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Abstract. Although the combination of chemotherapy and 
radiotherapy has increased the survival rate of patients with 
nasopharyngeal carcinoma (NPC), certain patients do not 
respond well to the treatment and have a poor prognosis. 
Therefore, novel therapeutic drugs and strategies to improve 
prognosis of patients with NPC are required. As certain plant 
extracts can suppress the viability of cancer cells, the present 
study investigated whether oligonol, a polyphenolic compound 
primarily found in lychee fruit, exerts anticancer activities in 
NPC cells. MTT, ELISA and immunoblotting were performed 
to investigate cell survival, cytokeratin‑18 fragment release, 
and the expression of apoptosis and autophagy markers, 
respectively. Oligonol decreased the viability of NPC‑TW01 
and NPC/HK1NPC cell lines. Oligonol increased the protein 
expression of several apoptosis markers, including cleaved 
caspase‑8 and ‑3, cleaved PARP and cytokeratin 18 fragment. 
Moreover, it also increased expression of autophagy markers 
Beclin 1 and LC3‑II, as well as LC3‑II/LC3‑I ratio in both 
NPC cell lines. Furthermore, treatment with autophagy inhibi‑
tors 3‑methyladenine or LY294002 significantly increased 
oligonol‑induced viability inhibition in NPC‑TW01 cells. 
Combined treatment of oligonol + LY294002 reduced LC3‑II 
expression and the LC3II/LC3I ratio while increasing cleaved 
caspase‑8 and ‑3, cleaved PARP and cytokeratin 18 fragment 
expression in NPC‑TW01 cells. These findings indicated 
autophagy inhibitors could enhance viability inhibition and 
apoptotic effects induced by oligonol in NPC cells.

Introduction

Nasopharyngeal carcinoma (NPC) is a highly metastatic 
malignant tumor originating from the epithelium of the naso‑
pharynx (1). Genetic mutations, Epstein‑Barr virus infection, 
tobacco smoking and consumption of alcohol and salted fish 
are risk factors for NPC (1). In 2019, age‑standardized inci‑
dence rate (ASIR) of NPC was 2.12 globally. However, certain 
regions have higher ASIRs of NPC than the global average, 
including China, Singapore and Taiwan, with rates of 5.7, 10.81 
and 7.14, respectively (2,3). The survival rate of patients with 
NPC has been improved significantly by combining chemo‑
therapy and radiotherapy (4). However, ~30% of patients still 
have a poor prognosis due to distant metastases (5), suggesting 
that certain patients do not receive adequate benefits from the 
current treatment. Thus, improving the current treatments or 
developing new therapeutic drugs is necessary to improve 
prognosis of patients with NPC.

In recent years, increasing evidence (6‑9) has indicated 
that bioactive compounds from plants have promising anti‑
cancer properties. For example, cordycepin and fucoidan are 
natural compounds extracted from Cordyceps sinensis and 
brown seaweed cell wall matrix, respectively (10,11). These 
compounds can induce apoptosis in various cancer cell lines, 
including esophageal, colorectal, liver, and non‑small‑cell lung 
cancer (12‑15). Similarly, curcumin extracted from 
Curcuma longa inhibits the survival of non‑small‑cell lung, 
papillary thyroid, and bone cancer cells by inducing apop‑
tosis (16‑18) in vitro. It also suppresses bone cancer cell growth 
in vivo (18). Additionally, curcumin can inhibit oral cancer cell 
survival by inducing autophagy (19). Furthermore, paclitaxel, 
an anti‑microtubule agent extracted from Taxus brevifolia, is 
used clinically to treat multiple cancers, including ovarian, 
lung, and breast (20).

Apoptosis is a programmed cell death characterized by 
specific biological features, such as plasma membrane blebbing, 
apoptotic body formation, cytokeratin 18 fragment release, 
DNA fragmentation and poly ADP‑ribose polymerase (PARP) 
cleavage (21‑23). In addition, caspases, a family of endoprote‑
ases, are divided into initiator and effector caspases (23); they 
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are involved in executing apoptosis. Upon activation, initiator 
caspases such as caspase‑8 can activate effector caspases, such 
as caspase‑3. This leads to the cleavage of PARP, a DNA repair 
enzyme, ultimately contributing to apoptosis (23).

Autophagy, a regulated self‑digestion mechanism, is 
characterized by formation of double‑membraned vesicles 
called autophagosomes that engulf cytoplasmic contents and 
fuse with lysosomes for degradation (24). The formation of 
autophagosomes is regulated by autophagy‑related proteins, 
such as Beclin 1, LC3, and Atg12‑Atg5 conjugate (25,26). 
Beclin 1 initiates autophagy, while LC3‑II contributes to 
autophagosome formation, a key feature of autophagy (25‑27). 
Additionally, a previous study showed that the knockdown of 
Beclin 1 or LC3 decreases autophagic activity (28), indicating 
that Beclin 1 and LC3 serve essential roles in activating 
autophagy.

Certain anticancer substances, such as cisplatin and 
curcumin, can simultaneously induce apoptosis and autophagy 
in bladder and gastric cancers, respectively (29,30). Studies 
show that inhibiting autophagy can enhance cisplatin or 
curcumin‑induced apoptosis (29,30), suggesting that autophagy 
may play a protective role in cancer cell survival.

Oligonol, a polyphenolic compound found in lychee 
fruit (31), has antioxidant and anti‑inflammatory properties and 
can alleviate sarcopenia (32‑34). Additionally, previous studies 
have suggested that oligonol may have anticancer activity, as 
it induces apoptosis in breast and ovarian cancer cells (35,36). 
Therefore, the present study evaluated the potential anticancer 
effects of oligonol in NPC cells.

Materials and methods

Materials. Oligonol was provided by Toong Yeuan Enterprise 
Co., Ltd. DMSO, 3‑methyladenine (3‑MA), LY294002 and 
MTT were purchased from Sigma‑Aldrich (Merck KGaA). 
Fetal bovine serum (FBS), PBS and RPMI‑1640 medium were 
purchased from HyClone (Cytiva).

Cell culture. NPC‑TW01 cells were provided by Dr Chin‑Hwa 
Tsai from the National Taiwan University in Taipei, Taiwan. 
These cells were established from moderately differenti‑
ated NPC tissue (37). The second cell line, NPC/HK1, was 
purchased from Quantum Biotechnology, Inc. and established 
from well‑differentiated NPC tissues (38). Both cell lines were 
cultured in RPMI‑1640 medium supplemented with 10% FBS 
at 37˚C in a 5% CO2 incubator.

MTT assay. NPC cells were seeded into a 6‑well plate at a 
density of 3x105 cells/well for 24 h. Once the cells reached 
80% confluence, they were treated with oligonol at concentra‑
tions of 3.125, 6.25, 12.5, 25, and 50 µg/ml for 48 h at 37˚C 
with 5% CO2. Cells not treated with oligonol were used as 
the control. Supernatant was removed, and 2 ml MTT reagent 
(0.5 mg/ml in PBS) was added to each well. After incubation 
at 37˚C and 5% CO2 for 4 h, supernatant was removed, and 
1 ml DMSO was added to each well to dissolve the crystals. 
Next, 100 µl DMSO lysate was transferred from each well to a 
96‑well plate. ELISA reader (BMG LABTECH) measured the 
optical density at 570 nm. All experiments were carried out ≥3 
times independently.

ELISA. The concentration of cytokeratin 18 fragment levels 
in the cell culture supernatant was measured using the 
SimpleStep ELISA kit (cat. no. ab254515; Abcam) according 
to the manufacturer's instructions. Each experiment was 
conducted independently ≥3 times.

Immunoblotting assay. Extraction of total protein from 
cells and immunoblotting were performed as described 
previously (29). Primary antibodies for detecting PARP 
(cat. no. 9532; 1:1,000), cleaved PARP (cat. no. 9541; 
1:1,000), caspase‑8 (cat. no. 9746; 1:1,000), cleaved 
caspase‑8 (cat. no. 9429; 1:1,000), caspase‑3 (cat. no. 9662; 
1:1,000), cleaved caspase‑3 (cat. no. 9661; 1:1,000), Beclin 
1 (cat. no. 3738; 1:1,000), LC3‑I/II (cat. no. 4108; 1:1,000) 
and GAPDH (cat. no. 97166; 1:5,000) were purchased 
from Cell Signaling Technology, Inc. Horseradish perox‑
idase‑conjugated secondary antibodies, including goat 
anti‑rabbit (cat. no. 111‑035‑144; 1:5,000) and anti‑mouse 
IgG (cat. no. 111‑035‑146; 1:5,000), were purchased 
from Jackson ImmunoResearch, Inc. Protein bands were 
detected using an enhanced chemiluminescence detection 
kit (SuperSignal™ West Pico PLUS Chemiluminescent 
Substrate; cat. no. 34580; Thermo Fisher Scientific, Inc.). 
All experiments were conducted independently ≥3 times. 
The intensities of protein bands were quantified using 
ImageJ software (version 1.43, National Institutes of 
Health).

Figure 1. Oligonol inhibits viability of nasopharyngeal carcinoma cells. 
(A) NPC‑TW01 and (B) NPC/HK1 cells were treated with oligonol for 48 h. 
The MTT assay was used to measure the cell viability. *P<0.05 vs. Ctrl. Ctrl, 
control.
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Statistical analysis. Data are expressed as the mean ± standard 
error of the mean of ≥3 independent experimental repeats. 
The statistical analysis was performed using SPSS software 
(version 17.0; SPSS, Inc.). An unpaired t‑test was used to 
compare significant differences between two groups. One‑way 
analysis of variance and Tukey's post hoc test were used to 
compare significant differences between >2 groups. P<0.05 
was considered to indicate a statistically significant difference.

Results

Oligonol inhibits viability of NPC cells. NPC cell lines 
NPC‑TW01 and NPC/HK1 were treated with oligonol, 
and the cell viability was measured using an MTT assay. 
Oligonol could significantly inhibit the viability of both 
NPC cell lines at 12.5, 25.0 and 50.0 µg/ml compared with 
the control (Fig. 1A and B). In addition, the half‑maximal 

Figure 2. Oligonol induces apoptotic effects in nasopharyngeal carcinoma cells. NPC‑TW01 were treated with 17 µg/ml oligonol for 48 h. (A) Protein expres‑
sion of caspase‑8, cleaved caspase‑8, caspase‑3, cleaved caspase‑3, PARP, cleaved PARP and GAPDH was detected using an immunoblotting assay. The 
protein expression levels of cleaved caspase‑8 (B) cleaved caspase‑3 (C) and cleaved PARP (D) were quantified. (E) Concentration of cytokeratin 18 fragment 
in the cell culture supernatants was measured by ELISA. NPC/HK1 cells were treated with 17 µg/ml oligonol for 48 h. (F) Protein expression of caspase‑8, 
cleaved caspase‑8, caspase‑3, cleaved caspase‑3, PARP, cleaved PARP and GAPDH was detected using an immunoblotting assay. The protein expression 
levels of cleaved caspase‑8 (G) cleaved caspase‑3 (H) and cleaved PARP (I) were quantified. (J) Concentration of cytokeratin 18 fragment in the cell culture 
supernatants was measured by ELISA. *P<0.05 vs. Ctrl. Ctrl, control.

Figure 3. Oligonol induces autophagic effects in nasopharyngeal carcinoma 
cells. (A) NPC‑TW01 and (B) NPC/HK1 cells were treated with 17 µg/ml 
oligonol for 48 h. Protein expression of Beclin 1, LC3‑I, LC3‑II and GAPDH 
was detected using an immunoblotting assay. *P<0.05 vs. Ctrl. Ctrl, control.
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inhibitory concentration of oligonol in both cell lines was 
17 µg/ml.

Oligonol induces apoptotic effects in NPC cells. Next, it 
was examined whether oligonol induces apoptotic effects 
in NPC cells. NPC‑TW01 and NPC/HK1 cells were 
treated with 17 µg/ml oligonol. Immunoblotting assay was 
then performed to detect protein expression of apoptotic 
markers, such as cleaved caspase‑8 and ‑3 and cleaved 
PARP (23) (Fig. 2A and F). Quantitative evaluation of 
immunoblots demonstrated that in both cell lines, oligonol 
significantly increased expression levels of cleaved caspase‑8 
(Fig. 2B and G), cleaved caspase‑3 (Fig. 2C and H) and cleaved 
PARP (Fig. 2D and I) compared with the control. In addition, 
cytokeratin 18 is expressed in various types of epithelial 
cell (22). During apoptosis, it is cleaved by effector caspases 
and released from epithelial cells (22). Therefore, cytokeratin 
18 fragments serve as a biological marker of apoptosis (22). 
ELISA indicated that oligonol significantly increased the 
release of cytokeratin 18 fragments from NPC cells compared 
with the control (Fig. 2E and J), suggesting that oligonol could 
induce apoptotic effects in NPC cells.

Oligonol induces autophagic effects in NPC cells. As some 
natural extracts can simultaneously induce apoptosis and 

autophagy in cancer cells (39,40), it was investigated whether 
oligonol triggers autophagy in NPC cells. Beclin 1 and LC3‑II 
were used as the autophagy markers in this study. Oligonol 
significantly induced protein expression of Beclin 1 and LC3‑II 
(Fig. 3A and B). The conversion of LC3‑I to LC3‑II is a reliable 
marker for autophagy activation (41). LC3‑II/LC3‑I ratio was 
significantly increased by oligonol treatment compared with 
the control in both NPC cell lines (Fig. 3A and B), suggesting 
that oligonol also induced autophagic effects in NPC cells.

Inhibition of autophagic effects promotes oligonol‑induced 
viability inhibition and apoptotic effects in NPC cells. Because 
autophagy contributes to cancer cell survival or death (42‑44), 
autophagy inhibitors 3‑MA and LY294002 (45) were used to 
investigate the effect of oligonol‑induced autophagic effects 
on NPC cell viability. Treatment with 3‑MA or LY294002 
increased the viability inhibition induced by oligonol in NPC 
cells (Fig. 4A). Since previous studies indicate that blocking 
autophagy enhances the induction of apoptotic effects (29,46), 
the present study examined protein expression levels of 
LC3‑II and apoptotic markers (cleaved caspase‑8 and ‑3 and 
cleaved PARP) in NPC cells after combination treatment 
with oligonol and LY294002. LY294002 could suppress the 
oligonol‑induced LC3‑II expression (Fig. 4B) and increase in 
LC3‑II/LC3‑I ratio (Fig. 4C), indicating that the autophagy 

Figure 4. Inhibition of autophagic effects promotes oligonol‑induced viability inhibition and apoptotic effects in nasopharyngeal cells. (A) NPC‑TW01 cells 
were treated with 17 µg/ml Oligo and DMSO, 3‑MA or LY. Cell viability was measured using MTT assay. (B) NPC‑TW01 cells were treated with 17 µg/ml 
Oligo and DMSO or LY. Protein expression of LC3‑I, LC3‑II, C8, cleaved C8, C3, cleaved C3, PARP, cleaved PARP and GAPDH was examined by an immu‑
noblotting assay. (C) Quantitative analysis of LC3‑II levels normalized using LC3‑I. The protein expression levels of cleaved C (D) 8 and (E) 3 and (F) cleaved 
PARP were quantified using ImageJ software. (G) Concentration of cytokeratin 18 fragment in cell culture supernatant was measured by ELISA. *P<0.05 vs. 
Ctrl + DMSO; #P<0.05 vs. oligo + DMSO. Ctrl, control; oligo, oligonol; 3‑MA, 3‑Methyladenine; LY, LY294002; C, caspase.
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inhibitor, LY294002, inhibited oligonol‑induced autophagy 
activation. Cotreatment of oligonol with LY294002 could 
significantly enhance the protein expression of cleaved 
caspase‑8 (Fig. 4D), cleaved caspase‑3 (Fig. 4E) and cleaved 
PARP (Fig. 4F) compared with oligonol alone. Additionally, 
cotreatment of oligonol with LY294002 significantly increased 
release of cytokeratin 18 fragments, another apoptotic marker, 
compared with oligonol alone (Fig. 4G). These findings 
suggested that inhibition of oligonol‑induced autophagic 
effects by autophagy inhibitors enhanced viability inhibition 
and apoptotic effects in NPC cells.

Discussion

Plant extracts have been reported to serve a key role in 
inhibiting the survival of cancer cells (12‑15). Oligonol is a 
polyphenolic compound primarily extracted from lychee fruit 
that suppresses cancer cell viability (35,36). However, whether 
it has anticancer activity in NPC cells is still unknown. Here, 
oligonol effectively inhibited the viability of NPC cell lines 
NPC‑TW01 and NPC/HK‑1, which suggested that oligonol 
exerted anticancer effects in NPC cells.

As oligonol may induce apoptosis in cancer cells (35,36), 
the present study investigated its effects on NPC cells. Oligonol 
could stimulate the expression of apoptosis markers, including 
cleaved caspase‑8 and ‑3 and cleaved PARP and induce the 
release of cytokeratin 18 fragments, suggesting that oligonol 
has the ability to induce apoptotic effects in NPC cells. Since 
caspase‑8 can be cleaved (activated) through the apoptotic 
death receptor pathway (23), oligonol may also have the ability 
to activate the death receptor pathway. Previous studies have 
indicated that inhibiting Akt or inducing AMP‑activated 
protein kinase (AMPK) activation promotes expression of 
Fas ligand (FasL) (47,48), an inducer of the death receptor 
pathway. As oligonol can inhibit Akt or promote AMPK 
activation (49,50), oligonol may induce expression of FasL by 
inhibiting Akt or inducing activation of AMPK in NPC cells. 
This could initiate the death receptor pathway and ultimately 
induce the activation of caspase‑8. To determine if AMPK 
mediates oligonol‑induced FasL expression in NPC cells, an 
AMPK inhibitor will be combined with oligonol to treat the 
NPC cells. The expression of FasL will then be assessed using 
an immunoblotting assay.

The present study examined whether oligonol induces 
autophagy in NPC cells, as certain natural extracts have 
been reported to simultaneously induce apoptosis and 
autophagy in cancer cells (39,40). Oligonol induced autophagic 
effects in NPC cells, as evidenced by increased expression of 
Beclin 1 and LC3‑II, two autophagy markers. According to 
previous studies, inhibition of autophagy results in apoptosis in 
lung cancer cells treated with cisplatin and endometrial cancer 
cells treated with paclitaxel (29,44). The present study used 
two autophagy inhibitors (3‑MA and LY294002) to confirm 
the role of autophagy in oligonol‑induced viability inhibi‑
tion and apoptotic effects. Autophagy inhibitors enhanced 
oligonol‑induced viability inhibition. Expression of apoptosis 
markers, including cleaved caspase‑8 and ‑3 and cleaved 
PARP and the release of cytokeratin 18 fragments significantly 
increased following cotreatment of oligonol with LY294002. 
These findings suggested that apoptotic effects were promoted 

by inhibiting oligonol‑induced autophagic effects, leading 
to an increase in NPC cell viability inhibition. Therefore, 
oligonol‑induced autophagy may serve a cytoprotective role 
in NPC cells.

It is unclear how the autophagic effects induced by 
oligonol inhibit the apoptotic effects in NPC cells. Induction 
of autophagy can cause mitochondria elongation (51,52), 
which results in inhibition of cytochrome c release (51,52), 
a pro‑apoptotic factor associated with caspase‑8 activa‑
tion (51,53), preventing apoptosis and maintaining cell 
viability (51). Additionally, autophagosome formation 
proteins p62 and LC3‑II interact with caspase‑8, leading to its 
degradation when the mature autophagosome fuses with the 
lysosome (51,54). Therefore, oligonol‑induced autophagy may 
decrease expression of cleaved caspase‑8, which can inhibit 
the enhancement of apoptotic effects induced by oligonol in 
NPC cells. Further experiments should confirm these possible 
mechanisms in the future. For example, to investigate whether 
caspase‑8 interacts with p62 under oligonol treatment in the 
NPC cells, protein‑protein interaction techniques, such as 
co‑immunoprecipitation and fluorescence resonance energy 
transfer, will be utilized.
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