosaad, 2014). SC
niches minutely regulate SC location, quiescence/activation,
symmetric/asymmetric division, and differentiation (Li and
Neaves, 2006). CIC may not essentially require a niche, but
survival, homing and the balance between quiescence and growth
is supported by a preformed niche (Díaz-Flores et al., 2006; Li
and Neaves, 2006; Hendrix et al., 2007; Morrison and Spradling,
2008). In addition, there is evidence for a contribution of
CD44/CD44v6 in establishing a CIC niche.

SC niches and the tumor matrix are rich in HA and CD44
(Zhang et al., 2003) and the HA-CD44 association facilitates
SC and CIC arrest (Owen and Friedenstein, 1988). However,
the matrix is not only an anchor, but also affects SC/CIC by
promoting changes in cell shape, intracellular tension, and gene
expression (Tabe and Konopleva, 2014). The matrix-induced
changes in SC/CIC, in turn, affect the composition of the matrix
by promoting HA expression in niche cells (Lee et al., 2015).
Furthermore, CD44v6 is engaged in matrix assembly. A CD44v6
knockdown (kd) in CIC strikingly affects the organization of
the tumor matrix (Jung et al., 2009, 2011), CD44v6kd cells
secreting a matrix prohibiting CIC adhesion (Oliferenko et al.,
2000; Klingbeil et al., 2009). Several components contribute
to the lost support for CIC adhesion. Hyaluronan synthase
(HAS)3 expression is strikingly reduced in CD44v6kd cells (Jung
et al., 2009), a phenomenon described in several tumors (Kultti
et al., 2014). Hepatoma-derived growth factor (HDGF), too, is
reduced in CD44v6kd cells (Jung et al., 2009). HDGF stimulates
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fibroblast, endothelial cells (EC) and vascular smooth muscle cell
growth and recruits mesenchymal SC (Bao et al., 2014). Reduced
clusterin secretion influences chemokine secretion and initiates
stromal changes, which affect intercellular communication (Xiu
et al., 2015). The complement components (C)3a and C3b,
abundant in the CIC matrix, but absent in the CD44v6kd matrix,
support CIC survival by inflammatory cytokine recruitment
(Cramer et al., 2006). CD44v3 additionally contributes to matrix
assembly. CD44v3-associated GAG recruit a large range of
growth factors and chemokines, besides others HGF, fibroblast
growth factor (FGF)2, OPN, and VEGF (Van Driel et al., 2002)
(Figure 2). Liberation of these niche-deposited factors promotes
SC/CIC arrest in the niche, but also migration and activation of
signaling cascades.

Furthermore, LIC depend on adhesion to a niche in the
bone marrow (BM) (Becker, 2012), which contributes to LIC
maintenance (Jin et al., 2006; Funayama et al., 2010). LIC
adhesion requires CD44 and HA (Christophis et al., 2011;
Singh et al., 2013), such that anti-CD44, soluble HA or
Hyal treatment all block settlement in the BM niche. The
CD44 isoform accounting for adhesion to the BM niche was
not consistently evaluated. LIC adhesion to the BM niche
may rely on an embryonic CD44v isoform (Holm et al.,
2015) or may profit from CD44v expression (Bendall et al.,
2000; Liu and Jiang, 2006; Redondo-Muñoz et al., 2010) or
differ between leukemia subtypes as elaborated for CML-like
myeloproliferative neoplasia and AML LIC, which use diverse
mechanisms for niche embedding (Krause et al., 2013), the
majority of LIC apparently compete with HSC for the BM
niche via CD44s binding. CD44/HA also is engaged in CIC
homing. Patients with progressed colorectal cancer (CRC) have
a lower survival rate when tumors display high HA staining
(Ropponen et al., 2001). The authors suggest CD44-mediated
adhesion to HA being crucial for CIC communicating with
the surrounding host tissue. Similar to pancreatic (Pa)-CIC
(Jung et al., 2009), urothelial and ovarian CIC also depend on
CD44v6 for creating an adhesion-promoting niche (Kuncová
et al., 2005; Tjhay et al., 2015); gastric CIC preferentially
use CD44v8-v10 (Lau et al., 2014). The reason for the shift
from preferential CD44s adhesion in LIC to CD44v in CIC
are not yet elaborated. It may in part rely on epithelial cells
more frequently expressing CD44v and could be supported
by CD44v recruitment into GEM where clusters of CD44v-
associated molecules may strengthen the interaction with the
matrix (Klingbeil and Isacke, 2011). Finally, though receiving less
attention, niche cells also contribute to LIC/CIC homing, where
e.g., LIC poorly adhere to the BM of a CD44v7ko mouse (Christ
et al., 2001).

Taken together, CIC may not essentially depend on a niche,
but they profit from a niche and even compete with SC for a
preformed niche as demonstrated for LIC ousting HSPC from
the BM niche. CIC adhere to HA, HA binding of CIC promoting
HA secretion by niche cells in a feedback loop. In addition, CIC
modulate the niche composition by provision of proteases that
degrade matrix proteins, including HA, by delivery of growth
factors engaged in recruitment of mesenchymal SC and by
activation of resident cells.

CIC and Apoptosis Resistance
Poor prognosis of patients with disseminated cancer relies in part
on CIC resistance toward conventional chemo- and radiation
therapy (Holohan et al., 2013; Di and Zhao, 2015; Mansoori et al.,
2017). CIC use several escape pathways. One mechanism builds
on required resistance due to mutations in gatekeeper oncogenes
such as EGFR, ALK and MET. A second pathway of drug
resistance relies on DNA damage repair. DNA damage induces
a cell cycle arrest that allows the cell to repair. These repair
mechanisms are frequently distorted in cancer due to gain of
function in oncogenes and loss of function in tumor suppressor
genes. Most prominent is p53 that regulates several cell cycle
checkpoints. Changes in DNA damage repair also account for
resistance toward radiation, which induces double strand breaks.
Cancer cells also gain in apoptosis resistance by deregulation
of apoptosis signaling pathways. Cancer cells frequently express
antiapoptotic proteins like Bcl2, IAP, and Flip at an increased
level. These proteins are targets of the transcription factors NFκB
and STAT3 that become activated during oncogenesis. Additional
apoptosis resistance mechanisms rely on induction of adaptive
responses and or support by the microenvironment. Finally,
cancer cells make use of transmembrane proteins that account for
drug efflux, most prominent ABC transporters, which eliminate
hydrophobic compounds. ABC transporters are highly expressed
on excretory cells like colon and pancreatic duct epithelial cells.
All these mechanisms of apoptosis resistance are evoked by
CIC rather than Non-CIC (Allouche et al., 2000; Bates et al.,
2001). In many instances, CD44/CD44v6 contributes to or is of
central importance for the apoptosis resistance of CIC, which
will be discussed for CD44-promoted RTK activation of anti-
apoptotic proteins (Preston and Sherman, 2011), the impact of
CD44 on the metabolic state and the cooperation of CD44 with
ABC transporters (Orian-Rousseau and Sleeman, 2014) and will
include, where appropriate, the requirement of CD44/CD44v6 to
interact with HA (Allouche et al., 2000; Fujita et al., 2002; Stern,
2008; Toole and Slomiany, 2008).

CD44 and Receptor-Mediated Apoptosis
CD44–/CD44v-mediated activation of anti-apoptotic proteins is
frequently initiated through the association with RTK. However,
CD44v6 may also cooperate with FAS. Finally, the cooperation of
CD44 with proteases contributes to apoptosis resistance.

GEM-located CD44v6 promotes apoptosis resistance by
preventing FAS trimerization upon ligand binding. An antibody
blockade of CD44v6 allows for FAS trimerization and strongly
increases apoptosis susceptibility (Mielgo et al., 2006), which
could provide a new and interesting option in fighting CIC
(Figure 3A).

One pathway of CIC apoptosis resistance relies on the
association of CD44 with ERBB2 and ERBB3, which promotes
heterodimerization and activation in response to neuregulin
(Wang and Bourguignon, 2006; Toole and Slomiany, 2008).
ERBB2 activation/phosphorylation via CD44 is strikingly HA-
dependent. The lipid raft-located CD44-ERBB2/ERBB3 complex
includes ezrin, the chaperones HSP90 and CDC37 and
PI3K, which account for anti-apoptotic protein activation.
A blockade of the HA–CD44 interaction causes complex
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FIGURE 2 | Selective contributions of CD44v in modulating a niche for SC and CIC: CD44v6 contributes to matrix assembly and modulation by transcription of HAS

and several proteases. CD44v3, CD44v6, and CD44v10 are engaged in cytokine/chemokine harboring, which become deposited in the matrix. Major components of

CD44v-promoted changes in matrix composition and the contribution of CD44v-promoted deposits to matrix modulation are shown.

disassembly and ERBB2 inactivation (Sherman et al., 2000).
The ERBB2-PI3K/Akt-β-catenin complex additionally supports
COX2 expression, which is considered as a feedback loop,
COX2 suppressing caspase3 activation, strengthening HA
production and promoting prostaglandin (PG)E2 expression
(Ghatak et al., 2005) (Figure 3B). An ERBB2/ERBB4–CD44
complex promotes an additional feedback loop via ERK
phosphorylation that stimulates HA production by HAS-
1,−2, and−3 phosphorylation/activation (Misra et al., 2009).
Apoptosis resistance promoted by the CD44v-MET association
and initiated by CD44v3- or CD44v6-bound HGF, requires ERM
binding to the CD44 cytoplasmic tail and initiates Ras-MAPK
pathway activation (van der Voort et al., 1999; Bourguignon et al.,
2007). Activation of the anti-apoptotic PI3K-Akt pathway and
β-catenin signaling is also promoted by CD44v6-HA binding
(Orian-Rousseau et al., 2007; Jung et al., 2011) (Figure 3C).

An additional important mechanism of CD44-promoted
apoptosis resistance relies on the engagement of CD44 in the
Hippo signaling pathway. In the absence of stress, CD44 is
associated with Merlin that accounts for JNK, p53, and p21
upregulation, and YAP as well as ciAP1/2 downregulation, which
promotes apoptosis via caspase3 activation. However, Merlin

becomes phosphorylated and dissociates from CD44 upon CD44
activation by HA binding. After Merlin dissociation, CD44
regulates YAP expression via RhoA, which results in increased
apoptosis resistance (Takahashi et al., 2010; Xu et al., 2010)
(Figure 3D). In a feedback loop, activated YAP binds to the
RHAMM promoter inducing RHAMM transcription (Lynch
et al., 2007; Zhang Y. et al., 2014).

The CD44-RTK-promoted apoptosis resistance can
additionally include proteases. CD44-recruited MMP7 cleaves
the CD44v3-bound proform of HBEGF. Cleaved HBEGF
binds and activates ERBB4, which signals for cell survival
(Hilliard et al., 2011) (Figure 3E). An additional link between
CD44v6, proteases and apoptosis resistance relies on CD44v6
ectodomain cleavage by MMP9 and ADAM10 (Kim and Jung,
2012; Hartmann et al., 2015), where CD44-associated MMP14
accounts for proMMP9 cleavage and activation (Tjwa et al.,
2008). Finally, CD44-dependend apoptosis resistance can
proceed via CD44-promoted MMP9 expression (Desai et al.,
2009), high CD44 and MMP9 expression being associated
with a poor prognosis in CLL patients (Kivisaari et al., 2010;
Buggins et al., 2011). The CD44-MMP9 axis provides another
means rescuing CIC from apoptosis. Activated MMP9 interferes
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FIGURE 3 | CD44/CD44v6 and CIC apoptosis resistance: (A–H) CD44 becomes engaged in apoptosis resistance by several mechanisms. (A) CD44v6 interferes with

receptor-mediated apoptosis induction by preventing FAS trimerization. Antibody blocking of CD44v6 rescues FAS receptor initiated apoptosis; (B) Upon

HA-crosslinking, CD44-associated src becomes activated, the CD44 complex which additionally contains HSP70 and CDC37 phosphorylates ERBB2/ERBB3, which

binds neuregulin and activates the anti-apoptotic PI3K/Akt signaling pathways. In addition, Cox2 transcription becomes promoted. The latter stimulates PEC2 and

blocks caspase 3 activation, which prohibits the execution phase of apoptosis. (C) Activation of c-Met via CD44v6-bound HGF promotes activation of the PI3K/Akt

and the PKC-Ras-ERK pathway, activated ERK1/2 contributing to Akt phosphorylation, supporting anti-apoptotic Bcl2 and BclXl liberation. (D) Under stress, Merlin

(Continued)
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FIGURE 3 | binds to the CD44-ICD leading to activation of the Hippo pathways that promotes caspase 3 cleavage, which initiates the execution phase of apoptosis.

In the presence of CD44v3, merlin does not associated with the CD44-ICD; activation of the Hippo pathway is attenuated accompanied by increased apoptosis

resistance. (E) CD44v3 contributes to apoptosis protection by binding proHBEGF that becomes cleaved via recruited MMP7. After loading on ERBB4, anti-apoptotic

pathways become activated. (F) CD44v6-associated MMP14 accounts for proMMP9 cleavage. Activated MMP9 interferes with TGFβ activation, prohibiting

TGFβ-promoted apoptosis induction. (G) Both CD44 and HA contribute to drug resistance. MDR genes are associated with CD44 and CD44 regulates expression of

drug transporters by HA-activated CD44 binding to Gab1, which promotes PI3K activation. Activated PI3K stimulates HA production as well as MDR transporter

expression. Alternatively, HA binding to CD44 upregulates p300 expression and its acetyltransferase activity, which sustains acetylating β-catenin and NFκB-p65.

β-catenin and NFκB are cotranscription factors for MDR1. HA crosslinking stabilizes the CD44-MDR1 complex. Instead, upon Hyal activation and HA degradation the

complex becomes internalized, all components including S100A and Annexin II being recovered in the cytoplasm. (H) Via PKC activation CD44v3 promotes Nanog

phosphorylation, which induced miR-21 production accounting for MDR1 release from repression.

with TGFβ activation such that TGFβ-promoted apoptosis
becomes silenced (Ugarte-Berzal et al., 2014; Zarzynska, 2014)
(Figure 3F).

Finally, we want to remember that owing to its GEM location,
CD44v associates with non-RTK (Cooper and Qian, 2008),
particularly the association with Src playing a central role linking
extracellular signals to intracellular signaling pathways (Ingley,
2008) including, but not being restricted to apoptosis protection
(Marhaba and Zöller, 2004). As GEM harbor CD44v rather than
CD44s upregulation of anti-apoptotic genes mostly depended on
CD44v expression (Bates et al., 1998; Katagiri et al., 1999; Ghatak
et al., 2005; Bourguignon, 2008).

Briefly, CD44/CD44v6-RTK interaction play an important
role in protecting CIC from apoptosis. This may include protease
regulation, which, however, can independently support apoptosis
protection. Finally, intracellular signaling frequently proceed
downstream of RTK, but can also be initiated directly via CD44
associated cytosolic signaling molecules and cytoskeletal linker
proteins.

CD44, Apoptosis Protection, and the Metabolic State

of CIC
CD44-HA binding also directly affects apoptosis resistance. This
is mainly due to HA-binding-induced changes in metabolism.

SC and CIC maintain redox homeostasis by low oxygen
production. This is partly mediated by a minimal metabolic
rate (Suda et al., 2011; Schepers et al., 2013) and partly by
generating energy via anaerobic metabolism. Maintaining a
high rate of glycolysis limits reactive oxygen species (ROS)
production. HIF1α, the master regulator of anaerobic glycolysis
(Darzynkiewicz and Balazs, 2012), becomes stabilized under
hypoxic conditions (Simsek et al., 2010) and reprograms
glucose metabolism via transcriptional activation of glucose
transporters, glycolytic enzymes, and metabolic regulatory
enzymes, which promote the switch to the glycolytic metabolism
(Kaelin and Ratcliffe, 2008). Besides HIF1α, SC dispose on
additional regulatory molecules, including polycomb, DNA
damage-related and anti-oxidant proteins that participate in
ROS regulation (Takubo et al., 2010; Wheaton and Chandel,
2011). Finally, the CD44-intracellular domain (ICD) promotes
expression of HIF2α (Nombela-Arrieta et al., 2013), aldolase c,
6-phosphofructose-2-kinase, pyruvate dehydrogenase kinase-1,
and pyruvate dehydrogenase, early responsive hypoxia-related
genes (Gatenby and Gillies, 2004; Bartrons and Caro, 2007;
Pietras et al., 2014). This suggests CD44-ICD as a gatekeeper of

aerobic glycolysis in CIC (Miletti-González et al., 2012; Nombela-
Arrieta et al., 2013). The finding that neural SC, which reside
undifferentiated in an HA-rich matrix, loose oxidative stress
protection upon Hyal upregulation (Das and Baker, 2008), is
in line with this suggestion. Also, maintenance of CR-CIC
requires HIF-1α to stabilize ß-catenin and its transcriptional
activity (Santoyo-Ramos et al., 2014). Notably, too, XBP1,
the substrate of sensors for stress (e.g., IRE1), assembles a
transcription complex with HIF1α, which promotes CD44,
particularly CD44v6 expression in triple-negative breast cancers
(Krishnamachary et al., 2012; Chen et al., 2014a).

Another pathway, whereby the CD44-HA axis interferes
with apoptosis induction in SC relies on CD44-induced HA
endocytosis, internalized HA protecting DNA from oxidants.
The authors propose entrapment of iron ions, which inhibits
the production of secondary oxidative species by the Fenton’s
reaction. Mutually not exclusive, HA directly scavenges primary
and secondary ROI (Wang Z. et al., 2014). As palmitoylation
and GEM recruitment of CD44 is a precondition for HA
internalization (Thankamony and Knudson, 2006; Zhao et al.,
2008), we suggest a preferential engagement of CD44v.

Taken together, SC circumvent stress by a low metabolic
rate and energy generation via anaerobic metabolism. The
main contributions of CD44 in metabolic pathway-promoted
apoptosis resistance rely on its cotranscription factor activity and
its engagement in HA internalization.

CD44 and ABC Transporters
Multidrug resistance is a major obstacle in cancer therapy
(Bourguignon et al., 2012a), rapid drug elimination supporting
CIC survival (Kathawala et al., 2015). CD44 contributes by the
crosstalk with MDR genes (Miletti-González et al., 2005; Toole
and Slomiany, 2008).

CD44 associates with MDR genes and regulates their
expression. The process requires HA-activated CD44 that
binds Gab1, which promotes PI3K activation. Activated PI3K
stimulates HA production and MDR transporter expression
(Misra et al., 2005; Kathawala et al., 2015). Alternatively, HA-
linked CD44 induces p300 expression and activation, which
sustains MDR1 transcription by the cotranscription factors β-
catenin and NFκB-p65 (Liu et al., 2009). Notably, in the presence
of high MW HA, activated CD44v is predominantly recovered
in GEM and is associated with ERM proteins and actin, which
stabilize the CD44-MDR1 association. On the opposite, low MW
HA does not promote CD44 activation and the CD44-MDR1
complex, including S100A and Annexin II, becomes internalized
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(Bourguignon et al., 2009b) (Figure 3G), which is accompanied
by increased drug susceptibility (Slomiany et al., 2009). There
remain open questions on this clinically highly relevant topic.
First, the three HAS are supposed to produce HA of different size.
However, the major transcription factors engaged in HAS1,−2,
and−3 transcription are not defined. Second, more information
on HA degradation by Hyal is required, amongst others the
regulation of Hyal transcription (Negi et al., 2012; Midgley and
Bowen, 2015). Taking into account that Hyal and low MW HA
improve drug efficacy (Bourguignon et al., 2009b), and that HA-
CD44 cross-linking regulates drug transporter expression (Misra
et al., 2005; Kathawala et al., 2015), answers are urgently awaited
(Sebens and Schafer, 2012; Lokeshwar et al., 2014).

Finally, apoptosis resistance can be promoted by the
engagement of CD44 in EMT transcription factors, which was
demonstrated for HA-bound CD44v3, where promotion of
the Oct4-Sox2-Nanog complex induces miR-302 transcription
(Bourguignon et al., 2012b). The CD44–HA-induced nuclear
translocation of Nanog leads to miR-21 production and
upregulation of apoptosis inhibitors and MDR1 (Campo et al.,
2004; Bourguignon et al., 2009a) (Figure 3H).

There is ample evidence for the engagement of CD44 inMDR,
which beside others is linked toMDR gene transcription. The size
of HA being of central importance, further clarification of HAS
andHyal regulation are required. The CD44-promoted activation
of transcription factors that regulate miRNA transcription
involved in MDR and apoptosis-inhibitory genes adds an
additional level of complexity. Nonetheless, several pathways
of therapeutic interference are already explored like the use
of ABC transporter inhibitors (Foran et al., 2016) or ABC-
promoting miRNA (Safa, 2016). Lipid nanoparticles, equipped
with a CD44v6-specific antibody to direct toward CIC, may
shield drugs (Cavaco et al., 2017). To optimize these strategies,
further studies clarifying the mechanisms, whereby HA-bound
CD44 contributes to MDR gene expression, activation and
stabilization are warranted.

CD44, CIC, and EMT
Epithelial mesenchymal transition is accompanied by loss of
epithelial cell polarity and cell-cell adhesion in adherens and
tight junctions such that cells acquire a mesenchymal phenotype
accompanied by motility. EMT is of central importance in
embryogenesis, wound repair, and tumor progression, where
EMT is linked to the population of CIC. EMT comprises a set of
complex processes that are not yet fully unraveled. Accordingly,
reports on the connection to/engagement of CD44/CD44v6 are
still sporadic.

EMT is induced by signaling pathways including Notch,
Wnt, and HH, which become activated by signals derived from
the tumor-associated stroma, and EMT-inducing transcription
factors including Snail, Slug, Zeb1, Zeb2, FOX, and Twist
(Hoffman et al., 2002; Katoh, 2008; McCubrey et al., 2014).
Snail, ZEB, Twist and LEF inhibit E-cadherin, claudin, occluding,
and zonula occludens proteins. Upstream initiation can proceed
through TGFß binding to TGFβRs. Alternatively, signaling is
induced via bone morphogenetic proteins (BMP), frequently
engaged in EMT induction in cancer. Trimerization of TGFßR

initiates activation of SMAD signaling, but can also proceed
through the PI3K-Akt or the MAPK or JNK pathways. EMT
can also be induced via RTK, which initiate activation of
signaling cascades that promote EMT-related transcription factor
activation. Additional pathways proceed via Wnt binding to
frizzled, and via JAG2 binding to NOTCH, which becomes
cleaved, the NOTCH-ICD initiating NFκB, Snail, and Gata3
transcription. Finally, integrin binding to collagen I can
contribute to transcription factor activation including NFκB,
Snail, and LEF. There are excellent reviews covering different
aspects of EMT in CIC (Gonzalez and Medici, 2014; Chang et al.,
2015; Liu and Fan, 2015; Liao and Yang, 2017) and, though
much is known, due to the multiple levels of interactions, many
open questions remain. We will only review some EMT-related
processes describing an engagement of CD44.

First to mention, Twist, Snail, ZEB, and Slug expression
correlate with CD44 expression (Li and Zhou, 2011; Deep et al.,
2014; Marín-Aguilera et al., 2014; Masui et al., 2014; Way
et al., 2014), which was shown for Twist to proceed through β-
catenin activation and the Akt pathway (Li and Zhou, 2011).
Beyond linked expression, CD44 actively promotes EMT (Cho
et al., 2012; Ju et al., 2014; Nevo et al., 2014; Wang D. et al.,
2014; Yu D. et al., 2014; Fernando et al., 2015; Jiang et al.,
2015; Shang et al., 2015; Wang et al., 2015), e.g., by inhibiting
E-cadherin-β-catenin complex formation accompanied by β-
catenin translocation to the nucleus (Li and Zhou, 2011). There
is evidence that Notch plays a central role. It was shown that
Notch-1 receptors by induction of Jagged-1 activate CD44,
Slug, and Smad-3, which was prevented in the presence of
DAPT, a pan-Notch inhibitor and soluble Jagged-1-Fc protein
(Fehon et al., 2010). WNT signaling also promotes EMT-related
transcription factor activation, upregulated SNAI1 repressing E-
cadherin (cadh) (Katoh, 2017). The contribution of CD44 relies
on its ability to bind to the cytoskeleton through ERM proteins.
This network provides a platform for the tight association
between LRP6 and Frizzled, which supportsWnt binding (Orian-
Rousseau, 2015; Xu et al., 2015) and glycogen synthase kinase3β
and casein kinase1γ (Orian-Rousseau and Schmitt, 2015). In
addition, trafficking of the LRP6-containing vesicles from the
Golgi to the membrane might be tethered through the CD44-
ERM complex. This hypothesis, though still speculative, is
supported by CD44 being found on coat protein complex 1
(COP1) and co-localization of CD44 with SNARE that promotes
the fusion of MVB with the plasma membrane (Yu G. et al.,
2014).

The contribution of CD44 to EMT induction can also
proceed via miRNA regulation. In gastric cancer high level
miR-106b, miR-93, and miR-25 expression is associated with
CD44 expression. These miRNA repress inhibitory Smad7
promoting TGFβ/Smad signaling (Yu D. et al., 2014). MiR-
34a suppresses EMT by directly targeting CD44 (Yu G. et al.,
2014), whereas miR-203 suppression is essential for CR-CIC
maintenance (Ju et al., 2014). Gastric-CIC overexpressing
CD44 show increased expression of mesenchymal cell markers
and reduced epithelial marker expression. miRNA-microarray
analysis revealed significant upregulation of the miR-106b
family. Smad7, a target of the miR-106b family, which
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inhibits TGF-β/Smad signaling was downregulated and TGF-
β/Smad signal molecules were activated. Inhibition of miR-
106b decreased self-renewal and invasiveness (Yu D. et al.,
2014). Furthermore, HA binding to CD44v3+ALDH+ CIC in
head and neck squamous cell carcinoma (HNSCC) affects the
activity of the histone methyltransferase DOT1L in regulating
histone modifications and miRNA activation. HA-crosslinking
of CD44v3 promotes the association of Nanog/Oct4/Sox2
with CD44v3. Nanog/Oct4/Sox2 translocate and bind to the
promoter sites of e.g., miR-302 and miR-21, their expression
leading to stemness properties. DOT1L also becomes up-
regulated and stimulates miR-10b expression accompanied by
downregulation of HOXD10 and upregulation of uPAR,MMP14,
and RhoC and gain in invasiveness (Bourguignon et al.,
2016).

Finally, there are several reports on the engagement of the
CD44-ICD in EMT induction. After cleavage of the extracellular
domain. CD44 becomes accessible to presenilin, which allows
for setting free the CD44-ICD that acts as a cotranscription
factor (Nagano and Saya, 2004). Thus, in thyroid carcinoma cells,
which harbor activated RET/PTC, RAS, or BRAF, CD44-ICD
accumulated, a blockade of γ-secretase blunting CD44 processing
(De Falco et al., 2012). In mammary cancer the CD44-ICD
is engaged in EMT-related transcription factor expression and
nuclear translocation, particularly of Oct4 and Sox2 (Cho et al.,
2015) In glioma CIC, the CD44-ICD is engaged in hypoxic state
maintenance via binding HIF2α, which enhances HIF target
gene activation at perivascular oxygen tension (Johansson et al.,
2017). Thyroid carcinoma cells harboring activated oncogenes
exhibited CD44-ICD accumulation. The CD44-ICD binds to the
transcription factor CREB, which increases CREB-mediated gene
transcription and recruits CREB to the cyclin D1 promoter, cyclin
D1 assisting CIC proliferation (De Falco et al., 2012).

On the other hand, CD44 expression also becomes regulated
by EMT-related transcription factors. NOTCH1 is a critical
regulator of stemness in HNSCC. The ICD promotes sphere
formation and increases Oct4, Sox2, and CD44 expression.
Interestingly, a NOTCH-kd decreases expression of nearly all
ABC transporter genes (Lee et al., 2016). In Pa-CIC, decreasing
NOTCH1 is accompanied by reduced DCLK1 (doublecortin like
kinase 1), CD44, CD24, and EpC expression (Ponnurangam
et al., 2016). In prostate cancer, too, NOTCH contributes
to CIC maintenance. Lunatic Fringe (Lfng) encoding an
O-fucosylpeptide 3-ß-N-acetylglucosaminyltransferase modifies
epidermal growth factor repeats of Notch receptor proteins.
Deletion of Lfng alters Notch activation and results in
prostate intraepithelial neoplasia, accompanied by expansion of
CD44+ and CD49f+CIC and enhanced prostatosphere-forming
capacity (Zhang S. et al., 2014). Notch activation can also be
initiated via cytokines. Upon binding of the secretory cytokine
prolactin (PRL) to its receptor JAK, ERK and STAT signaling
becomes activated and the Notch ligand Jagged 1 expression is
increased, corresponding to upregulated Notch-ICD, DCLK1,
LGR5, ALDH1, and CD44 expression (Neradugomma et al.,
2014). In breast cancer, Notch-ICD transactivates SOX2, which
increases sphere formation, and expansion of ALDH1+ and
CD44+ cells (Azzam et al., 2013). Ribosomal S6 kinase (RSK),

suggested as a therapeutic target, also acts via Notch. RSK
phosphorylates YB-1, which regulates CD44 and CD49f. This
is due to silencing YB-1 or RSK reducing Notch4 mRNA and
Notch4-ICD (Reipas et al., 2013).

Thus, CD44-ICD promotes EMT-related transcription factors
and EMT-related transcription factors, particularly NOTCH
contribute to CD44 expression in CIC. As elegantly reviewed,
these informations offer pathways to therapeutically attack the
CIC biomarker CD44/CD44v (Horta et al., 2015).

Taken together, EMT is a central feature of CIC. There
is convincing evidenc for CD44v6 promoting Wnt signaling
via the association with LRP5/6 and for CD44-ICD regulating
EMT transcription factors. CD44, in turn, is regulated by EMT
transcription factors and EMT-regulating miRNA.

CD44/CD44V6 ASSOCIATIONS
CONTRIBUTING TO CIC MOTILITY AND
INVASION

CD44/CD44v6 contribute to tumor cells leaving the mass of the
primary tumor to circulate in blood and lymph and to settle
in lymph nodes and distant organs, which is supposed to be
linked to a subpopulation of CIC (Hermann et al., 2007). The
engagement of CD44/CD44v6 mostly relies on its association
with signal transducing molecules, predominantly receptor
tyrosine kinases, GPCR and integrins. CD44/CD44v6 also affects
and becomes affected by proteases, whereby the CD44-ICD
comes into play. Finally, the CD44/CD44v6 interaction with
the surrounding matrix, including HA, and feedback loops
contributes to the regulation of CD44/CD44v6-promoted CIC
motility and invasion.

CIC, CD44v, and Signaling Receptor
Activation
CD44/CD44v6 have a strong impact on CIC motility, which
relies in part on the association of CD44 with membrane-
integrated kinases. In view of excellent reviews (Katoh and
Katoh, 2009; Orian-Rousseau, 2015) and an abundance of clinical
studies indicating a linkage between CD44v expression and CIC
migration (Naujokat, 2014; Yoon et al., 2014), we only give
some prominent examples for the cross-talk of CD44v with
RTK, GPCR, integrins, and cytokine receptors that contribute to
CIC-selective activities.

Several studies demonstrate a linkage between RTK and CD44
and LIC/CICmotility. In multiple myeloma, CD44v6 contributes
to homing. Differences in homing of a stroma-dependent
and a stroma-independent line revealed that only the stroma-
dependent line expresses IGFR1 and CD44v6. The authors
describe that BM-stroma derived IGF1 promotes IGFR1 and
CD44v6 upregulation, which facilitates myeloma cell migration
toward the BM niche (Asosingh et al., 2000). In SSC Axl
expression correlates with CD44 and ALDH1 expression. It
is associated with poor prognosis and EMT induction. Axl
depletion promotes intercellular junction molecule expression
and downregulates Wnt and TGFßR signaling (Cichon et al.,
2014). In SCC CD44v also is associated with the EGFR and
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promotes EGFR phosphorylation. Interrupting this crosstalk
affects tumor growth and apoptosis resistance (Perez et al.,
2013), where EGFR ligation initiates via the STAT3 pathway
CD44 transcription (Kim et al., 2014). Intestinal organoid
cultures with inducible MET deletion revealed MET signaling
regulating intestinal homeostasis, regeneration and adenoma
formation. These MET activities are promoted by CD44v4-
v10 (Joosten et al., 2017). In line with this finding, an elegant
study on the contribution of CD44v to CIC maintenance in
CRC demonstrated by a knock-in that only CD44v4-v10, but
not CD44s initiates adenoma development in Apc(Min/+)mice
(Zeilstra et al., 2014) (Figure 4A). There is, to our knowledge,
only one report suggesting CD44 to negatively regulate RTK
activities. PDGFRß interacts with TNFRI, which promotes
Smad2 phosphorylation. CD44 downregulation strengthens
signaling via the PDGFRß-TNFRI complex, indicating a negative
regulation of the activity of this RTK complex by CD44 (Porsch
et al., 2014).

In brief, particularly CD44v promotes RTK activation by
provision of CD44v-bound cytokines. This initiates RTK
activation and downstream signaling, which fosters oncogenesis
and LIC/CIC motility directly or via EMT transcription factor
activation.

The cooperation of CD44/CD44v6 mostly relies on proximity
in GEMmicrodomains and can be supported by CD44 activation
via HA binding, particularly well-described for the CD44-CXCR4
axis. To give a few, selected examples: In gastric-CIC, flow-
stimulated invasion was reduced by a blockade of CXCR4,
SDF1, and/or CD44 (Kingsmore et al., 2016); in HNSCC,
formation of podia and cell migration essentially depend on
CD44 and CXCR4 expression (Faber et al., 2013). There is
evidence that particularly CD44v6 contributes to CIC migration
in response to SDF1. Thus, migration along a SDF1 gradient
essentially depends on CD44v6, CD44v6ko cells not migrating
in response to SDF1 (Nervi et al., 2006). This also accounts
for the support by C3, which is selectively trapped by CD44v6
(Takahashi et al., 2010; Jung et al., 2011). C3 drives CXCR4
into lipid rafts, the association with CD44v6 strengthening the
CXCR4–SDF1 axis (Lee and Ratajczak, 2009). Finally, SDF1-
CXCR4-CD44-promoted motility depends on HA size. High
MW HA augments SDF1-induced CXCR4 signaling in tumor
cells, which is accompanied by enhanced ERK phosphorylation
and increased motility. Low MW HA or a CD44 antibody
blockade efficiently inhibit these effects, indicating that HA-
promoted CD44 crosslinking and CD44 activation-induced
CXCR4-binding are essential for SDF1-promotedmotility (Fuchs
et al., 2013) (Figure 4B).

Beside CXCR4 several GPCR were described to promote
CIC motility via CD44. In gastric cancer, CD44+ cells show
upregulation of HH pathway proteins and HH inhibition by
Smoothened (Smo) shRNA decreases spheroid and colony
formation, migration, invasion, and anchorage-independent
growth (Katoh and Katoh, 2009). In CRC, downregulation of
the GPCR LGR5 (leucine-rich repeat containing G protein
coupled receptor 5) with small interfering RNA decreases the
expression of CD133 and CD44, which is accompanied by loss
of spheroid growth and invasiveness (Chen et al., 2014b). GPCR

sphingosine-1-phosphate receptor 3 (S1P3)-promoted tumor cell
migration also involves CD44. The CD44 promoter contains
ETS-1 binding sites, where S1P stimulates the binding of ETS-1
to the CD44 promoter region and induces expression and nuclear
translocation of ETS-1, which requires ROCK, S1P3/ROCK up-
regulating ETS-1 via JNK activity. This novel S1P3-ROCK-JNK-
ETS-1-CD44 signaling cascade adds another pathway to CD44-
promoted chemotactic responses (Zhang et al., 2013).

Of special importance is the linkage of CD44 toWnt signaling.
This relies on the association of CD44/CD44v6 with LRP6,
which drives LRP6 toward frizzled and increases Wnt signaling
(Schmitt et al., 2015). In a feedback loop, it was demonstrated
that HGF, OPN and SDF-1, secreted by cells of the tumor
stroma, increase CD44v6 expression in CR-CIC via Wnt/β-
catenin pathway activation (Todaro et al., 2014) (Figure 4C).
Notably, some cytokines also contribute to SC/CIC migration via
directly binding to CD44. This was demonstrated for OPN, where
CD44v6kd-HSC showed impaired migration corresponding to
impaired OPN binding to CD44v6kd cells (Nilsson et al., 2005;
de Barros et al., 2010). In glioma CIC, OPN-induced migration
required the CD44-ICD, which enhanced CBP/p300-dependent
HIF-2α activity (Pietras et al., 2014).

CD44v6 also cooperates with cytokine receptors in promoting
motility. This was demonstrated for the IL6R, where anti-
CD44v6 impairs CIC migration toward IL6 (Yamamura et al.,
2007). Correspondingly, high expression of the IL6R on CIC is
associated with poor prognosis (Kim et al., 2017).

As stated above, the proximity of CD44/CD44v6 with GPCR
strongly promotes CIC motility. It is our personal point of
view that HA crosslinking of CD44 besides supporting CD44
activation contributes to recruitment into GEM. These structures
known as a signaling platform harboring palmitoylated and
myristoylated cytosolic signaling molecules (Ma et al., 2015) will
greatly contribute amplifying the signal strength upon GPCR
contact with their ligands.

CIC motility is assisted by the association of CD44 with
integrins. Due to activation-induced proximity, GEM-located
CD44 gets access to integrin-associated focal adhesion kinase
(FAK) and integrins to CD44-associated Src and ERM proteins.
Thereby the integrin-paxillin association becomes weakened and
the CD44-ezrin-integrin-FAK complexmoves toward the leading
edge (Marhaba et al., 2006). The finding was confirmed by
transfection of CD49d-negative tumor cells with CD49d carrying
a point mutation prohibiting phosphorylation and FAK binding
and by transfection of a CD44-negative tumor line with CD44
harboring a point mutation in the ezrin binding site, or with
cytoplasmic tail-truncated CD44. Ligand-binding and antibody-
blocking studies confirmed that CD44-CD49d ligand-induced
proximity is the prerequisite for mutual access to Src, FAK,
paxillin and the MAPK pathway via lck (Singh et al., 2013)
(Figure 4D). Correspondingly, a CD44kd is accompanied by Src,
paxillin, FAK, c-Jun and transcription factor Sp1 downregulation,
where Sp1 contributes to Src transcription. This provides an
alternative pathway of CD44-promoted motility, which relies
mostly on the engagement of CD44 in the JNK pathway
activation (Nam et al., 2015). In line with these findings and
pointing toward a special contribution of CD44v isoforms,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 August 2018 | Volume 6 | Article 97

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Wang et al. CD44/CD44v6 Contributions to Tumor Progression

FIGURE 4 | The multiple pathways of CD44/CD44v6-promoted CIC motility: CD44/CD44v6 drive CIC motility by activation of signaling cascades as well as protease

activation. (A) Motility can become promoted by the association with RTK. CD44v-EGFR binding induces EGFR activation. The activated EGFR in cooperation with

CD44-associated ERM promotes initiates activation of the Stat3 pathway and EMT gene transcription factors. Through the association of CD44v4-v10 with MET,

oncogenes become activated, which is accompanied by transformation of epithelial cells in the colon. Also via the CD44v6 association with MET, ERM promotes MET

and downstream MAPK and β-catenin activation, which contributes to activation and nuclear localization of several EMT transcription factors. (B) CD44 also

associates with GPCR, a prominent example being the CD44-CXCR4 axis. Depending on HA crosslinking, SDF1-bound, CD44v-associated CXCR4 promotes

activation of the MAPK pathway, which supports tumor cell and EC motility. (C) CD44v contributes to EMT. As demonstrated for activation of the Wnt signaling

cascade, the supportive CD44 activity can rely on CD44-associated molecules. CD44-associated LRP6 binds to Frizzled, which strengthens Wnt signaling. WNT

signaling upregulates SNAI1 to repress epithelial genes, such as E-cadherin. (D) Through the association of CD44 with integrins, CD44 gains access to focal adhesion

kinase (FAK), and integrins gain access to Src kinases and ERM proteins, so that the integrin-paxillin association becomes weakened and the GEM-integrated

CD44-ezrin-integrin-FAK complex moves toward the leading edge of the cell, promoting cell migration. (E) The connection between CD44 and cytoskeletal linker

protein provides another pathway promoting motility, where RHOA plays a major role. The RHOA-specific GEF p115RHOGEF, which interacts with CD44, activates

the serine/threonine Rho kinase (ROCK), a downstream target of RHOA. ROCK phosphorylates CD44, leading to enhanced ankyrin binding and guiding CD44 to the

leading edge of migrating cells. (F) The crosstalk with proteases adds to the engagement of CD44 in motility. Three examples are shown. CD44-associated PLCγ

triggers via IP3 Ca++ influx. Ca++ promotes proADAM10 dissociation from calmodulin; membrane bound ADAM10 contribution to cleavage of the CD44

extracellular regions. ADAM17 colocalizes with CD44 at Rac-regulated membrane ruffling areas and becomes activated by PKC and Rac. Finally, activated ADAM17

also promotes CD44 extracellular region cleavage. After ectodomain cleavage, CD44 becomes accessible to the presenilin/γ-secretase complex, which triggers

intramembrane CD44 cleavage, setting free the CD44-ICD. The CD44-ICD binding to a DNA consensus sequence in the promoter regions of CD44 and MMP-9 gene

potentiates CD44 and MMP9 transcription.

migration of CD44v6/v7ko-HSPC toward the niche is impaired,
due to the failure to bind to FN (Naor et al., 1997), FN binding
promoting the association of CD44v6 with α4β1.

CD44/CD44v6 promoted CIC extravasation also is supported
by the cooperation/association with adhesion molecules. CRC
express CD44v isoforms are sialofucosylated on O-linked glycans
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alike P-selectin ligands (Hanley et al., 2006), where antibody
blocking and targeted deletion confirmed the contribution of this
P-selectin ligand CD44v isoform to jointly with α4β1 promoting
firm adhesion followed by extravasation (Katayama et al., 2003).
Breast cancer cells, too, bind to E-selection via a novel CD44v
isoform containing N-linked glycans, which promotes adhesion
under shear stress, the authors speculating on a particular
advantage for metastasizing cell extravasation (Shirure et al.,
2015).

There is no evidence for a protein-protein interaction between
CD44/CD44v and integrins, the amplified migratory activity
relying on proximity, which allows mutual access to downstream
signaling cascades.

CIC Motility, CD44/CD44v, and the
Association With Cytoskeletal Linker
Proteins
CD44/CD44v6 have no signaling domains. Instead, activated
CD44 associates with cytoskeletal ERM and ankyrin linker
proteins, which link to the actin cytoskeleton and initiate
downstream signaling cascades (reviewed in: Martin et al., 2003;
Bourguignon, 2008). To provide a brief overview:

CD44-HA binding is required for the CD44 cytoplasmic
tail to get access to the actin cytoskeleton via ankyrin and
ERM proteins (Lokeshwar et al., 1994; Fehon et al., 2010),
where Rac1 activation is central in CD44-mediated cytoskeletal
reorganization. This was shown by inhibiting lamellipodia
formation on HA-coated plates by CD44 antibody blocking,
as well as by transfection of a dominant-negative mutant
Rac1 (Oliferenko et al., 2000). Phosphorylation of the guanine
exchange factors (GEF) VAV1 and VAV2 (Yu D. et al., 2014),
upstream regulators of Rac1, is mediated by Src (Yu D. et al.,
2014). Thus, CD44-associated Src (Cho et al., 2012) could
well be a starting hub for CD44-HA crosslinking-initiated
cytoskeleton reorganization. Alternatively, linking CD44 to actin
could proceed through the Rho kinase (ROCK), a downstream
target of RhoA, where a RhoA-specific GEF interacts with CD44.
ROCK phosphorylates CD44, which enhances ankyrin binding
(Bourguignon et al., 2003) and guides CD44 to the leading
edge of migrating cells (Lamontagne and Grandbois, 2008)
(Figure 4E). The observation that melanoma cells expressing a
truncated CD44 tail cannot migrate on HA, although retaining
HA-binding capacity, supports this concept (Thomas et al.,
1992).

Some dominance of Rac signaling in CD44/CD44v-supported
motility was also described in melanoma, where CD44v8-
v10 promotes destruction of VE-cadherin junctions, which
facilitates melanoma extravasation (Zhang P. et al., 2014).
RacGAP1 contributed to this process as depletion of RacGAP1
or overexpression of a RacGAP1 mutant attenuates melanoma
cell migration concomitantly with changes in adherens
junctions. RacGAP1 promoted RhoA, FAK, paxillin activation
and triggered focal adhesion formation and cytoskeletal
rearrangement. The authors conclude that focal adhesion
signaling downstream of RacGAP1 accounts for the breakdown
of tight junctions (Zhang P. et al., 2015).

Thus, evaluating the contribution of CD44/CD44v6 in driving
CIC motility at the cytoplasmic level confirmed a central
engagement of Rac, Rho, ROCK proceeding to kinases engaged
in focal adhesion formation.

In brief, the crosstalk between CD44/CD44v, RTK, GPCR,
integrins and cytoskeletal linker proteins contributes to CIC
induction. Being aware that within this review we only
cursorily summarized the multiple signaling pathways whereby
CD44/CD44v6 become engaged in promoting CIC motility, we
want to stress one most interesting study that outlines a central
role of metabolism. Fatty acid synthase (FASN), a key enzyme
in lipogenesis, is significantly upregulated in many cancer. The
authors demonstrate in CRC that FASN accounts for CD44,MET,
Akt, FAK, and paxillin upregulation and activation. Though
having nomajor impact on primary tumor growth, attenuation of
lipogenesis completely abolished metastasis formation (Zaytseva
et al., 2012).

The Contribution of the
CD44/CD44v6-Protease Crosstalk to CIC
Motility
Besides associating with RTK, GPCR, integrins, cytosolic
signaling molecules, and cytoskeletal linkers, CD44 is engaged in
protease-promoted CIC motility.

Membrane bound MMP14 and ADAM proteases strengthen
CIC motility (Duan et al., 2015). The engagement of CD44
is due to protease-promoted CD44 cleavage, where Ca++

influx triggers proADAM10 dissociation from calmodulin
and ADAM10 activation. ADAM17 colocalizes with CD44 in
membrane ruffles that are regulated by Rac. Rac together
with PKC activate ADAM17, which cleaves CD44v (Nakamura
et al., 2004; Sugahara et al., 2008). The rapid activation
of membrane-integrated proteases and cleavage of CD44,
which is initiated by HA-CD44 crosslinking supports motility.
Notably, CD44 cleavage is tightly regulated. On the one side,
activation of CD44-associated proteases by CD44 is missed after
CD44 cleavage. On the other side cleavage promotes CD44
transcription. Ectodomain cleaved CD44 becomes accessible
to presenilin/γ-secretase, which triggers intramembrane CD44
cleavage. The CD44-ICD binds to the CD44 and MMP-9
promoter, which potentiates CD44 (Okamoto et al., 2001) and
MMP9 transcription (Miletti-González et al., 2012) (Figure 4F).

MMP9 also contributes to CD44 cleavage, inhibition of both
CD44 and MMMP9 being accompanied by reduced migration.
Cleavage of CD44 by MMP9 is promoted by colocalization at the
cell surface and MMP9 stimulation (Chetty et al., 2012). Notably,
by the impact of uPAR on integrin activity and the association
of CD44 with integrins, a concomitant blockade of MMP and
uPAR exerts an additive effect in prohibiting tumor cell migration
(Veeravalli and Rao, 2012).

The CD44-CXCR4 association also stimulates protease-
promoted migration. Stimulation of CXCR4 involves among
others PKCζ (Goichberg et al., 2006), which induces MMP2
and MMP9 secretion (Peled et al., 1999). It is predominantly
due to this protease-promoted distortion of the SDF1-CXCR4-
CD44 axis that LIC adhesion in the niche becomes disrupted
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(Peled et al., 1999; Petit et al., 2002). Upregulated expression
of MMP9 (Levesque et al., 2004), CD26 (Christopherson et al.,
2003), cathepsin G and K, and neutrophil elastase (Petit et al.,
2002) were also described fostering CIC motility (Bonig and
Papayannopoulou, 2012), particularly the latter being suggested
accounting for VCAM1 and FN degradation (Lévesque et al.,
2001).

The contribution of intracellular plasminogen activator
inhibitor (PAI)-1 deserves mentioning. TGFβ induces
intracellular PAI-1 activation, high intracellular PAI-1 expression
in niche-resident HSC accounting for retaining HSC in the BM
niche. Inhibition of the TGFβ-PAI-1 signal increases motility and
causes HSC detachment from the niche, which corresponds to
high HSCmotility in the absence of PAI-1. The authors point out
that intracellular PAI-1 inhibits the proteolytic activity of Furin,
diminishing MMP14 activity, which affected CD44, CD49d, and
CXCR4 expression (Yahata et al., 2017). This interesting finding
of intracellular proteolysis regulating SC and CIC migration
opens a new therapeutic option.

Finally, ROCK, a major downstream target in CD44-
cytoskeletal linker protein-initiated signaling, phosphorylates
SLC9A1 (Na-H-exchanger1). Phosphorylated SLC9A1 activates
Hyal2 and cathepsinB, which contribute to ECM degradation
(Bustelo, 2000), thereby modulating the niche and creating space
for migrating CIC.

The interplay between CD44/CD44v6 and proteases has not
consistently been linked to CIC, although the recovery of CIC
in the peripheral blood, in BM and metastasis-prone organs is
well-appreciated. Nonetheless, the cleavage of CD44 by several
proteases, the stimulation of protease transcription and secretion
as well as the TGFβ-regulated intracellular PAI-1 activity on the
one hand and the activation of Hyal and cathepsin B on the other
hand suggest a major contribution of proteases to CIC motility
via CD44/CD44v6 cleavage and matrix degradation.

CIC, CD44, AND TEX

TEX contribute to metastatic progression. Information so
far implies CIC-TEX to transfer CIC-features into Non-CIC,
to modulate the tumor stroma, to promote angiogenesis,
to account for the formation of a premetastatic niche and
to redirect hematopoietic progenitor maturation toward an
immunosuppressive phenotype (Azmi et al., 2013; Kosaka et al.,
2014; Whiteside, 2016; Sato and Weaver, 2018; Sundararajan
et al., 2018; Zhang et al., 2018). Having outlined the general
features of Exo biogenesis, we focus on a possible contribution of
CD44 to vesicle loading and the impact of the CD44-promoted
load on target structures and cells.

The Engagement of CD44v6 in Vesicle
Loading
The majority of TEX are derived from invagination-prone
membrane domains (Colombo et al., 2014). CD44v6 being
located in GEM, TEX-CD44v6 can be expected to be
predominantly GEM-derived, where tetraspanins are most
strongly enriched in TEX (Zöller, 2009; Mathivanan et al., 2010).

There was no evidence for CD44 enrichment or depletion in
TEX compared to the plasma membrane. Nonetheless, TEX
delivery of CD44v6kd cells is significantly decreased. This is due
to CD44v6 being engaged in Tspan8 transcription by a not-yet
defined transcription factor (Wang et al., 2016). Furthermore,
TEX delivered by CD44v6kd cells significantly differ from
CIC-TEX. This accounts for the protein as well as the miRNA
profile, indicating an active contribution of internalized CD44 to
the loading process.

Earlier studies in a rat PaC model unraveled a striking
decrease inMET, HAS3, HGF, HSP1, andMMP9 and a significant
decrease in uPAR, CD104, PGK1 and thrombospondin (TSP) in
CD44v6kd-TEX (Jung et al., 2011). While decreased recovery of
MET, HGF,MMP9, uPAR andCD104 corresponds to the reduced
recovery in CD44v6kd cells and likely is due to the association of
these molecules with CD44v6 and/or the engagement of CD44v6
in transcription or stabilization, some non-TEM proteins, e.g.,
AnnII, HSP1, Monooxygenase activating protein and PGK1,
are also affected, which pointed toward an engagement of
CD44v6 in vesicle loading. Repeating the experiment with human
CIC-TEX and CD44v6kd TEX evaluating exclusively proteins
that co-immunoprecipitated with CD44s or CD44v6 confirmed
these results and provided evidence for an unexpectedly high
number of CD44v6-coimmunoprecipitating molecules engaged
in RNA splicing, processing, transport as well as of Dicer
and PRKRA (protein activator of interferon induced protein
kinase EIF2AK2) engaged in mRNA silencing (deposited:
Functional Proteome Analysis, DKFZ, Heidelberg, Germany,
File: ZW2612) (Figure 5), strengthening the hypothesis on the
CD44v6 engagement in mRNA processing. The finding is in line
with Exo harboring the mRNA processing machinery and the
recovery of miRNA and mRNA processing complexes in TEX
(Melo et al., 2014; Geis-Asteggiante et al., 2018). Notably, loading
of the vesicles with mRNA processing proteins was CD44v6-
specific, not being seen, e.g., in CIC-TEX selected according to
Tspan8 expression (ENA database, accession No: PRJEB25446).
The mechanism accounting for the selective CD44v6-dependent
recruitment remains to be explored.

In a similar study with gastric cancer cells it was noted that
expression of CD97, a GPCR and member of the EGF-seven
transmembrane subfamily that binds chondroitin sulfate, α5β1
and the GPI anchored CD55, becomes strikingly upregulated
in Exo, which promoted lymphatic spread of tumor cells
accompanied by upregulation of CD55, CD44v6, α5β1, EpCAM,
and CD151. Treatment with TEX concomitantly with a soluble
matrix strengthened metastasis formation (Liu D. et al., 2016).

Besides loading with proteins, the recruitment of miRNA
and lncRNA has been extensively explored and is well-
summarized in recent reviews (Hewson and Morris, 2016;
Bortoluzzi et al., 2017; Fan et al., 2018; Salehi and Sharifi,
2018), some miRNA being preferentially recruited via CD44v6
(accession No: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE34739, ENA database, accession No: PRJEB25446).
Thus, non-stochastic miRNA-loading into tetraspanin-positive
ILV proceeds preferentially via a ceramide-dependent pathway.
Oncogenes such as Kirsten rat sarcoma viral oncogene homolog
also promote selective miRNA packaging into ILV. The transfer
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FIGURE 5 | The contribution of CD44 to the biogenesis of metastasis-promoting exosomes. (A) Overview of Exo biogenesis, where CD44v6 contributes to loading of

ILV derived from GEM-internalized membrane domains (red star). (B) Molecules engaged in RNA processing that coimmunoprecipitate with CD44v6, but not CD44s in

CIC and CIC-TEX. With very few exceptions RNA transport and processing engaged proteins are recovered in TEX, but not cells, which supports the suggestion of an

active engagement of CD44v6 in mRNA recruitment.

of selectively recruited lncRNA, adds to tumor progression
and EMT induction. Of particular interest for CD44 could be
MALAT1 that modifies RNA alternate splicing (rev. in Hewson
and Morris, 2016).

Though the recruitment of RNA processing proteins into Exo
may well contribute shaping the RNA content (Melo et al., 2014;
Geis-Asteggiante et al., 2018), there is a compelling hypothesis
linking the invaginated membrane complex to RNA loading.
The lipid composition of the Exo membrane resembles that of
raft microdomains and the inward budding process involves the
raft-like region of the MVB limiting membrane. The authors

suggest a continuous interaction of cellular RNA with the outer
(cytoplasmic) surface of MVB, the selection for incorporating
RNA into ILV being based on their affinity to the raft-like
region in the outer layer of the MVB membrane (Janas et al.,
2015). CD44v6 being recruited into EE derived from tetraspanin-
enriched membrane domains, experimental verification of this
hypothesis may unravel the pathway of the selective contribution
of CD44v to ILV loading with RNA.

Another pathway, whereby CD44v could become involved
describes loading of ILV to be promoted by heparin sulfate
proteoglycans (syndecans, SDC), syntenin and associated
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regulators, which include Alix, adenosine 5′-diphosphate-
ribosylation factor 6, phospholipase D2 and heparanase. All
these molecules support the budding of SDC-syntenin and
associated cargo into the lumen of endosomes, where SDC
carrying HS and sometimes chondroitin sulfate chains have
numerous ligands including morphogens, adhesion molecules
and growth factors, such as Wnt, FN, and FGF. By docking
these factors to cognate signaling receptors, proteoglycans act as
coreceptors (Friand et al., 2015). By the selective recruitment of
the SDC-syntenin complex into Exo, particularly CD44v3 and
CD44v6 may play a major role in ILV loading.

Great progress in proteomic and sequencing started a new
era in Exo research. CD44v6 contributes by the engagement
in loading ILV with mRNA processing components. Additional
selective recruitments can be expected by heparin sulfate
proteoglycans. Further studies being required more precisely
unraveling the mode of ILV loading, the available data already
suggest a major contribution of CD44v6 to CIC-TEX activities.

The Contribution of CD44v6 to TEX Activity
CIC-TEX can affect non-CIC, matrix and cells of the tumor
stroma, EC, hematopoiesis, and the premetastatic niche (Couto
et al., 2018; Zhang et al., 2018). Though TEX-CD44/CD44v6 may
add to all these activities, so far this has been confirmed formatrix
modulation, premetastatic niche preparation and the impact on
Non-CIC and is suggested for angiogenesis, which will be briefly
discussed.

A first hint that TEX-CD44v6 contributes to preparing a
premetastatic niche was obtained in a rat PaC that cannot grow
locally, requiring reaching the draining lymph node for growth
initiation. From there it proceeds along the lymphatic route to
the lung. CD44v6kd cells did not grow and rats remained tumor
free. The wt tumor matrix sufficed for metastasis development
(Klingbeil et al., 2009; Jung et al., 2011). Separating the matrix
from the matrix-embedded TEX revealed that TEX bound
preferentially LN, HA and collagen. Due to the high content of
proteases, TEX efficiently degraded matrix proteins, degradation
products, and the liberated growth factors and chemokines
promoting tumor cell migration and proliferation (Klingbeil
et al., 2009; Mu et al., 2013). Studies with human PaCIC-
TEX indicated importance particularly of uPAR, MMP2, and
MMP9 as well as of the CD44v6 cooperation with tetraspanins
and tetraspanin-associated integrins (Wang et al., 2016). Other
studies described the importance of heparanase (Thompson et al.,
2013) and integrins (Hoshino et al., 2015), which may well act in
cooperation with CD44v6 (reviewed in Thuma and Zöller, 2014;
Sleeman, 2015; Carrasco-Ramírez et al., 2016; Heiler et al., 2016).

There is an abundance of reports on the impact of Exo on
premetastatic niche formation, which originally was elaborated
for LIC and the osteogenic and vascular niche in the BM
(Azizidoost et al., 2014; Schepers et al., 2015), where a strong
overlap between the impact of LIC and LIC-TEX on the niche
was noted (Zöller, 2015), including DKK1 expression that
suppresses osteogenesis and downregulation of hematopoiesis-
promoting factors like SDF1, kitL and IgF1 (Kumar et al., 2018).
Premetastatic niche stroma and tumor stroma are characterized
mostly by changes toward fibrosis (Masamune et al., 2018).

A specific contribution of CD44 remains to be explored. In
concern about the cellular content of the premetastatic niche
two aspects should be mentioned. First, TEX recruit cells and
second, TEX reprogram resident cells. A dominantly recruited
population are myeloid-derived suppressor cells (MDSC). They
may become attracted via resident Mφ stimulated by TEX-
derived MIF (Costa-Silva et al., 2015). It is, however, interesting
to note that TEX from non-metastatic tumors also contribute
maintaining the non-metastatic state. These Non-CIC-TEX
actively support recruiting cells of the innate immune system
to trigger immune surveillance (Plebanek et al., 2017). The
impact of TEX on niche resident cells supporting recruitment
was recently described in an elegant report. The authors
noted that lung epithelial cells become triggered by TEX via
activation of TLR3 to secret chemokines promoting neutrophil
recruitment (Liu Y. et al., 2016). In a similar study it was
elaborated that TEX support TGFß, TLR and Stat3 upregulation
in BMC and LNC, which is accompanied by upregulation
of Notch. Furthermore, SDF1 and immunosuppressive
cytokine and protease expression was increased. This
accounted for Tspan8- and CD44v6-expressing TEX
(Yue et al., 2015; Wang et al., 2016).

TEX-promoted angiogenesis is considered one of the central
TEX activities (rev. Grange et al., 2011; Ribeiro et al., 2013),
which includes an impact of transferred miRNA (Bao et al., 2018;
Yukawa et al., 2018). TEX suffice for angiogenesis culminating
in disseminated intravascular coagulation (Claas et al., 1998;
Gesierich et al., 2006). It mostly relies on TEX-Tspan8 (Claas
et al., 1998). A contribution of CD44v6 (Yue et al., 2017) is
not yet conclusive as CD44v6 affects Tspan8 expression (Yue
et al., 2015). TEX also suffice for EC progenitor maturation,
which is accompanied by vWF, MIF, and CXCL5 upregulation
promoting CCR1, VEGFR2, and VEGF expression (Nazarenko
et al., 2010). Finally, many cancer preferentially metastasize
via the lymphatic system and TEX activate lymphatic EC (Yue
et al., 2017; Nogués et al., 2018), a contribution of TEX-derived
podoplanin being suggested (Carrasco-Ramírez et al., 2016). Also
TEX induce upregulation of VEGFR3 and Lyve in lymphatic
vessels (Mosaad, 2014; Thuma et al., 2016). Taken together,
though there is ample evidence for the contribution of TEX
to angiogenesis and lymphangiogenesis, both aspects require
further elaboration, particularly in concern about an explicit
contribution of CD44v6, where the initiating trigger including
the contribution of CD44v6-recruited miRNA remains to be
explore.

Last, not least, TEX affect Non-CIC (reviewed in Atay and
Godwin, 2014; Zhang X. et al., 2015; Gopal et al., 2017). First
to note, as CD44 is engaged in glucose and lipid metabolism
(Tamada et al., 2012; Zaytseva et al., 2012; Nagano et al., 2013)
as well as the loading of TEX with miRNA (Rana et al., 2013),
we want to refer to an elegant review, which outlines key
elements accounting for the metabolic switch in CIC being
transferred by TEX, including glucose and lipid metabolic
enzymes and relevant miRNA (Alamoudi et al., 2017). The
engagement of TEX-CD44/CD44v6 in EMT induction and EMT-
related transcription factor induction (Wang et al., 2016) as
well as the CD44v6-promoted transfer of proteins and miRNA
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that reprogram Non-CIC was already mentioned (Figure 5).
Finally, the mode of CD44v6 activity is maintained in TEX,
i.e., CIC-TEX stimulate activation of signal transduction and
proteases and regulate gene transcription in Non-CIC (Wang
et al., 2016). These studies, depicting single molecules/pathways
require confirmation at the systemic level.

In brief, TEX are the major vehicle in the crosstalk between
CIC, the host and Non-CIC. Though the direct involvement
of CD44v6-TEX in angiogenesis and stroma cell modulation
requires further examination, this was demonstrated for the
niche, host cell recruitment and message transfer into Non-CIC.
There is evidence supporting our hypothesis that the CD44v6-
associated or -recruited molecules after TEX transfer provide a
signaling hub. This assumption could explain, how the limited
amount of proteins, coding and non-coding RNA in TEX can
have such fulminate impacts on Non-CIC, the tumor stroma,
endothelial cells, and the hematopoietic system.

CONCLUSION AND OUTLOOK

CD44 was originally described as a leukocyte marker and homing
receptor. It gained great interest when CD44v6 was described
contributing to tumor progression. However, only when it was
noted that CD44, mostly CD44v acts as a CIC biomarker,
the amazing range of activities of these molecules became
apparent.

i. Though by no means fully clarified, CD44/CD44v6
unequivocally contributes to niche embedding, apoptosis
resistance, EMT, and tumor progression.

ii. CD44 covers this range of activities due to the adhesive
features of its link domain, the HA binding site, the multiple
glycosylation sites including proteoglycans, which promote
adhesion to matrix proteins, cell membrane markers and
cytokines/chemokines. The latter are particularly important in
linking membrane receptors to CD44, where the cytoplasmic
tail comes into play, which again displays at least three
modes of action. The CD44ICD either supports directly
receptor activation and/or internalization or accounts for the
recruitment of signal transduction molecules via cytoskeletal
linker molecules. Alternatively, the ICD is cleaved and acts
as cotranscription factor. Last, not least, CD44 is associated
with molecules engaged in mRNA processing. Thereby
CD44v adds to miRNA generation and contributes, beside
others, to tumor suppressor mRNA silencing. There are
multiple feedback loops, target genes of CD44-promoted
transcription / translation being engaged in CD44 regulation.

iii. CD44 is only involved in selected steps of Exo biogenesis.
However, due to preferential location of CD44v6 in
internalization prone membrane domains and the CD44v6

engagement in transcription of molecules that are central in
Exo biogenesis, CD44-promoted activities are transferred into
Exo. Importantly, CD44v6 contributes to loading Exo with
the RNA processing machinery as well as selected RNA and
miRNA.

iv. CD44/CD44v6-TEX cover central CIC activities. First,
CD44/CD44v6-TEX play a major role in niche formation. In
concert with additional TEX components, CD44/CD44v6-
TEX are engaged in (lymph)angiogenesis. Importantly,
CD44v6-TEX promote a shift of Non-CIC toward CIC, where
the activity of CD44v in EMT transcription factor regulation
and its contribution to the miRNA profile may be most
relevant parameters.

v. Being aware that this review largely negotiates therapeutic
translation, we want to refer to some excellent reviews
(Adorno-Cruz et al., 2015; Yan et al., 2015; Wang et al.,
2017; Zavros, 2017) and only mention three points. First,
due to the multiple activities, the efficacy of a blockade of
CD44/CD44v should exceed the efficacy of a blockade of
molecules with a more limited range of action like e.g., a
receptor blockade; second a selective blockade of CD44v
is highly recommendable as CD44v expression is far more
restricted than CD44 expression, which limits the range of
potential side effects, solid tumor CIC frequently expressing
CD44v6; third, it is our personal view that Exo are a most
suitable therapeutic, they are easy to manipulate, can be
stored, distribute throughout the body and can be tailored for
preferred targets, which excludes inappropriate attacks, when
derived from non-transformed cells.

There remain many open questions, but there is hope that
answers allow for translating into powerful adjuvant cancer
therapeutics (Johnsen et al., 2014).
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