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Abstract

Apathy is a debilitating feature of many neuropsychiatric diseases, that is typically described

as a reduction of goal-directed behaviour. Despite its prevalence and prognostic impor-

tance, the mechanisms underlying apathy remain controversial. Degeneration of the locus

coeruleus-noradrenaline system is known to contribute to motivational deficits, including

apathy. In healthy people, noradrenaline has been implicated in signalling the uncertainty of

expectations about the environment. We proposed that noradrenergic deficits contribute to

apathy by modulating the relative weighting of prior beliefs about action outcomes. We

tested this hypothesis in the clinical context of Parkinson’s disease, given its associations

with apathy and noradrenergic dysfunction. Participants with mild-to-moderate Parkinson’s

disease (N = 17) completed a randomised double-blind, placebo-controlled, crossover study

with 40 mg of the noradrenaline reuptake inhibitor atomoxetine. Prior weighting was inferred

from psychophysical analysis of performance in an effort-based visuomotor task, and was

confirmed as negatively correlated with apathy. Locus coeruleus integrity was assessed in

vivo using magnetisation transfer imaging at ultra-high field 7T. The effect of atomoxetine

depended on locus coeruleus integrity: participants with a more degenerate locus coeruleus

showed a greater increase in prior weighting on atomoxetine versus placebo. The results

indicate a contribution of the noradrenergic system to apathy and potential benefit from nor-

adrenergic treatment of people with Parkinson’s disease, subject to stratification according
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to locus coeruleus integrity. More broadly, these results reconcile emerging predictive pro-

cessing accounts of the role of noradrenaline in goal-directed behaviour with the clinical

symptom of apathy and its potential pharmacological treatment.

Author summary

Apathy is a common and harmful consequence of many neuropsychiatric diseases. Its

underlying causes are not fully understood, which prevents the development of new treat-

ments. We approach the problem in a new way, modelling human behaviour in terms of

the continuously updated interaction between sensory information and brain-based pre-

dictions or ‘priors’ about the consequences of our actions. We have previously shown that

apathy is related to a loss of precision of these ‘priors’. We proposed that the precision is

controlled by noradrenaline (like adrenaline, but made in the brain). We tested whether

the noradrenaline-enhancing drug called atomoxetine can restore the priors’ precision in

apathetic people. We enrolled participants with Parkinson’s disease, which is associated

with both apathy and noradrenaline loss. We used ultra-high field MRI to measure indi-

vidual differences in the integrity of specialist region called the locus coeruleus–the brain’s

source of noradrenaline. We found that the effect of treatment with atomoxetine on prior

precision depended on locus coeruleus integrity: Participants with a degenerated locus

coeruleus had a more positive change in prior precision. Our results highlight how indi-

vidual differences in neuroanatomy can predict the potential benefit of noradrenaline

treatments in people suffering from apathy.

Introduction

Apathy is a common and debilitating feature of many neuropsychiatric diseases, including

Parkinson’s disease [1–3], and it occurs to varying degrees in the healthy population [4,5]. The

reduction of goal-directed behaviour is typically attributed to dopamine-dependent loss of

motivation [6,7], but it remains poorly understood. New treatments targeting apathy require

mechanistic neurocognitive and psychopharmacological models [8].

Many psychopharmacological studies of apathy and Parkinson’s disease focus on dopamine

[9], relating the striatal dopamine deficit in Parkinson’s disease [10] to the role of dopamine in

reinforcement learning, along with value- and effort-based decision-making [11,12]. Apathetic

individuals with Parkinson’s disease exert less effort for a given reward, and acute withdrawal

studies demonstrate a dopaminergic modulation of this effect [13–15].

However, the dopaminergic model of apathy has limitations. First, apathy is positively cor-

related with impulsivity, which has been attributed to hyper-dopaminergic states [5,16–19].

Second, apathy is common in Parkinson’s disease patients despite dopamine replacement ther-

apy, and may follow deep brain stimulation therapy [20]. There is no clear relationship

between apathy severity and dopaminergic medication dose [1,19]. Third, evidence from ani-

mal models implicates non-dopaminergic neurotransmitter systems–in particular, noradrena-

line–in motivation and effort-based decision-making [21–23].

The locus coeruleus is the principal source of noradrenaline in the brain [24,25]. In Parkin-

son’s disease, it undergoes early and severe pathological changes [26–28], and this has been

associated with certain cognitive and motivational problems that are insensitive to dopamine

medication [8,29–32].
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A growing body of work suggests that noradrenaline signals the uncertainty of an individu-

al’s internal model of their environment. For example, phasic bursts of noradrenaline follow

salient sensory inputs and promote behavioural adaptation [33,34], while tonic release of nor-

adrenaline correlates with higher-order contextual features such as the volatility of the envi-

ronment or utility of a task, controlling the gain and selectivity of neural networks [35,36].

Evidence from pharmacological manipulations and from pupillometry data (a surrogate

marker of locus coeruleus activity [37]) suggests that noradrenergic signalling indicates the

extent to which sensory input is used to update existing beliefs and uncertainty of internal

models [38–42]. The ability to flexibly update internal models permits adaptive engagement

with the environment–supporting goal-directed, motivated behaviour. Disruption in this abil-

ity is directly relevant to apathy.

We previously proposed that apathy is a result of the dependence of motivated behaviour

on the relative precision of prior beliefs about action outcomes [43]. With predictive process-

ing, the brain optimises a probabilistic model of its environment, minimising ‘surprise’ or pre-

diction error via action and perception [44,45]. The balance between active and passive

(sensory) inference depends on the relative precision of prior beliefs and sensory evidence.

When priors are held with high precision, they will be maintained despite conflicting (but

imprecise) sensory evidence, and induce action to minimise the prediction error. That is, sen-

sory evidence is changed by action to fulfil prior beliefs held with high precision [46–48]. If

precision on the priors is not sufficiently high, passive (sensory) inference occurs by adjusting

perceptual priors, and no goal-directed action is necessary.

The implication for apathy is that the loss of prior precision relative to sensory evidence

would lead to a failure of action, because imprecise priors that conflict with sensory evidence

are passively revised rather than actively fulfilled [47,49]. There would be an apparent ‘accep-

tance’ of the state of the world, even if discordant with goals. In support of this hypothesis,

trait apathy is negatively correlated with prior precision of outcomes: more apathetic individu-

als have less precise prior beliefs [43]. Crucially, precision weighting has been associated with

neurotransmitter systems that include noradrenaline [50–53].

This study tested the noradrenergic contributions to apathy in Parkinson’s disease. We

hypothesised that apathy is associated with reduced weighting of prior beliefs about action out-

comes, and that this prior weighting is modulated by noradrenaline. We predicted baseline

dependency of drug effects, such that the behavioural effect of a noradrenergic intervention

depends on structural integrity of the locus coeruleus, in line with the inverted U-shaped dose-

response curve of noradrenaline and other catecholamines [35,54–56]. We tested this hypothe-

sis in Parkinson’s disease using an effortful goal-directed visuomotor task in combination with

(i) modulation of noradrenaline using atomoxetine (a noradrenergic reuptake inhibitor) and

(ii) measurement of structural integrity of the locus coeruleus via ultra-high field neuromela-

nin-sensitive magnetic resonance imaging. In view of the potential contribution of dopamine

to apathy, control analyses included the levodopa equivalent daily dose and measurement of

the substantia nigra contrast as covariates.

Results

Participants with mild-to-moderate idiopathic Parkinson’s disease (N = 17) completed a visuo-

motor task that involved effortful, goal-directed behaviour (Fig 1A). Their demographic and

clinical details are outlined in Table 1. They completed this task twice in a double-blind, pla-

cebo-controlled, randomised within-subjects crossover design, receiving the selective nor-

adrenaline reuptake inhibitor atomoxetine (40 mg oral dose) or placebo. A healthy control

group (N = 20; age-, sex- and education-matched to the Parkinson’s disease group) undertook
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the task once, without the atomoxetine manipulation, to provide normative data. In view of

baseline dependency of drug effects and the anticipated use of restorative pharmacology in

patients but not healthy adults, the placebo-controlled drug intervention was restricted to

those with Parkinson’s disease. All participants underwent 7T MR imaging of the locus coeru-

leus using a magnetisation transfer weighted sequence in a baseline session, with atlas-based

localisation of the locus coeruleus and contrast quantification [57]. The participants with Par-

kinson’s disease were on their regular anti-parkinsonian medication throughout the study.

Table 1 provides an overview of the participant demographics; further details about the study

design and clinical characteristics of the Parkinson’s disease group are provided in the Materi-

als and Methods and S1 Text.

Visuomotor task

The visuomotor task involved effortful, goal-directed behaviour, and was designed to estimate

prior weighting, i.e. the relative precision of prior beliefs and sensory evidence in the percep-

tion of action outcomes. Using their dominant hand, participants pressed a force sensor to

trigger a ballistic ball movement on the screen, aiming for the ball to stop on a target. The

Fig 1. Visuomotor task and Bayesian modelling approach. A) Participants performed a sustained finger press to trigger a ballistic ball trajectory, aiming it at a target.

For the majority of trials, an animation of the ball trajectory was shown, and participants sought to minimise their performance error–the distance of the final ball

position from the target (top row). For the remaining trials, the ball trajectory was hidden and participants were asked to estimate where the ball would have finished.

Participants were given 12 evenly spaced response options, one of which was pseudorandomly selected to be centred on the true final ball position (i.e., the veridical

response option). The difference between the chosen and veridical response option constitutes the estimation error (bottom row). The pointing finger image was adapted

from the Wikimedia Commons, available at https://commons.wikimedia.org/wiki/File:Index_finger_down.JPG under a CC BY-SA 3.0 license (https://creativecommons.

org/licenses/by-sa/3.0/). B) Estimates of performance were modelled as a precision-weighted combination of a prior, centred on the target, and trial-wise sensory

evidence, centred on the true final ball position. The relationship between estimation errors and performance errors is indicative of prior weighting–the precision of the

prior relative to sensory evidence. C) Simulation demonstrating that prior weighting corresponds to the slope of the linear relationship between performance error and

estimation error. For a given performance error and setting of prior weighting, the bold line represents the median predicted estimation error, and the increasingly

transparent shaded areas represent the 25% and 50% quantile intervals of the predicted estimation error, respectively.

https://doi.org/10.1371/journal.pcbi.1010079.g001
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force exerted on the sensor (relative to the participant’s maximum force, measured separately)

determined the initial velocity of the ball. Since the deceleration of the ball was constant, the

force response (i.e., initial velocity) directly determined the ball’s final position. The difference

between the ball’s final position and the target constituted the performance error. For 40 out of

the total 120 trials, the ball’s trajectory was not shown, and participants were asked to estimate

where the ball would have stopped, indicating their response on a grid of 12 response options

(Fig 1A; see Materials and Methods for details). The difference between the participant’s

selected response option and the response option that was centred on the true final ball posi-

tion constituted the estimation error. The linear relationship between estimation errors and

performance errors was used to infer prior weighting (Fig 1B and 1C; see Materials and Meth-

ods for details).

We first tested for differences in basic task performance between drug conditions within

the Parkinson’s disease group (atomoxetine vs. placebo). We also tested the effect of group

(Parkinson’s disease on placebo vs. controls) noting the multiple differences between these

groups, including the presence of Parkinson’s disease, the placebo effect, and repetition effects.

We examined to what extent the force exerted on the force sensor matched the force

required to stop the ball on target (force error; see Materials and Methods for details). Among

the Parkinson’s disease group there was no significant effect of atomoxetine on either the

median force error (Δ drug: M = 0.64%, SD = 1.84%; t(16) = 1.44, p = .168; BF = 0.60) or the

Table 1. Demographics and clinical characteristics of participants.

Parkinson’s disease Controls BF p
Age (years) 66.94 (7.29) 65.40 (5.97) 0.39 .492

Education (years) 14.24 (2.17) 14.30 (3.29) 0.32 .943

Male / Female 15 / 2 12 / 8 2.04 .120

Apathy Scale (max. 42) 12.68 (5.77) 10.58 (5.09) 0.58 .212

MMSE (max. 30) 29.47 (0.72) 29.80 (0.52) 0.87 .127

MoCA (max. 30) 28.00 (1.84) 28.35 (1.50) 0.37 .535

ACE-R Total Score (max. 100) 95.12 (3.72) 97.55 (3.46) 1.60 .049

Attention & Orientation (max. 18) 17.82 (0.39) 17.95 (0.22) 0.57 .251

Memory (max. 26) 23.76 (2.05) 25.05 (1.19) 2.68 .031

Fluency (max. 14) 12.18 (1.94) 12.85 (1.76) 0.51 .280

Language (max. 26) 25.82 (0.53) 25.90 (0.45) 0.35 .641

Visuospatial (max. 16) 15.65 (0.49) 15.80 (0.70) 0.40 .441

MDS-UPDRS I: Nonmotor experiences (max. 52) 8.41 (3.87)

II: Motor experiences (max. 52) 12.76 (4.49)

III: Motor Examination (max. 132) 27.94 (12.05)

IV: Motor Complications (max. 24) 0.35 (0.79)

Total Score (max. 260) 49.53 (17.55)

Hoehn and Yahr stage (max. 5) 2.24 (0.44)

Disease duration (years) 4.15 (1.72)

Levodopa equivalent daily dose (mg/day) 659.94 (514.90)

Note. Data are presented as mean (SD). Group comparisons were performed with independent samples t-tests or contingency tables as appropriate. The stated p-values

are uncorrected; none survived p< .05 after correction for multiple comparisons. The participants with Parkinson’s disease were tested on their regular medications.

Levodopa equivalent daily dose was calculated based on Tomlinson et al. [58]. Apathy Scale refers to the total score for the self-rated version of the Starkstein et al. [59]

questionnaire. Abbreviations: BF, Bayes Factor for the alternative hypothesis over the null hypothesis, where > 3 would indicate positive evidence in favour of a group

difference; MMSE, Mini Mental State Examination; MoCA, Montreal Cognitive Assessment; ACE-R, Addenbrooke’s Cognitive Examination—Revised; MDS-UPDRS,

Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale.

https://doi.org/10.1371/journal.pcbi.1010079.t001
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interquartile range of force error (Δ drug: M = -0.09%, SD = 2.59%; t(16) = -0.14, p = .892;

BF = 0.25). We found no significant differences between the Parkinson’s disease and control

groups, in terms of the median force error (controls: M = 0.69%, SD = 3.21%; PD placebo: M =

-0.48%, SD = 2.78%; t(34.98) = 1.19, p = .242; BF = 0.55) and the interquartile range of force

error (controls: M = 9.92%, SD = 3.73%; PD placebo: M = 9.19%, SD = 3.47%; t(34.69) = 0.62, p
= .540; BF = 0.37).

Prior weighting and apathy

We next examined participants’ estimates of their own performance, to infer the relative

weight afforded to prior beliefs in the perception of action outcomes. Following Bayes’ rule,

participants are assumed to combine their prior belief, centred on the target, with trial-wise

sensory evidence, centred on the (hidden) true final ball position, to estimate the ball’s final

position (Fig 1B). Assuming that the prior and sensory evidence are represented as Gaussian

distributions with unknown variances s2
prior and s2

evidence, the posterior estimate for a given trial

n ðxðnÞestimateÞ is a precision-weighted sum of the target position xðnÞtarget and the true final ball posi-

tion xðnÞball:

xðnÞestimate ¼ wprior � x
ðnÞ
target þ ð1 � wpriorÞ � x

ðnÞ
ball ð1Þ

where the prior weighting term wprior is given by:

wprior ¼
s2
evidence

s2
evidence þ s

2
prior

ð2Þ

By subtracting the true final ball position from both sides of Eq 1, we can express estimation

errors as a function of performance errors:

xðnÞestimate � xðnÞball|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

estimation error

¼ � wprior � ðx
ðnÞ
ball � xðnÞtargetÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

performance error

ð3Þ

Thus, the regression coefficient of estimation errors by performance errors corresponds to

the negative of the prior weighting term [60]. This is illustrated in Fig 1C using simulated data:

higher values of prior weighting yield estimates that are strongly drawn towards the target and

away from the true final ball position. When prior weighting approaches 1, the estimation

errors overwhelm the performance errors, reflecting a disregard for sensory evidence of poor

performance. When prior weighting approaches 0, the estimates are in line with the true per-

formance. We used a linear mixed effects model to estimate the relationship between estima-

tion error and performance error, allowing the slope (i.e., negative prior weighting) to vary for

each testing session for each participant. Note that this model was only fit to the subset of trials

where the ball’s visual trajectory was not shown (i.e., estimation trials, see Materials and Meth-

ods for details). Thus, the participants could not have used visual information to infer the

ball’s final position.

We confirmed that prior weighting was negatively associated with apathy, as measured by

the Apathy Scale (AS)[59]. Prior weighting estimates from the Parkinson’s disease group on

placebo and the control group were regressed against apathy, group (Parkinson’s disease vs.

controls) and their interaction. To avoid confounding individual differences in prior weight-

ing with basic task performance, we included the interquartile range of performance error as a

covariate of no interest. We found a negative association between prior weighting and apathy,

controlling for effects of group and performance error variability (Fig 2B; β = -0.35, SE = 0.15,
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t(32) = -2.31, p = .028; BF = 2.30). This corroborates the negative relationship between prior

weighting and trait apathy in healthy young adults [43]: more apathetic individuals show

reduced prior weighting (S1 Fig). There was no group-wise difference in prior weighting

between controls and patients on placebo (Fig 2A; controls: M = 0.48, SD = 0.21; PD placebo:

M = 0.45, SD = 0.26; β = 0.03, SE = 0.15, t(32) = 0.20, p = .845; BF = 0.41), nor evidence for a

group × apathy interaction effect (β = 0.17, SE = 0.15, t(32) = 1.08, p = .287; BF = 0.60).

Prior weighting and noradrenaline

Having established that prior weighting was associated with apathy, we tested whether ato-

moxetine affected prior weighting in the Parkinson’s disease group (Fig 3A). On average across

the group, there was no difference in prior weighting between the atomoxetine and placebo

sessions (Fig 2A; Δ drug: M = -8.50 × 10−4, SD = 0.27; t(16) = -0.01, p = .990; BF = 0.25). How-

ever, the between-subject variance in prior weighting was reduced on atomoxetine relative to

placebo (Pitman’s test of equality of variance for paired data: t(15) = -2.24, p = .041; BF = 2.46),

which suggests a baseline-dependent drug effect [61].

We had predicted that the effect of atomoxetine depends on the structural integrity of the

locus coeruleus, as indexed by its contrast to noise ratio (CNR; Fig 3B; see Materials and Meth-

ods for details). To test this, we entered prior weighting as the dependent variable in a linear

mixed effects model with drug condition, locus coeruleus CNR and their interaction as fixed

effects, the interquartile range of performance error as a covariate of no interest, and a random

effect of participants on the intercept. We observed evidence for an interaction effect between

the drug condition and locus coeruleus CNR (Fig 3C; β = -0.38, SE = 0.14, F(1, 15) = 7.91, p =

.013; BF = 10.02), confirming that the effect of atomoxetine on prior weighting depended on

locus coeruleus integrity. Specifically, the drug-induced change in prior weighting

Fig 2. Prior weighting and apathy. A) Estimates of prior weighting, obtained through a linear mixed effects model of estimation errors against performance errors.

For the Parkinson’s disease group, the grey lines indicate within-subject change in prior weighting from placebo to atomoxetine. Box-plot elements: centre line,

median; box limits, first and third quartiles; whiskers, most extreme observations (all within 1.5 × interquartile range from the box limits). B) The relationship between

apathy and prior weighting, adjusted for the effects of group and task performance variability (i.e., partial residuals). Note that observations with identical

questionnaire scores were horizontally jittered to avoid overlaid dots.

https://doi.org/10.1371/journal.pcbi.1010079.g002
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(atomoxetine vs. placebo) was negatively associated with locus coeruleus CNR, such that par-

ticipants with lower locus coeruleus CNR tended to have a more positive change in prior

weighting (Fig 3D; r(15) = -0.59, p = .013; BF = 5.13). There were no main effects of the drug

condition (β = -2.06 × 10−3, SE = 0.13, F(1, 15) = 2.36 × 10−4, p = .988; BF = 0.29) or locus coeru-

leus CNR (β = -0.08, SE = 0.20, F(1, 14) = 0.16, p = .695; BF = 0.43) on prior weighting.

Supplementary analyses confirmed the robustness and specificity of the interaction effect

between the drug condition and locus coeruleus CNR. First, using both frequentist and Bayes-

ian model selection procedures, we found that this interaction persisted with additional covari-

ates, including age, motor severity (UPDRS part III), levodopa equivalent daily dose,

atomoxetine plasma level, and total intracranial volume (S2 Text). Second, we used a linear

mixed effects model with CNR extracted from the substantia nigra, as a neuromelanin-rich

control region [63]. There was no interaction effect between the drug condition and substantia

Fig 3. Baseline-dependent effects of noradrenaline on prior weighting. A) Schematic overview of the noradrenergic drug study. The first session involved 7T MRI of

the locus coeruleus, to estimate the mean contrast-to-noise ratio (CNR). The second and third sessions formed a double-blind randomised placebo-controlled crossover

study, with 40 mg of oral atomoxetine of placebo. Two hours after drug administration, participants performed the visuomotor task that was designed to estimate prior

weighting. B) Study-specific independent locus coeruleus atlas (red) and reference region in the central pons (blue). Image reused from O’Callaghan et al. [62] under a

CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/). C) Estimates of prior weighting for participants with Parkinson’s disease, plotted as a function of their

locus coeruleus CNR and the drug condition. Within-subject change in prior weighting from placebo to atomoxetine is indicated by the grey arrows. D) The relationship

between the drug-induced change in prior weighting (atomoxetine minus placebo) and locus coeruleus CNR.

https://doi.org/10.1371/journal.pcbi.1010079.g003
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nigra CNR on prior weighting (β = 0.16, SE = 0.16, F(1, 15) = 0.94, p = .349; BF = 0.71). Third,

the interaction with locus coeruleus CNR remained significant when using an alternative cal-

culation for locus coeruleus contrast (contrast ratio to mean instead of SD; β = -0.41,

SE = 0.13, F(1, 15) = 9.79, p = .007; BF = 17.40), or when using the more conservative 25% prob-

ability mask to derive the locus coeruleus CNR (β = -0.42, SE = 0.13, F(1, 15) = 10.25, p = .006;

BF = 20.22). Fourth, re-fitting the original linear mixed effects model using a robust estimation

method yielded qualitatively similar results (β = -0.38, SE = 0.15, t(15) = -2.62, p = .019). Taken

together, these findings underwrite the robustness and specificity of the drug × locus coeruleus

CNR interaction.

Decomposition of noradrenergic effects on prior weighting

As prior weighting represents the precision of the prior relative to the sensory evidence (Eq 2),

drug-induced changes in prior weighting could in principle be explained by changes in prior

precision, sensory evidence precision, or both. We therefore fitted the Parkinson’s disease

group data with a hierarchical Bayesian model that decomposed the drug effect on prior

weighting into separate drug effects on the standard deviation of the prior and sensory evi-

dence distributions (see Materials and Methods for details). The drug effect on the standard

deviation of the prior was associated with the drug effect on prior weighting (Fig 4A; β = -0.66,

SE = 0.19, t(15) = -3.41, p = .004; BF = 10.43). This relationship was negative, such that those

participants who had reduced prior weighting on atomoxetine, tended to have greater stan-

dard deviation of the prior (i.e., reduced prior precision). In contrast, there was no significant

relationship between the drug effect on the standard deviation of sensory evidence and the

drug effect on prior weighting (Fig 4B; β = -0.04, SE = 0.26, t(15) = -0.15, p = .884; BF = 0.42).

To directly test whether the drug effect on prior weighting was more strongly associated

with the drug effect on prior precision than the drug effect on sensory evidence precision, we

Fig 4. Decomposition of noradrenergic effects on prior weighting. A-B) The relationship between the drug effect on prior weighting and Bayesian model estimates

of the drug effect on the standard deviation of the prior distribution (A) and the standard deviation of the sensory evidence distribution (B). C) Schematic illustration

of how the effect of atomoxetine on prior precision (red) determines the extent to which (posterior) estimates of performance (blue) are drawn towards the prior, for a

given sensory evidence (black). Lighter shades of red represent less precise priors. The effect of prior precision on the posterior is illustrated with corresponding shades

of blue.

https://doi.org/10.1371/journal.pcbi.1010079.g004
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performed a repeated-measures ANCOVA with the drug effect on prior weighting as a

between-subjects covariate, the precision term (prior vs. sensory evidence) as the within-sub-

jects factor, and the estimated drug effects on prior and sensory evidence precision as the

dependent variable. We found evidence for the interaction between the precision term and the

drug effect on prior weighting (F(1, 15) = 8.34, p = .011; BF = 19.90), confirming that the rela-

tionships with the drug effects on prior and sensory evidence precision were significantly dif-

ferent from each other. We obtained similar results using a ‘plausible values’ analysis approach

that accounts for uncertainty in the parameter estimates (S3 Text).

Overall, these results suggest that the atomoxetine-induced change in prior weighting was

primarily explained by changes in prior precision, and not by changes in sensory evidence pre-

cision (Fig 4C).

Apathy moderates noradrenergic effects on prior weighting

Lastly, given the relationship between prior weighting and apathy (Fig 2A), we tested whether

the effect of locus coeruleus integrity on the atomoxetine-induced change in prior weighting

varied according to the observed apathy. We regressed the drug effect on prior weighting

against locus coeruleus CNR, apathy, and their interaction. We observed a significant interac-

tion effect between locus coeruleus CNR and apathy (β = -0.49, SE = 0.21, t(13) = -2.34, p =

.036; BF = 2.54), such that greater apathy was associated with a stronger (i.e. more negative)

relationship between locus coeruleus CNR and atomoxetine’s effect on prior weighting (Fig

5A). Specifically, the Johnson-Neyman procedure [64] indicated that the regression coefficient

of locus coeruleus CNR was significant when the Apathy Scale score was above 12 (Fig 5B).

This significance threshold approximates the commonly used threshold for clinically signifi-

cant apathy (14 or higher)[59]. These results suggest that the baseline-dependent

Fig 5. Baseline-dependent noradrenergic effects on prior weighting are moderated by apathy. A) The relationship between the drug effect on prior weighting and

locus coeruleus CNR, plotted separately for above-average, average, and below-average scores on the Apathy Scale. Note that the Apathy Scale was treated as a

continuous predictor in the reported statistical analyses, and is only discretised for visualisation purposes. B) Jonhson-Neyman interval plot, illustrating the range of

scores on the Apathy Scale for which the regression coefficient of locus coeruleus CNR on the drug effect on prior weighting was statistically significant. The grey and

blue shaded areas represent the 95% confidence interval for the predicted regression coefficient of locus coeruleus CNR, given the Apathy Scale score. The Apathy

Scale scores (x-axis) were z-scored to facilitate interpretation of the regression coefficient (y-axis); the significance threshold of z = -0.02 (blue dashed line)

corresponded to a score of 12.3.

https://doi.org/10.1371/journal.pcbi.1010079.g005
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noradrenergic effects on prior weighting is more likely to be observed among those partici-

pants who were apathetic. However, we note that the Bayes Factor of the interaction effect was

“anecdotal”.

Discussion

This study provides evidence that the locus coeruleus noradrenergic system regulates the bal-

ance between prior beliefs and sensory evidence for goal-directed behaviour, and its

impairment contributes to apathy. Individual differences in the relative weight afforded to

prior beliefs were negatively associated with apathy, such that more apathetic individuals had

reduced prior weighting. Atomoxetine modulated this prior weighting in a baseline-dependent

manner in people with Parkinson’s disease: people with reduced locus coeruleus integrity had

a greater increase in prior weighting after atomoxetine, relative to a placebo. Using hierarchical

Bayesian modelling, we demonstrated that this drug-induced change in prior weighting was

primarily explained by changes in the precision of prior beliefs, and not by changes in the pre-

cision of sensory evidence. These results highlight the link between the noradrenergic locus

coeruleus and the control of prior precision, during goal-directed behaviour. Given the early

loss of noradrenergic cells in the locus coeruleus by Parkinson’s disease, this association sug-

gests a contributory mechanism to apathy in Parkinson’s disease.

We propose that increased weighting of prior beliefs following atomoxetine may help allevi-

ate apathy. According to Bayesian models of brain function, actions require prior beliefs about

their outcomes to be held with relatively high precision [46,49]. In Parkinson’s disease, the rel-

ative precision of predictive signals is compromised [65,66], which underlies the poverty of

action selection and increased reliance on external cues for the initiation and maintenance of

movement [67–69]. By restoring the precision of prior beliefs, atomoxetine may help attenuate

disruptive sensory input [70] and minimise the unnecessary updating of prior beliefs in light

of spurious prediction errors [71,72]. Thus, atomoxetine could confer a benefit to Parkinson’s

disease patients with reduced noradrenergic capacity, by restoring the reliance on the predic-

tive signals that are necessary for goal-directed behaviour.

Previous studies have emphasised that the effects of catecholaminergic drugs–including

atomoxetine–depend on individual differences in the baseline levels of activity of the ascend-

ing neuromodulatory systems [35,54–56]. However, without specific estimates of locus coeru-

leus integrity or noradrenergic capacity, heterogeneity in the response to atomoxetine is

difficult to interpret [38,73]. Here, we used ultra-high field imaging to directly quantify the

structural integrity of the locus coeruleus in individuals with Parkinson’s disease. Our results

indicate that individuals with a more severely degenerated locus coeruleus had a stronger

increase in prior weighting following a single dose of atomoxetine, whereas individuals with a

relatively preserved locus coeruleus had no meaningful change or even a reduction in prior

weighting. These results are consistent with an inverted-U shaped curve of neurotransmitter

function, whereby intermediate levels of activity are associated with optimal performance,

while hypo- or hyperactive levels lead to suboptimal behaviour [35,74,75].

The relationship between locus coeruleus integrity and the drug-induced change in prior

weighting varied according to apathy levels. For less apathetic individuals, there was generally

no meaningful effect of atomoxetine on prior weighting, and no clear relationship between

locus coeruleus integrity and the drug’s effect. In contrast, among more apathetic individuals,

we observed a clear baseline-dependent effect of atomoxetine on prior weighting. These results

underwrite the multifactorial nature of catecholaminergic drug effects in Parkinson’s disease,

with complex interactions between the baseline neuromodulatory state and behavioural symp-

toms [54,76]. They also highlight the importance of locus coeruleus imaging for informing
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noradrenergic therapy: among individuals with apathy, the cognitive effects of atomoxetine

varied as a function of locus coeruleus integrity.

Our results inform theoretical models of noradrenergic function. According to the adaptive

gain theory [35], dynamic shifts between predominantly phasic or tonic modes of locus coeru-

leus activity modulate the gain of task-relevant brain networks at different timescales, and

thereby regulate the balance between task engagement and disengagement [77,78]. Phasic

bursts of locus coeruleus activity, time-locked to task-relevant events, are proposed to induce

an adaptive sampling bias, increasing the salience of prepotent representations while inhibiting

weaker competing representations. In contrast, persistently elevated (tonic) locus coeruleus

activity increases the salience of representations indiscriminately, encouraging task disengage-

ment and exploration [35] (see also [36]). It is possible that individuals with reduced locus coe-

ruleus integrity increase the phasic-to-tonic firing ratio following atomoxetine [79], whereas

individuals with preserved locus coeruleus integrity were shifted into a predominantly tonic

mode of firing. On this basis, an atomoxetine-induced increase in phasic locus coeruleus activ-

ity would cause inferences about task performance to be dominated by “optimistic” priors

[60], neglecting sensory evidence for subtle deviations from this prior [80,81]. Although this

interpretation of the atomoxetine-induced changes in prior weighting remains to be directly

tested, it is supported by several lines of evidence. The anterior cingulate and dorsomedial

frontal cortex are associated with mechanisms of belief updating [41,82–84]. Reciprocal con-

nections between these regions and the locus coeruleus [35,85] might therefore enable norad-

renergic modulation of the reliance on internal models for action [86]. In Parkinson’s disease,

locus coeruleus degeneration is accompanied by reduced noradrenaline levels in the forebrain

[87,88]. Atomoxetine increases extracellular noradrenaline levels across the brain–including a

three-fold increase in the prefrontal cortex–by inhibiting the presynaptic noradrenaline trans-

porter [89,90]. Thus, for individuals with severe locus coeruleus degeneration, atomoxetine

may help alleviate the dysfunctional modulation of prefrontal noradrenergic targets, and

thereby help restore the precision of prefrontal representations of predictive signals.

This study has limitations. First, although we collected a comprehensive dataset for each

individual participant, incorporating various demographic, behavioural, and neuropharmaco-

logical measures, the total number of participants is modest. Our study design was therefore

not well-suited for data-driven analyses [91] or predictive modelling [92], and may have been

prone to type II error for frequentist statistical inferences on small effects. We focused on the

analyses of theory-driven models, with reporting of effect sizes and complementary Bayesian

statistics. Second, the participants with Parkinson’s disease were not severely apathetic, as the

group mean score on the Apathy Scale fell below conventional cut-off scores for clinically sig-

nificant apathy [1,59], and there was no statistically significant difference in apathy between

the Parkinson’s disease and control groups. We adopted a dimensional approach [17,93],

focusing on individual differences rather than group contrasts in the mechanisms underlying

apathy. Nevertheless, we recognise that it remains to be proven whether the current findings

generalise to more severely apathetic cohorts. Third, we acknowledge the psychopharmacolog-

ical complexity of medicated Parkinson’s disease patients and atomoxetine.

Due to the limited expression of dopamine transporters in the prefrontal cortex [94], a por-

tion of dopamine reuptake is mediated by the noradrenaline transporter [95,96]. Thus, by

blocking the noradrenaline transporter, atomoxetine can increase both noradrenaline and

dopamine levels in the prefrontal cortex [89,97]. It can be challenging to disentangle the nor-

adrenergic versus dopaminergic effects of atomoxetine. Noradrenaline and dopamine are

closely related neuromodulators that are synthesised from a shared metabolic pathway. They

can be co-released from the same noradrenergic terminals in the prefrontal cortex [98,99].

Furthermore, locus coeruleus activity can alter midbrain dopamine cell firing [100] and
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contribute to dopamine release in the hippocampus [101]. Thus, we cannot wholly exclude the

possibility that atomoxetine-induced changes in prior weighting partially reflected dopaminer-

gic effects. However, we note that the integrity of the substantia nigra yielded null results in

the model, and including levodopa equivalent daily dose (LEDD) as a covariate did not change

the interaction between the drug condition and locus coeruleus CNR on prior weighting. Pre-

vious studies similarly found no evidence that the effect of atomoxetine in Parkinson’s disease

depends on individual differences in LEDD [102]. Future studies could opt for a crossover

design with both noradrenergic and dopaminergic agents, to enhance the specificity of

findings.

It is possible that the changes in prior weighting are related to atomoxetine-induced

changes in arousal [103,104]. However, we note that atomoxetine did not affect self-reported

levels of arousal [62], nor did it affect basic task performance in the current study or in a stop-

signal task, either at the group-average level or in relation to individual differences in locus

coeruleus CNR [62]. This argues against a simple effect via arousal.

We used Bayesian inference as a principled framework to model the computational goal of

perceptual inference in the context of effortful, goal-directed behaviour. However, we cannot

comment directly on the exact algorithmic underpinnings of Bayesian perceptual inference in

our experiment [105]. Following hierarchical models of predictive coding, one could decom-

pose behaviour in our experiment into predictions at multiple levels of abstraction, from low-

level proprioceptive predictions for movement to high-level multi-modal, domain-general

beliefs [46,106–111]. Future work is needed to address how such a framework can accommo-

date the various stages of information processing that are thought to be involved in effort- and

reward-based decision-making [112–114], including the weighting of action policies

[13,15,53], initiating and sustaining an action [115], and evaluating and learning from the

action outcomes.

We designed this study to test a mechanistic hypothesis about the noradrenergic regulation

of sensorimotor integration in Parkinson’s disease. It was not a clinical trial, and we did not

focus on clinical outcomes. Further studies are needed to determine if atomoxetine can

improve everyday functioning of people with Parkinson’s disease, incorporating patient-,

carer- and clinician-rated assessments as well as experimental paradigms [16,17]. Our results

suggest that patients with significant apathy may benefit from noradrenergic treatment,

informing future stratified clinical trials.

In conclusion, this study provides preliminary evidence for a noradrenergic role in apathy

in Parkinson’s disease, via the precision weighting of prior beliefs about action outcomes. We

suggest that these results support a Bayesian account of apathy as a failure of active inference,

resulting from impaired noradrenergic precision of priors for action. The noradrenergic mod-

ulation of prior precision may help explain dopamine-insensitive cognitive deficits in Parkin-

son’s disease, including apathy. Locus coeruleus imaging may offer a useful marker of

noradrenergic function that can inform new stratified trials of noradrenergic therapies in

selected patients with neurodegenerative disease.

Materials and methods

Ethics statement

The study was approved by the Health Research Authority East of England–Cambridge Cen-

tral Research Ethics Committee (REC 10/H0308/34), and all participants provided written

informed consent in accordance with the Declaration of Helsinki.

The current study was part of a broader project on the noradrenergic mechanisms of cogni-

tive and motivational problems in Parkinson’s disease, including response inhibition deficits,
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as reported in O’Callaghan et al. [62]. Therefore, the following description of the participants,

study procedure, and locus coeruleus imaging overlaps with the Methods section in O’Calla-

ghan et al. [62].

Participants

Eighteen people with idiopathic Parkinson’s disease were recruited via the University of Cam-

bridge Parkinson’s disease research clinic and through Parkinson’s UK volunteer panels. All

participants met the United Kingdom Parkinson’s Disease Society Brain Bank criteria, were

aged between 50–80 years, and had no contraindications to 7T MRI or atomoxetine. No par-

ticipants had dementia, based on the Movement Disorder Society criteria for Parkinson’s dis-

ease dementia [116] and the mini-mental state examination (score > 26)[117]. None had

current impulse control disorders, based on clinical impression and the Questionnaire for

Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP-Current Short) screening tool

[118]. Levodopa equivalent daily dose (LEDD) was calculated according to Tomlinson et al.

[58].

Twenty-one age-, sex- and education-matched healthy controls were recruited from local

volunteer panels, to provide normative data. They had no history of neurological or psychiatric

disorders, and were not using psychoactive medications.

One control participant and one participant with Parkinson’s disease had excessive

amounts of missing visuomotor task data (� 50% of trials) due to technical issues. After

excluding these participants, the final sample consisted of 17 participants with Parkinson’s dis-

ease and 20 controls. Demographic details and clinical characteristics are provided in Table 1

and S1 Text.

Study procedure

Participants with Parkinson’s disease were tested across three sessions. The first session con-

sisted of MRI scanning and clinical assessment, including the Movement Disorder Society

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), mini-mental state examination

(MMSE), Montreal cognitive assessment (MoCA) and the revised Addenbrooke’s cognitive

examination (ACE-R).

The second and third sessions formed a double-blind randomised placebo-controlled cross-

over study, with 40 mg of oral atomoxetine or placebo. The 40 mg atomoxetine dose is widely

used as a well-tolerated ‘starter dose’ [119,120] that is capable of modulating behaviour and

brain function in Parkinson’s disease [29,102]. The drug order was pseudorandomly permuted

in blocks of six successive participants, to ensure that the order was balanced across the group.

This means that three participants were pseudorandomly assigned to the placebo-atomoxetine

order and three to the atomoxetine-placebo order within each block of the 1st– 6th, 7th– 12th,

and 13th– 18th participants. The sessions were scheduled at least 6 days apart (M = 7.29 days,

SD = 1.76 days, range: 6–14 days) and at a similar time of day. For each session, blood samples

were taken two hours after drug administration, to coincide with predicted peak plasma con-

centration of atomoxetine after a single oral dose [121]. Mean plasma concentration [122] was

264.07 ng/mL after atomoxetine (SD = 124.50 ng/mL, range: 90.92–595.11 ng/mL) and 0 ng/

mL after placebo. After the blood sample, participants completed an experimental task battery

that included a visuomotor task, which is the focus of the current manuscript. Participants

were on their regular anti-parkinsonian medications throughout the study.

Control participants were tested in a single session that included MRI scanning and the

same experimental task battery as the participants with Parkinson’s disease. The control group

did not undergo the drug manipulation.
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All participants completed a set of questionnaires that assessed mood and various beha-

vioural symptoms. With the exception of the Apathy Scale [59], these questionnaires were pri-

marily collected for demographic purposes, and are described in detail in S1 Text.

Visuomotor task

We administered a visuomotor task (adapted from Hezemans et al. [43]) that involved effort-

ful, goal-directed behaviour, and required participants to estimate their own performance. For

each trial, participants pressed on a force sensor for 3 seconds using the index finger of their

dominant hand, to subsequently trigger a ballistic ball movement on the screen, aiming for the

ball to stop on the target. The force response was defined as the mean force exerted from 1.5 to

2.5 seconds, divided by the participant’s maximum force (estimated separately, see below).

The initial velocity of the ball increased monotonically with the force response. The decelera-

tion of the ball was kept constant. Thus, the relative force exerted on the sensor (i.e., the initial

velocity) directly determined the ball’s final position. As a measure of basic task performance,

we calculated the force error, defined as the difference between the force response and the

force required to stop the ball perfectly on target.

The task consisted of two types of trials: basic trials and estimation trials. For basic trials,

participants viewed the outcome of their action–that is, the ball’s full trajectory to its final posi-

tion on the screen. The difference between the ball’s final position and the target constituted

the performance error, expressed in pixels.

Estimating task performance. For estimation trials, the ball’s trajectory was not shown,

and participants were asked to estimate where the ball would have stopped. Participants were

shown a grid of 12 evenly spaced response options (labelled with numbers 1 to 12), where one

of the response options was centred on the true final ball position (i.e. the veridical response

option). Participants verbally indicated their belief about the ball’s final location to the experi-

menter as a digit (“one” to “twelve”). The difference between the selected response option and

the veridical response option constituted the estimation error. Note that the target was not

shown during the estimation procedure, and participants did not receive feedback regarding

the true final ball position on estimation trials.

For each estimation trial, the veridical response option was selected pseudorandomly from

a uniform distribution between 3 and 10. This ensured that the absolute position of the estima-

tion grid was not indicative of the true final ball position, and that there were sufficient

response options both to the left and right of the true final ball position. The width of the esti-

mation grid was 30% of the screen width. Note that in our previous work using an uncon-

strained (mouse cursor) estimation procedure [43], the standard deviation of estimation error

was 6.80% of the screen width.

Task procedure. The task started with a practice block of 15 basic trials. In the last 5 of

these practice trials, participants were asked to estimate their performance after observing the

full ball trajectory, to introduce the estimation procedure. The experimenter verified that the

participant understood the estimation procedure, and if necessary the practice block was

repeated. The practice data was not analysed further. The subsequent test phase consisted of 4

blocks of 30 trials each. Each block consisted of 20 basic trials and 10 estimation trials. The tri-

als within each block were pseudorandomly interleaved, with the constraints that the first 3 tri-

als were always basic trials and that there could not be two consecutive estimation trials. In

total, each testing session consisted of 120 trials, of which 40 were estimation trials. To mini-

mise potential effects of fatigue on task performance, participants were given the opportunity

to take a short break after each block.
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For consistency with the original study design in Hezemans et al. [43], the task additionally

featured experimental manipulations of effort and reward. Physical effort was manipulated by

displaying the target either relatively close to or far from the ball’s starting position, corre-

sponding to 35% or 65% of the participant’s maximum force. Reward was manipulated by

either giving participants points (tallied at the top of the screen) in relation to their perfor-

mance on basic trials, or not giving any points. We used a 2 × 2 factorial design (low effort vs.

high effort; no reward vs. reward) with one block of 30 trials for each combination of effort

and reward. Following the results of Hezemans et al. [43], showing minimal effects of effort

and reward on prior weighting that were not associated with apathy, we report the effects of

these conditions on behaviour in S4 Text.

Maximum force calibration. We established each participant’s maximum force at the start

of the task, so that the relative level of force required could be fixed across participants. Participants

pressed with the maximum force they could sustain for 10 seconds. The mean force within a 5 sec-

ond window with the lowest variance was taken as the response. This procedure was repeated

three times, and the highest value across iterations was taken as the participant’s maximum force.

Bayesian modelling of performance estimates

The estimation trials in our visuomotor task can be considered as a Bayesian inference prob-

lem [123,124], where for each trial n participants infer a hidden variable x(n) given noisy sen-

sory evidence s(n):

pðxðnÞjsðnÞÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

posterior

/ pðsðnÞjxðnÞÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

likelihood

� pðxðnÞÞ
|fflffl{zfflffl}

prior

ð4Þ

The sensory evidence s(n) is assumed to be the true value of the hidden variable x(n) cor-

rupted by sensory noise, s(n) = x(n)+�(n), where the noise �(n) is sampled from a Gaussian distri-

bution with zero mean and variance s2
s , that is �ðnÞ � N ð0; s2

s Þ. Thus, the likelihood is

assumed to follow a Gaussian distribution with mean x(n) and variance s2
s . The prior on x(n) is

assumed to follow a Gaussian distribution with mean xðnÞ0 and variance s2
0
. Taken together, the

posterior of x(n) is proportional to the product of two Gaussian distributions:

pðxðnÞjsðnÞÞ / N ðsðnÞ; xðnÞ; s2

s Þ �N ðx
ðnÞ; xðnÞ0 ; s

2

0
Þ ð5Þ

The optimal estimate of the hidden variable, x̂ðnÞ, minimises the expected loss Lðx̂ðnÞ; xðnÞÞ
given the sensory evidence. Since the posterior distribution in Eq 5 is Gaussian, its mean,

median, and mode have the same value. We can therefore assume without loss of generality

that the optimal estimate equals the posterior mean [125], which is a precision-weighted sum

of the sampled sensory evidence and the prior mean:

x̂ðnÞ ¼ argmin
x̂ðnÞ

E½Lðx̂ðnÞ; xðnÞÞjsðnÞ�

¼
s2

0

s2
0
þ s2

s

� sðnÞ þ
s2
s

s2
s þ s

2
0

� xðnÞ0 ð6Þ

Estimating prior weighting. In the current study, we assume that the sensory evidence is

centred on the true final ball position xðnÞball with variance s2
evidence, and the prior is centred on the

target position xðnÞtarget with variance s2
prior. The observed estimate of performance xðnÞestimate can

PLOS COMPUTATIONAL BIOLOGY Noradrenergic mechanisms of apathy in Parkinson’s disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010079 May 9, 2022 16 / 30

https://doi.org/10.1371/journal.pcbi.1010079


then be modelled as the sum of xðnÞball and xðnÞtarget, weighted by their inverse variances:

xðnÞestimate ¼
s2
prior

s2
prior þ s

2
evidence

� xðnÞball þ
s2
evidence

s2
evidence þ s

2
prior

� xðnÞtarget ð1 restatedÞ

The prior weighting term, wprior ¼
s2
evidence

s2
evidenceþs

2
prior

, can be estimated as the negative of the regres-

sion coefficient of estimation error on performance error [60]:

xðnÞestimate � xðnÞball|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

estimation error

¼ � wprior � ðx
ðnÞ
ball � xðnÞtargetÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

performance error

ð3 restatedÞ

We used a linear mixed effects model to fit the linear relationship between estimation errors

and performance errors, allowing the slope to vary for each of the 54 completed testing ses-

sions (20 control participants plus 17 participants with Parkinson’s disease tested twice). Prior

to model fitting, the estimation errors and performance errors were z-scored for each testing

session, to bring these variables onto a common scale and to ensure that the intercept was

zero, as assumed by the model (Eq 3). We performed a parameter recovery analysis to ensure

that this analysis procedure could reliably identify data-generating parameter values, given our

experimental design and model assumptions (S5 Text).

Hierarchical Bayesian modelling of estimation trials. The observed estimate of perfor-

mance can alternatively be modelled probabilistically, as a sample from the full posterior distri-

bution:

xðnÞestimate � N ðx̂ðnÞ; s2

x̂Þ ð7Þ

where the posterior variance s2
x̂ is given by:

s2

x̂ ¼
s2
evidence � s

2
prior

s2
evidence þ s

2
prior

ð8Þ

By explicitly modelling the posterior variance, the prior and sensory evidence variances can

be separately identified. For example, although an increase in prior variance or a decrease in

sensory evidence variance could have the same effect on prior weighting (Eq 2), these changes

would have dissociable effects on the posterior variance (Eq 8).

Potential drug effects on the prior and sensory evidence variances were modelled as ato-

moxetine-induced changes (Δ) in these parameters, relative to the placebo session. For exam-

ple, the standard deviation of the prior for participant i in session j was defined as follows:

s
ði;jÞ
prior ¼

s
ðiÞ
prior if j ¼ placebo

s
ðiÞ
prior þ D

ðiÞ
prior if j ¼ atomoxetine

ð9Þ

(

We additionally accounted for any consistent spatial shifts in the sensory evidence, xshift, to

relax the assumption that the trial-wise sensory evidence distribution was centred on the true

final ball position [43,60,126]:

xðnÞevidence ¼ xðnÞball þ xshift ð10Þ

The model consisted of five free parameters in total: σprior, σevidence, Δprior, Δevidence, and

xshift. We estimated these parameters hierarchically, such that parameters for a given
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participant i were sampled from corresponding group-level distributions:

s
ðiÞ
prior � N þðmsprior ; ðsspriorÞ

2
Þ

s
ðiÞ
evidence � N þðmsevidence ; ðssevidenceÞ

2
Þ

D
ðiÞ
prior � N ðmDprior ; ðsDpriorÞ

2
Þ

D
ðiÞ
evidence � N ðmDevidence ; ðsDevidenceÞ

2
Þ

xðiÞshift � N ðmxshift
; ðsxshift

Þ
2
Þ ð11Þ

where N þ denotes a Gaussian distribution that is truncated to only allow positive values. We

generally assigned relatively broad (“weakly informative”) prior distributions on the group-

level means and variances of the model parameters. The priors on mDprior ; mDevidence , and mxshift

were all centred on zero–that is, we conservatively assumed a priori that on average there

would be no drug effects or spatial shift. Further details about the model specification are pro-

vided in S2 Fig. Our primary interest was in the participant-level estimates of drug effects on

the standard deviation of the prior and sensory evidence distributions.

We additionally fit three variants of this model, where the prior and / or sensory evidence

standard deviation parameters were constrained to be fixed across the placebo and atomoxe-

tine sessions. Specifically, one model variant only allowed for drug effects on the prior stan-

dard deviation, another model variant only allowed for drug effects on sensory evidence

standard deviation, and a final model variant did not include any drug-induced change param-

eters. However, a comparison of each model’s estimated pointwise predictive accuracy [127]

favoured the inclusion of drug effects on both the prior and sensory evidence standard devia-

tions (S3 Fig), and we therefore focused on the parameter estimates from the ‘full’ model.

We used Markov Chain Monte Carlo (MCMC) sampling to estimate the posterior distribu-

tions of the model parameters. We used 8 chains with 4000 samples each, and discarded the

first 2000 samples of each chain as the warm-up. Model convergence was confirmed by the

potential scale reduction statistic R̂ (< 1.004 for all parameters), and by visual inspection of

the time-series plots of the MCMC samples. The model’s goodness of fit was assessed by visu-

ally comparing the observed data to simulated data generated from the model’s posterior pre-

dictive distribution (S4 and S5 Figs). For a given parameter of interest, we took the median of

its posterior distribution as the optimal estimate.

MRI acquisition

The MR images were acquired with a 7T Magnetom Terra (Siemens, Erlangen, Germany),

using a 32-channel head coil (Nova Medical, Wilmington, USA). The locus coeruleus was

imaged using a 3D magnetisation transfer (MT) weighted sequence at high resolution

[57,128]. The sequence included 112 oblique, axial slices oriented perpendicular to the long

axis of the brainstem, to cover both the midbrain and the pontine regions. A train of 20 Gauss-

ian-shaped RF pulses was applied at 6.72 ppm off resonance, 420˚ flip angle, followed by a

turbo-flash readout (TE = 4.08 ms, TR = 1251 ms, flip-angle = 8˚, voxel size = 0.4 x 0.4 x 0.5

mm3, 6/8 phase and slice partial Fourier, bandwidth = 140 Hz/px, no acceleration, 14.3%-

oversampling, TA ~ 7 min). The transmit voltage was adjusted for each participant based on

the average flip angle in the central area of the pons, which was obtained from a B1 pre-
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calibration scan. The MT scan was repeated twice and averaged offline to enhance the signal-

to-noise ratio. An additional scan was acquired with the same parameters as above but without

the off-resonance pulses. For anatomical coregistration, a high resolution T1-weighted struc-

tural image (0.7 mm isotropic) was acquired using the MP2RAGE sequence with the UK7T

Network harmonised protocol: TE = 2.58 ms, TR = 3500 ms, BW = 300 Hz/px, voxel size = 0.7

x 0.7 x 0.7 mm3, FoV = 224 x 224 x 157 mm3, acceleration factor (A>>P) = 3, flip angles = 5/

2˚ and inversion times (TI) = 725/2150 ms for the first/second images.

Image processing and locus coeruleus integrity

The image processing pipeline is described in detail in O’Callaghan et al. [62], which used an

identical pipeline as the current study (based on Ye et al. [57]). The MT images were bias field

corrected, and then entered into a T1-driven coregistration pipeline to warp the images to the

isotropic 0.5 mm ICBM152 (International Consortium for Brain Mapping) T1-weighted

asymmetric template [129].

The co-registered MT images were used to quantify the contrast with respect to a reference

region, the central pontine tegmentum, generating contrast-to-noise ratio (CNR) maps. For

each participant i and voxel j, the signal x(i,j) was contrasted with the mean reference signal

m
ðiÞ
ref , and then divided by the standard deviation of the reference signal s

ðiÞ
ref :

CNRði;jÞ ¼
xði;jÞ � mðiÞref

s
ðiÞ
ref

ð12Þ

To ensure that the CNR values were localised to the locus coeruleus, we used an indepen-

dent locus coeruleus atlas based on a separate sample of 29 age- and education-matched

healthy controls [62]. For each axial slice on the rostrocaudal extent, the locations of the left

and right locus coeruleus were determined using a semi-automated segmentation method

[57]. The locus coeruleus voxels were segmented into binary images, and then averaged and

thresholded at 5% to obtain a template (705 voxels, 88.125 mm3; see Supplementary Materials

in O’Callaghan et al. [62]).

To estimate the locus coeruleus integrity, we applied the independent locus coeruleus atlas

to each participant’s CNR map, and then calculated the mean CNR value across the whole

structure. We also performed this calculation after applying a more stringent locus coeruleus

atlas that was thresholded at 25% (274 voxels, 34.25 mm3). In addition, we performed an alter-

native calculation of locus coeruleus contrast that replaced the denominator in Eq 12 with the

mean reference signal: CRði;jÞ ¼ ðxði;jÞ � mðiÞrefÞ=m
ðiÞ
ref , yielding a contrast ratio rather than con-

trast-to-noise ratio. However, as described in the Results section, these alternative contrast

methods did not meaningfully change the relationship between locus coeruleus integrity and

the atomoxetine-induced change in prior weighting. Comparisons of locus coeruleus CNR

between the Parkinson’s disease and control groups are reported in detail in O’Callaghan et al.

[62].

We used an analogous approach to obtain CNR from the substantia nigra, as a neuromela-

nin-rich control region. This analysis pipeline is described in detail in the Supplementary

Materials in O’Callaghan et al. [62] and in Rua et al. [63]. In brief, the MT images from the sep-

arate sample of 29 age- and education-matched healthy controls were used to create an inde-

pendent probabilistic atlas of the substantia nigra, thresholded at 5%. This atlas was then

applied to the current study sample to compute a CNR map (Eq 12), where the reference

region was defined as the midbrain background (crus cerebri). The mean CNR value for each

participant served as the estimate of substantia nigra CNR.

PLOS COMPUTATIONAL BIOLOGY Noradrenergic mechanisms of apathy in Parkinson’s disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010079 May 9, 2022 19 / 30

https://doi.org/10.1371/journal.pcbi.1010079


Statistical inference

We report both frequentist and Bayes factor (BF) analyses for hypothesis testing, with a signifi-

cance threshold of p = .05 (two-sided) for frequentist analyses. We present the BF for the alter-

native hypothesis over the null hypothesis (i.e., BF10), such that BF> 3 indicates “positive

evidence” for the alternative hypothesis. All BF analyses used the default ‘JZS’ prior on the

effect size under the alternative hypothesis. To obtain BFs for specific effects in ANOVAs and

linear (mixed) models, we used Bayesian model averaging to estimate the change from prior to

posterior inclusion odds (“inclusion BF”). This BF indicates how much more likely the data

are when a given effect is included in the model, compared to when the effect is excluded

[130]. The p-values for fixed effects in linear mixed models were obtained using the Kenward-

Roger approximation. Prior to analyses, we z-scored all continuous variables, and assigned

sum-to-zero contrasts to categorical variables.

Software and equipment

The visuomotor task was implemented in MATLAB R2018b using the Psychophysics

Toolbox extensions version 3 [131], and was displayed on a 12.5-inch laptop screen

(1920 × 1080 pixels). The force sensor had a sampling rate of 60 Hz and a measurement accu-

racy of ±9.8 mN. The magnetisation transfer images were processed using the Advanced Nor-

malization Tools version 2.2.0 [132] and in-house MATLAB scripts [57,62]. All statistical

analyses were implemented in R version 3.6.1 [133]; detailed information about the specific R

packages used for the analyses is provided in S6 Text. The hierarchical Bayesian modelling was

implemented in Stan [134].

Supporting information

S1 Fig. Relationship between prior weighting and apathy in young adults. Data from Heze-

mans et al. [43], demonstrating the relationship between trait apathy (measured using the Apa-

thy Motivation Index) and prior weighting, adjusted for task performance variability (i.e.,

partial residuals). Note that observations with identical questionnaire scores were horizontally

jittered to avoid overlaid dots. Full statistics for the regression coefficient of apathy: β = -0.42,

SE = 0.14, t(44) = -3.02, p = .004; BF = 11.63.

(PDF)

S2 Fig. Plate notation and sampling statements for the hierarchical Bayesian model. Partic-

ipant-level parameters were sampled from latent group-level distributions. We allowed for ato-

moxetine-induced changes in the standard deviations of the prior and sensory evidence

distributions. Session-level parameters were then used to obtain trial-level posterior distribu-

tions of the final ball position. The observed estimates of performance were modelled as sam-

ples from the trial-level posterior distributions. The model is represented in plate notation:

shaded nodes represent observed data whereas white nodes represent latent variables; rectan-

gular nodes represent discrete or fixed variables whereas circular nodes represent continuous

variables; and double-bordered white nodes represent deterministic variables whereas single-

bordered white nodes represent stochastic variables.

(PDF)

S3 Fig. Information criteria for variants of the hierarchical Bayesian model. In addition to

the model presented in the manuscript, we fit three variants of the model with restrictions on

the number of drug-induced change parameters. For each model variant, we computed the

leave-one-out information criterion (LOOIC) and the widely applicable information criterion

(WAIC) as estimates of the model’s expected predictive accuracy. For both measures, the ‘full’
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model which included drug-induced change parameters for both the prior and sensory evi-

dence standard deviations was strongly preferred over the three more restricted model vari-

ants.

(PDF)

S4 Fig. Posterior predictive check: response distributions. Each panel compares the

observed responses (light-coloured density plot and histogram) to distributions of simulated

responses drawn from the model’s posterior predictive distribution (dark-coloured density

traces).

(PDF)

S5 Fig. Posterior predictive check: predictive error. Each panel illustrates the distribution of

the mean predictive error of the model–that is, the observed responses minus simulated

responses drawn from the model’s posterior predictive distribution, averaged across Markov

Chain Monte Carlo samples. These histograms can therefore be interpreted as the distributions

of residuals.

(PDF)

S1 Text. Mood and behaviour questionnaires. Table A. Descriptive statistics and group

comparisons of questionnaires. Data are presented as mean (SD). Group comparisons were

performed with independent samples t-tests. The stated p-values are uncorrected; none sur-

vived p< .05 after correction for multiple comparisons. Abbreviations: BF, Bayes Factor for

the alternative hypothesis over the null hypothesis, where> 3 would indicate positive evidence

in favour of a group difference; BIS, Barratt Impulsiveness Scale; HADS, Hospital Anxiety and

Depression Scale; MEI, Motivation and Energy Inventory; CAARS, Conners’ Adult ADHD

Rating Scale; RBDSQ, REM sleep Behaviour Disorder Screening Questionnaire; CBI-R, Cam-

bridge Behavioural Inventory–Revised. Fig A. Density plots of questionnaire scores for par-

ticipants with Parkinson’s disease (blue) and controls (orange). The questionnaire scores

were z-scored to bring the different questionnaires onto a common scale (note that this trans-

formation does not affect group comparisons for a given questionnaire outcome). Tick marks

reflect individual data points. Abbreviations: BIS, Barratt Impulsiveness Scale; MEI, Motiva-

tion and Energy Inventory; HADS, Hospital Anxiety and Depression Scale; CAARS, Conners’

Adult ADHD Rating Scale.

(DOCX)

S2 Text. Role of covariates in the drug × LC CNR interaction on prior weighting. Table A.

Backward elimination of fixed effects in the linear mixed effects model predicting prior

weighting. Values for predictors are standardised regression coefficients (ß). �p< .05. Drug,

atomoxetine vs. placebo condition; LC CNR, Locus Coeruleus Contrast to Noise Ratio; ICV,

total intracranial volume; Ato plasma, atomoxetine plasma concentration; LEDD, Levodopa

Equivalent Daily Dose; Session, first vs. second session; UPDRS III, Unified Parkinson’s Dis-

ease Rating Scale, motor examination; AIC, Akaike Information Criterion; BIC, Bayesian

Information Criterion; Δ AIC / BIC, difference in AIC / BIC with respect to the lowest AIC /

BIC value. All models included a fixed effect of the interquartile range of performance error as

a covariate of no interest, and a random effect of participants on the intercept. Total intracra-

nial volume was estimated from the T1-weighted MP2RAGE images using the mri_segstats–

etiv-only procedure in FreeSurfer v6.0.0. Table B. Bayes Factors for the inclusion of fixed

effects in the linear mixed effects model predicting prior weighting. P(incl): prior inclusion

probability, i.e. the summed prior probability of models that include the predictor. A priori, all

possible restrictions of the full model were deemed to be equally likely (i.e., a uniform prior

was assigned to the model space). Thus, P(incl) reflects the proportion of alternative models
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that included the predictor. P(incl|data): posterior inclusion probability, i.e. the summed pos-

terior probability of models that include the predictor. P(excl|data): posterior exclusion proba-

bility, i.e. the summed posterior probability of models that exclude the predictor. BFinclusion:

Inclusion Bayes Factor, i.e. the change from prior to posterior inclusion odds. This indicates

how much more likely the data are under models that include the predictor, compared to

models that exclude the predictor. This analysis was performed using “matched” models,

which means that (i) models were not permitted to include an interaction effect without its

constituent main effects, and (ii) inclusion probabilities for an interaction effect were based

only on the subset of models that contained (at least) the constituent main effects of the inter-

action. All models included a fixed effect of the interquartile range of performance error as a

covariate of no interest, and a random effect of participants on the intercept.

(DOCX)

S3 Text. Decomposing drug effects on prior weighting: Plausible values analysis. Fig A.

Decomposing the noradrenergic effects on prior weighting using a plausible values analy-

sis approach. (A-B) Distributions of plausible correlations between the drug effect on prior

weighting and the estimated drug effect on the standard deviation of the prior (A) or sensory

evidence (B). (C) Distribution of the difference between the plausible correlations.

(DOCX)

S4 Text. Effects of effort and reward on task performance and prior weighting. Fig A. Task

accuracy (median force error) plotted as a function of effort, reward, group, and drug.

Dots represent individual participants, and boxplots represent the marginal distribution for a

given condition. For the Parkinson’s disease group, the grey lines indicate within-subject

change in median force error from placebo to atomoxetine. Box-plot elements: centre line,

median; box limits, first and third quartiles; whiskers, most extreme observations within

1.5 × interquartile range from the box limits. Fig B. Task variability (interquartile range of

force error) plotted as a function of effort, reward, group, and drug. Dots represent individ-

ual participants, and boxplots represent the marginal distribution for a given condition. For

the Parkinson’s disease group, the grey lines indicate within-subject change in the interquartile

range of force error from placebo to atomoxetine. Box-plot elements: centre line, median;

box limits, first and third quartiles; whiskers, most extreme observations within 1.5 × interquar-

tile range from the box limits. Fig C. Prior weighting plotted as a function of effort, reward,

group, and drug. Dots represent individual participants, and boxplots represent the marginal

distribution for a given condition. For the Parkinson’s disease group, the grey lines indicate

within-subject change in prior weighting from placebo to atomoxetine. Box-plot elements:

centre line, median; box limits, first and third quartiles; whiskers, most extreme observations

within 1.5 × interquartile range from the box limits. Table A. Estimated marginal means of

median force error by group, effort, and reward. Table B. Estimated marginal means of

median force error by drug, effort, and reward. Table C. Estimated marginal means of

interquartile range of force error by group, effort, and reward. Table D. Estimated mar-

ginal means of interquartile range of force error by drug, effort, and reward. Table E. Esti-

mated marginal means of prior weighting by group, effort, and reward. Table F. Estimated

marginal means of prior weighting by drug, effort, and reward.

(DOCX)

S5 Text. Parameter recovery of prior weighting. Fig A. Parameter recovery of prior weight-

ing. (A) Data-generating prior weighting plotted against the estimated (i.e., recovered) prior

weighting. The diagonal (identity) line represents perfect parameter recovery. For a given

data-generating prior weighting value, the dot represents the median of the prior weighting
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estimates across 2000 simulations of estimation errors; the vertical error bars represent the

95% quantile intervals of the prior weighting estimates. The inset histogram illustrates the dis-

tribution of the difference between the median estimated prior weighting and data-generating

prior weighting. (B, C) Examples of data simulations for a relatively low data-generating value

of prior weighting (B; orange dot and error bar in A) and a relatively high data-generating

value of prior weighting (C; green dot in A).

(DOCX)

S6 Text. Details of statistical software.

(DOCX)
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