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Complete microtubule–kinetochore occupancy
favours the segregation of merotelic attachments
Damian Dudka1, Anna Noatynska1, Chris A. Smith2,5, Nicolas Liaudet3, Andrew D. McAinsh2 & Patrick Meraldi1,4

Kinetochores are multi-protein complexes that power chromosome movements by tracking

microtubules plus-ends in the mitotic spindle. Human kinetochores bind up to 20 micro-

tubules, even though single microtubules can generate sufficient force to move chromo-

somes. Here, we show that high microtubule occupancy at kinetochores ensures robust

chromosome segregation by providing a strong mechanical force that favours segregation of

merotelic attachments during anaphase. Using low doses of the microtubules-targeting agent

BAL27862 we reduce microtubule occupancy and observe that spindle morphology is

unaffected and bi-oriented kinetochores can still oscillate with normal intra-kinetochore

distances. Inter-kinetochore stretching is, however, dramatically reduced. The reduction in

microtubule occupancy and inter-kinetochore stretching does not delay satisfaction of the

spindle assembly checkpoint or induce microtubule detachment via Aurora-B kinase, which

was so far thought to release microtubules from kinetochores under low stretching. Rather,

partial microtubule occupancy slows down anaphase A and increases incidences of lagging

chromosomes due to merotelically attached kinetochores.
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M itotic cells assemble a bipolar mitotic spindle formed by
microtubules (MTs) emanating from the spindle poles.
MTs “search and capture” chromosomes via kine-

tochores (KTs), protein complexes assembled on the centromeric
DNA1. KTs utilize the forces generated by MT assembly/dis-
assembly to drive chromosome movements. Before anaphase, all
sister-KT pairs must form bi-oriented attachments and align at
the spindle equator. While budding yeast KTs only bind a single
MT2, 3, vertebrate KTs bind multiple MTs (15–20 MTs in human
cells)4. Although a single depolymerizing MT can generate up to
30 pN of force5, as little as 0.1 pN is enough to move a vertebrate
chromosome in the cytoplasm6–8, raising the question as to why
human KTs evolved to accommodate 20MTs.

One explanation is that multiple MTs are required to stretch
the sister-KTs apart: depolymerizing KT–MTs pull sister-KTs
towards opposite spindle poles, increasing the inter-KT distances
and stretching the centromeric chromatin. This stretching in turn
generates an opposing spring force (tension), which pulls on
KT–MTs. Micromanipulation experiments in metazoan cells9,10

or biophysical measurements with purified yeast KTs11,12

demonstrated how tension stabilizes KT–MT attachments. MT
occupancy and the average inter-KT distance increase as cells
progress from prometaphase to metaphase, implying that MT
occupancy and tension mutually reinforce each other11. More-
over, MT occupancy and inter-KT stretching have been linked to
the satisfaction of the spindle assembly checkpoint (SAC) and the
correction of erroneous KT–MT attachments13.

The SAC prevents chromosome segregation errors, by
delaying anaphase onset until the last KT forms end-on MT
attachments14. KTs lacking end-on attachments recruit the SAC
kinase Mps1 (monopolar spindle 1), initiating a signalling cas-
cade that recruits and activates the checkpoint proteins Mad2
(mitotic arrest deficient 2) and BubR1 (budding uninhibited by
benzimidazole-related 1), and ultimately blocks anaphase onset
and sister chromatid separation. Since Mps1 and MTs bind the
Ndc80 complex, the main MT-binding site at KTs, in a mutually
exclusive manner15,16, MT attachment removes all checkpoint
proteins from KTs and satisfies the SAC. In theory, a checkpoint
that can only be satisfied once a complete set of MTs binds all
KTs would give rise to an ultra-sensitive checkpoint response,
thus ensuring a robust attachment at anaphase onset. It remains,
however, unclear exactly how many MTs must bind to a KT to
satisfy the SAC: one study found that the SAC protein Mad1
(mitotic arrest deficient 1) starts to detach from KTs at 50% MT
occupancy17, while another study found that unaligned bi-
orientated KTs with an incomplete set of KT–MT attachments
still had high levels of the SAC protein Bub1 (budding unin-
hibited by benzimidazole 1)18.

Inter-KT stretching has also been long discussed as a pre-
requisite for SAC satisfaction, since it reflects bi-orientation19.
Whether this is the case is difficult to address in human cells,
since the most frequently used tool to lower inter-KT stretching,
the MT-stabilizing drug taxol, also leads to unattached KTs20.
Nevertheless, studies using human cells with unreplicated chro-
mosomes, or which express Ndc80 mutants that over-stabilize
KT–MT attachments, showed that after an initial delay, the SAC
is satisfied despite minimal or no inter-KT stretching, demon-
strating that it is not an absolute requirement21–23. This is con-
sistent with a study in Drosophila cells that found no correlation
between inter-KT distances and SAC satisfaction24 and a study
reporting that human cells can mount a SAC response despite
normal inter-KT distances25. Nevertheless, inter-KT stretching is
still thought to be the important criterion that cells use to dis-
tinguish between bi-oriented and erroneous syntelic KT–MT
attachments. In syntelic attachments both sister-KTs are bound
by MTs oriented towards the same spindle pole, resulting in low

inter-KT distances. These attachments are corrected by the kinase
Aurora-B13,26. According to the current model, Aurora-B activity
is spatially restricted to centromeric chromatin, between the
sister-KTs. When inter-KT distances are low, Aurora-B phos-
phorylates the Ndc80 complex, promoting KT–MT detachment;
when inter-KT distances are high, Aurora-B cannot reach its
substrates, leaving attachments intact. This is supported by the
fact that Aurora-B phosphorylates the Mis12 and Ncd80 com-
plexes in a proximity-dependent manner27,28, and that forced
localization of Aurora-B onto KTs induces MT detachment29.
The Aurora-B gradient model thus predicts that sister-KTs with
low inter-KT distances should detach their chromosomes, irre-
spective of the type of attachment. It has been, however, chal-
lenged in budding yeast, as cells with ubiquitously located Ipl1/
Aurora-B still correct syntelic KT–MT attachments30.

Here, we addressed the role of MT occupancy and inter-KT
stretching in human cells using BAL27862, a new MT-targeting
agent that blocks MT growth with distinct effects on MT orga-
nization31, activating the SAC at optimal anti-proliferative con-
centrations32. The prodrug of BAL27862, BAL101553, is
currently being evaluated for the treatment of advanced cancer
patients in phase 1/2A clinical trials. We find that at the low
nanomolar, sub-cytotoxic range BAL27862 reduces MT occu-
pancy and impairs inter-KT stretching, but does not lead to
unattached KTs, unlike low doses of other classical MT-targeting
agents, such as nocodazole, noscapine, or vinblastine33–35.
Using this tool we demonstrate that a reduced MT occupancy and
an impaired inter-KT stretching does neither prevent
SAC nor activate Aurora-B-dependent MT detachment. Instead,
we find that full MT occupancy is required for robust anaphase
A forces to ensure the segregation of lagging, merotelic
chromosomes.

Results
BAL27862 reduces KT–MT occupancy. To investigate why
human KTs need to bind a high number of MTs, we applied a
novel MT-targeting agent, BAL2786231, to reduce their number.
To test whether BAL27862 affects KT–MT occupancy we used
transmission electron microscopy (EM), the gold standard for the
quantification of MTs in KT fibres33,36–38. Non-cancerous human
retina pigment epithelial cells immortalized with telomerase
(hTert-RPE1) that express the KT marker GFP-CENPA (green
fluorescent protein-centromere protein A) were treated for 4 h
with a sub-cytotoxic dose (12 nM) of BAL27862. Since KTs in
metaphase cells have the highest MT occupancy39, we synchro-
nized cells in metaphase with the proteasome inhibitor MG132
for 2 h, and examined orthogonal sections in which chromosomes
formed a metaphase plate (Fig. 1a). Based on criteria used in
previous studies (see Methods section37,38), we found that KT
fibres in BAL27862-treated cells contained a median of 13.5
(11–16; 95% confidence interval (CI); N= 3) MTs versus 19.8
(17.5–21; 95% CI; N= 3) MTs in dimethyl sulfoxide (DMSO)-
treated cells (Fig. 1a, b). To corroborate these results we also
measured the fluorescence intensity of KT-MTs in hTert-RPE1
cells expressing eGFP-α-tubulin. MG132-arrested cells were fixed,
stained with CENPA antibodies to mark KTs40, and imaged by
fluorescence microscopy: k-fibres were identified based on the
position of the CENPA signal and the intensity of their KT-
proximal part (400 nm from the CENPA centroid signal) quan-
tified with a custom written MATLAB-based code (>1000 KT
fibres per condition). We found a 35.5% decrease in KT fibre
intensity (Fig. 1c, d), corroborating our EM results. Despite a
lower number of MTs in the KT fibres, there were no evident
spindle morphology or chromosome alignment defects in
BAL27862-treated cells (Fig. 1e). Moreover, spindles were only
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marginally shorter when measured from live cell images of hTert-
RPE1 Centrin1-GFP (centrosome marker)/GFP-CENPA cells
(Fig. 1f). We conclude that nanomolar concentrations of
BAL27862 decrease MT occupancy at KTs by ~1/3rd, while
preserving bipolar spindle integrity.

MT occupancy controls inter-KT stretching. To test whether
reduced MT occupancy affects KT conformation, we investigated
whether BAL27862 affected the distance between inner and outer
KT structures. To do this we determined the sub-pixel position of
GFP-CENPA (centromere/inner KT) and the amino-terminus of
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Fig. 1 BAL27862 reduces KT–MT occupancy. a Transmission electron microscopy orthogonal sections of hTert-RPE1 GFP-CENPA cells treated with DMSO
or 12 nM BAL27862 and blocked in metaphase with 10 μMMG132. Left panels show whole cells at low magnification. Scale bars= 5 μm. Right panel shows
individual KT fibres (red circles) or inter-polar MTs (yellow circles). KT fibres were defined as a set of at least 7 parallel MTs, in the vicinity of chromatin
and not more than 80 nm separated from one another38. Scale bars= 500 nm. b Quantification of the number of MTs in KT–MT fibres in hTert-RPE1 GFP-
CENPA cells treated with DMSO or 12 nM BAL27862. Data are represented as a dot plot; error bars represent 95% CI of medians; each dot represents a
single KT fibre (N= 3 independent experiments; n= 59–129 KT fibres, p < 10−4, two-tailed Mann–Whitney U-test). c Immunofluorescence images of
hTert-RPE1 eGFP-α-tubulin (green) cells treated either with DMSO or 12 nM of BAL27862 (4 h) and 10 μM of MG132 (2 h) and stained with anti-CENPA
antibody (red). Scale bars= 5 μm. Insets show a KT-proximity area measurement. Scale bars= 250 nm. d Quantification of eGFP-α-tubulin intensities at
KTs in DMSO and BAL27862-treated cells. N= 3, n= 1135–1156 k-fibres from 29 to 30 metaphase-arrested cells per condition, error bars represent s.e.m.,
p= 0.045, two-tailed t-test. e Immunofluorescence images of 10 randomly selected hTert-RPE1 eGFP-α-tubulin cells from a single experiment. Cells were
treated in parallel with DMSO or 12 nM BAL27862, 10 μM of MG132, and stained with anti-CENPA antibodies (red). Scale bars= 5 μm. f Quantification of
spindle length in hTert-RPE1 Centrin1-GFP/GFP-CENPA cells treated with DMSO or 12 nM BAL27862. N= 4, n= 25 cells; error bars represent 95% CI of
medians, p= 0.0002, two-tailed t-test. *, **, ***, **** represent p <0.05, <0.01, <0.001, <0.0001 respectively
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Ndc80 (outer KT; using 9G3 antibody) using a MATLAB-based
tracking assay (Fig. 2a,b)41,42. From the positions of GFP-CENPA
and Ndc80 signals in sister-KT pairs we calculated, following
correction of Euclidean distances43, the intra-KT distance (~103
± 2.6 nm in control, consistent with earlier studies;44 N= 4) and
the angle between the intra-KT axis and the sister-KT axis (called
swivel or k-tilt; Fig. 2c–e)20,42. Previous measurements in HeLa
cells found that this intra-KT distance is reduced when KTs are
unattached (nocodazole) and that the swivel angle is increased42.
Our measurements of BAL27862-treated hTert-RPE1 cells
revealed a minimal increase in intra-KT distances (4.4 ± 2.4 nm s.

d.; N= 4) and slight reduction in swivel (7.5° decrease in s.d.; N
= 4; Fig. 2d, e), suggesting that BAL27862-treated cells have the
expected conformation for bi-oriented attachments.

To investigate how a reduction in MT occupancy affects KT
movements, we used an automated four-dimensional (4D) KT-
tracking assay to analyse the dynamics of GFP-CENPA in hTert-
RPE1 cells during metaphase (Supplementary Movie 1 and 2). Bi-
oriented attachment stretches the distance between sister-KTs
and leads to semi-periodic oscillatory movements that can be
revealed with an autocorrelation analysis of the KT positions
(Fig. 2f):45 the position of the first minimum indicates the average
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half-period, while the magnitude reflects the abundance of sister-
pairs oscillating at that frequency. Both parameters depend on bi-
oriented attachment, since high doses of nocodazole abolish
oscillations and lower inter-KT distances (Fig. 2f, g). Treatment
with 12 nM of BAL27862 dramatically reduced average inter-KT
distances to a value that is only marginally larger than that
measured in nocodazole-treated cells (Fig. 2g). This suggests a
severe reduction in the forces acting on KTs. The reduction in
inter-KT distances was not caused by changes in the resting
length of the centromeric chromatin, as inter-KT distances in
cells treated with high doses of nocodazole were the same whether
BAL27862 was added or not (Fig. 2h). Nevertheless, BAL27862
treatment still allowed for oscillatory movements, albeit with a
shortened half-period (45–60 s, vs. 75–90 s in DMSO-treated
cells) and a reduced velocity (1.41 ± 0.07 μmmin−1 s.e.m. vs. 1.73
μmmin−1 ± 0.01 μmmin−1 s.e.m. in DMSO-treated cells; N=
3–4), indicating maintenance of bi-oriented attachments and
dynamic KT-attached MTs (Fig. 2f, i). Importantly, ~1/4th of the
BAL27862-treated cells had an average inter-KT distance similar
to that measured in nocodazole-treated cells (0.80 ± 0.18 μm s.d.;
N= 2–4; Fig. 2j). This indicated a population of BAL27862-
treated cells with no stretching/force generation. The sister-KTs
in this subpopulation of cells, nevertheless, displayed semi-regular
oscillations with a shortened period (Fig. 2k). Taken together,
these data show how low MT occupancy at KTs dramatically
reduces average inter-KT stretching, while still allowing for bi-
oriented attachment and generation of oscillatory movements.

Reduced MT occupancy does not prevent mitotic progression.
The intact spindle morphology and lack of obvious chromosome
alignment defects in BAL27862-treated cells (Fig. 1e) gave us the
opportunity to test whether the combination of decreased MT
occupancy and low inter-KT stretching allow for SAC satisfac-
tion. hTert-RPE1 cells expressing H2B-mCherry (chromosome
marker) and EB3-eGFP (MT marker) were treated with 12 nM
BAL27862 and recorded every 3 min by time lapse imaging
(Supplementary Movie 3 and 4). Cells initiated anaphase (median
time of 18 ± 3 min 95% CI.; N= 3) with only a 3-min delay when
compared to DMSO-treated cells (median time of 15 min ± 3
min; N= 3; Fig. 3a). This delay arose during chromosome
alignment (median time of 9 ± 3 min vs. 6 min ± 0 min in DMSO-
treated cells; N= 3), as mitotic progression was normal after the
final chromosome aligned (Fig. 3b, c). The absence of a longer
delay cannot be attributed to effects of BAL27862 on the SAC
itself, because higher doses of the drug (33 nM) led to a perma-
nent mitotic arrest that was alleviated by the Mps1 inhibitor
reversine (Fig. 3a).

Given the broad range of inter-KT distances (Fig. 2g), it was
possible that BAL27862 would only delay the establishment of
high inter-KT distance, which could explain how cells would
satisfy the checkpoint given sufficient time. To test this we
tracked single hTert-RPE1 GFP-CENPA cells treated with DMSO
or 12 nM BAL27862 and assessed their inter-KT distances at
anaphase onset (Fig. 3d–f). For comparison cells were also treated
with high doses of nocodazole to determine the typical
distribution of inter-KTs in the absence of MTs, which
we found to be centred on 0.77 μm with 80% of all the values
comprised between 0.70 and 0.87 μm (N= 2; Fig. 3f).
DMSO-treated cells entered anaphase with a median inter-KT
distance of 1.05 μm (±0.07 μm 95% CI; N= 4); all 33 cells
entering anaphase had average inter-KT distance higher than
0.93 μm, well above the resting distance distribution (Fig. 2h).
The average inter-KT distance at anaphase in BAL27862-treated
cells was lower (0.91 ± 0.13 μm 95% CI; N= 3), and 9 out of 19
cells had an average inter-KT distance within the distribution
observed in nocodazole-treated cells, including 3 cells with inter-
KT distances below 0.80 μm (Fig. 3f). Based on these subpopula-
tions of BAL27862-treated cells we conclude that the SAC can be
satisfied despite reduced MT occupancy and complete absence of
inter-KT stretching.

Previous studies have shown that the SAC can act like a
rheostat, in which mild KT–MT attachment defects, such as a
single unattached KT, will not permanently block anaphase onset,
but rather lead to a transient delay46,47. Since BAL27862
treatment led to a small delay in anaphase onset, it raised the
possibility that partial MT occupancy and low inter-KT distances
might lead to a “weak” checkpoint response that would margin-
ally delay anaphase onset. To test this, we used hTert-RPE1 cells
expressing endogenously tagged Venus-Mad2, a marker which
reflects the output of the SAC by being recruited to unattached
KTs46. We stained these cells with SiR-Hoechst, a live cell dye for
DNA48, and monitored Venus-Mad2 levels, as cells progressed
through mitosis (Fig. 4a). In both DMSO- and BAL27862-treated
cells, unattached KTs recruited the same levels of Venus-Mad2
(Fig. 4a, b and b). Venus-Mad2 also fully disappeared from
aligned KTs in both conditions, even though a majority of KTs in
BAL27862-treated cells have a reduced MT occupancy and low
inter-KT distances (Figs. 2 and 4a). Finally, we observed in both
conditions the same 5 min delay between the final disappearance
of Mad2 and anaphase onset (±1.29 min s.d for DMSO and ±1.17
min s.d. for BAL27862; N= 4; Fig. 4c). These data confirmed that
BAL27862 does not impair SAC signalling and does not affect the
activity of the anaphase-promoting complex (APC/C) once the
checkpoint is satisfied. Furthermore, they indicate that reduced
MT occupancy and low inter-KT distances do not lead to a

Fig. 2 MT occupancy controls inter-KT stretching. a Schematic of human KTs showing relative positions of GFP-CENPA (green) and Ndc80 (9G3, red). b
Immunofluorescence images of hTert-RPE1 GFP-CENPA cells (green) treated with DMSO or 15 nM BAL27862 stained for Ndc80 (red). Insets illustrate
sub-pixel localization of GFP (green crosses) and Ndc80 (red crosses). Scale bars= 2 μm for merged images, 500 nm for insets. c Schematic of inter- and
intra-KT distances and swivel measurements. d Quantification of inflation-corrected 3D intra-KT distances for cells treated with DMSO or 15 nM
BAL27862. N= 4, n= 2251–2507 KTs, p= 0.013 in two-tailed z-test. Values given are means ± s.e.m. e Swivel ranges for KTs in cells treated with DMSO
(black), or 15 nM BAL27862 (red). Values given are s.d., N= 4; n= 1952–2263 sister-KT pairs. f Autocorrelation curves of sister-KT pairs of cells treated
with DMSO (black), 12 nM BAL27862 (red), or 1 μg ml−1 nocodazole (blue); yellow is 95% CI for BAL27862-treated cells; n= 770-880 sister-KT pairs;
N= 2–4. g Distribution of inter-KT distances (CENPA-CENPA) in cells treated with DMSO (black), 12 nM BAL27862 (red) or 1 μg ml−1 nocodazole (blue),
N= 2–4; n= 770–880 sister-KT pairs; values are means and s.d.; all conditions are different from one another (p < 10−4, two-tailed Mann–Whitney U-
test). h Resting inter-KT distances measured in cells co-treated with 1 μgml−1 nocodazole and either DMSO (black, n= 289) or 12 nM BAL27862 (red, n=
310; values are means and s.d.). i Sister-KT velocities of cells treated with DMSO, 12 nM of BAL27862, or 1 μg ml−1 nocodazole. N= 2–4; n= 549–579
sister-KT pairs; values are means and s.e.m., p= 0.007 DMSO vs. BAL27862, p= 0.002 BAL27862 vs. nocodazole in two-tailed ANOVA test; **
represents p < 0.01. j Distribution of inter-KT distances in the subpopulation of BAL27862-treated cells with average inter-KT distance <0.8 μm (red; n=
182 sister-KTs; N= 2–4; values are means and s.d.). k Autocorrelation curves and 95% CI (yellow) of sister-KT pairs shown in j
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“weak” SAC response. Rather, we suspect that the delay in
anaphase onset seen in BAL27862-treated cells might be caused
by an inefficient initial capture of KTs, as reflected by the 3 min
delay in chromosome alignment (Fig. 3b).

The Mps1 kinase, the most upstream SAC component,
competes with MTs to bind the Ndc80 complex, the main MT-
binding site on KTs15,16. This raised the question as to how
partial MT occupancy can satisfy the SAC. We reasoned that
either KTs possess individual MT-binding units that still load
subcritical levels of Mps1 in BAL27862-treated cells, or that Mps1
binding to Ndc80 at individual KTs is controlled in a cooperative
manner. To differentiate between the two possibilities, DMSO-,
BAL27862-, or nocodazole-treated cells were stained with Mps1
antibodies and their levels at KTs quantified by indirect
immunofluorescence (all cells were also treated with MG132 to
ensure bi-orientation in DMSO- and BAL27862-treated cells;
Fig. 4d). Mps1 levels at KTs were high after nocodazole
treatment, but undetectable in both DMSO- and BAL27862-
treated cells (Fig. 4e). We conclude that partial MT occupancy is
sufficient to strip Mps1 away from Ndc80 complexes at KTs,
arguing in favour of a cooperative binding model. One attractive
possibility for such a cooperative mechanism is the Ndc80 “lawn”
model40, which proposes that individual Ndc80 complexes within
a KT form a “lawn”, in which fewer MTs bind a higher number of
Ndc80 molecules.

Low KT stretching barely activates Aurora-B at KTs. Sister-KTs
with low inter-KT distances, such as syntelically attached sister-
KTs, are thought to undergo error correction, mediated by
Aurora-B phosphorylation of KT components, such as the Mis12
and Ndc80 complexes, in a distance-dependent manner26. Even
though RPE1 cells treated with low doses of BAL27862 have low
inter-KT distances, there was no indication of an Aurora-B-driven
detachment of KT–MTs, as cells maintained robust bi-oriented
attachments and rapidly entered anaphase (Figs. 2 and 3).
This prompted us to quantify Aurora-B activity at KTs in
BAL27862-treated hTert-RPE1 GFP-CENPA cells, using two
phospho-antibodies raised against key Aurora-B substrates as
read-outs: pSer100 of Dsn1 (Mis12 complex27) and pSer44 of
Ndc80 (Ndc80 complex28). Consistent with previous studies,
Aurora-B activity was high on sister-KTs in cells treated with the
Eg5-inhibitor monastrol (Fig. 5a and Supplementary Fig. 1a), as
this leads to monopolar spindles that favour the formation of
syntelic sister-KTs49. In contrast, lower activity was measured in
untreated cells with bipolar spindles (Fig. 5a, and Supplementary
Fig. 1a). In both cases the kinase activity was abolished following
treatment with the Aurora-B inhibitor ZM1 (Fig. 5a and Supple-
mentary Fig. 1a)50.

BAL27862 did not weaken Aurora-B activity as monastrol-
treated hTert-RPE1 GFP-CENPA cells treated with or without
low doses of BAL27862 had equally high levels of phospho-Dsn1
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(Fig. 5b). In contrast, in metaphase cells that entered mitosis in
the presence of BAL27862 (4 h treatment), both phospho-Dsn1
and phospho-Ndc80 levels were low, despite the fact that these
sister-pairs never experienced high inter-KT distances (Fig. 5c
and Supplementary Fig. 1b). Nevertheless, BAL27862 led to a
uniform but mild (20–30%) increase in both phospho-Dsn1 and
phospho-Ndc80 levels when compared to DMSO-treated meta-
phase cells (Fig. 5c and Supplementary Fig. 1b). We conclude that
Aurora-B responds to low inter-KT distances in a manner that is
insufficient to detach KTs.

Complete MT occupancy favours segregation of merotelics.
The absence of Aurora-B-dependent detachments of
sister-KTs with low inter-KT distances raised the question as to
what extent Aurora-B-dependent error correction still
functions in BAL27862-treated cells. To quantify error correction,
we treated cells with monastrol to generate monopolar spindles
that accumulate syntelic KT–MT attachments, before washing out
monastrol49. Time lapse imaging allowed quantification of the
time required for cells to correct syntelic attachments, align their

chromosomes and progress to anaphase after monastrol release, a
read-out of the Aurora-B-dependent error correction efficiency49

(Fig. 6a). We observed no difference in chromosome alignment
and anaphase timing upon monastrol release (Fig. 6b, c), indi-
cating that BAL27862 does not impair the ability of Aurora-B to
correct syntelic attachments. Moreover, it demonstrated that low
inter-KT distances and reduced MT occupancy do not change the
kinetics of SAC satisfaction, in contrast to what has been pro-
posed51 and it confirmed our hypothesis that the mild anaphase
delay seen in BAL27862-treated cells (Fig. 3a, b) is due to the
inefficient initial capture of KTs.

The formation of a transient monopolar spindle not
only induces formation of syntelic attachments, but also leads
to lagging chromosomes. About 1–2% of these lagging
chromosomes are due non-disjoined chromosomes35, but the
rest is due to merotelic attachments, in which one KT is bound by
MTs from both spindle poles52. Since sister-KTs with a
merotelic attachment are still stretched apart, their correction is
thought to be independent of inter-KT stretching13. Nevertheless,
BAL27862 treatment induced a modest but highly reproducible
increase in the percentage of cells with lagging chromosomes
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(29 ± 3.1% vs. 20% ± 2.7% in DMSO-treated cells; error
bars indicate s.e.m; note that the rare cases of non-
disjoined chromosomes, in which two lagging chromosome
masses were visible, were excluded from this analysis; N= 9;
p= 0.0135 in paired t-test; Fig. 6d). Immunofluorescence of fixed
cells 60 min after a monastrol release confirmed the frequent
presence of lagging chromosomes with merotelic KT–MT

attachments (Fig. 6e). Overall, this suggested that reduced MT
occupancy lowers the efficiency of merotelic correction.

Complete KT–MT occupancy is needed for robust anaphase A.
Stabilization of KT–MTs is thought to be the major source of
merotelic attachments due to impaired error correction13.
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Nevertheless, when we tested in hTert-RPE1 GFP-CENPA cells
the effects of low doses of BAL27862 on KT-MTs using a cold
stable assay, we rather observed a mild decrease in MT stability
(Fig. 7a, b). This excluded a priori the possibility that the

increased incidence in lagging chromosomes is caused by MT
stabilization.

An alternative hypothesis is based on the fact that merotelic
KTs are bound to more MTs from the “correct” half-spindle than

Fig. 5 Low inter-KT stretching barely activates Aurora-B at KTs. a Left panel shows immunofluorescence images of hTert-RPE1 GFP-CENPA cells (green)
treated with DMSO, 100 μM monastrol, or 2 μM Aurora-B inhibitor ZM1, and stained with DAPI (blue) and pSer100-Dsn1 antibodies (red); insets show
exemplary sister-KT pairs; right panel shows quantification of normalized pSer100-Dsn1/GFP-CENPA ratio after background subtraction. *DMSO vs.
monastrol p= 0.0265, **DMSO vs. ZM1 p= 0.0023 in ratio paired two-tailed t-test, error bars represent s.e.m., N= 4, n= 340–500 KTs. b Left panel
shows immunostaining of pSer100-Dsn1 in hTert-RPE1 GFP-CENPA cells co-treated with 100 μM monastrol, and DMSO, 12 nM BAL2782 or 2 μM ZM1;
insets show exemplary sister-KT pairs; right panel shows quantification of normalized pSer100-Dsn1/GFP-CENPA ratio after background subtraction.
DMSO vs. BAL27862 p= 0.8442, **DMSO vs. ZM1 p= 0.0046, in ratio paired two-tailed t-test, error bars represent s.e.m., N= 3, n= 600 KTs. c Left
panel shows immunostaining of pSer100-Dsn1 (red) in metaphase hTert-RPE1 GFP-CENPA cells treated with DMSO, 12 nM BAL27862, or 2 μM ZM1;
insets show exemplary sister-KT pairs; right panel shows quantification of normalized pSer100-Dsn1/GFP-CENPA ratio after background subtraction,
**DMSO vs. BAL27862 p= 0.0072, **DMSO vs. ZM1 p= 0.0048 in paired two-tailed t-test, error bars represent s.e.m., N= 3, n= 300–600 KTs

DMSO BAL27862
0

10

20

30

40

La
gg

in
g 

ch
ro

m
os

om
es

 (
%

)

*

D
M

S
O

B
A

L2
78

62

0’ 9’ 18’ 27’ 33’

0’ 9’ 18’ 27’ 36’

0’ 20 40 60 80 100
0

50

100

R
el

at
iv

e 
fr

eq
ue

nc
y 

(%
)

DMSO

BAL27862

0 20 40 60 80 100
0

50

100

R
el

at
iv

e 
fr

eq
ue

nc
y 

(%
)

DMSO
BAL27862

a b

c

d

e

Chromosome alignment

Anaphase timing 

Lagging chromosomes 

Monastrol release

Time (min)

Time (min)

SiR-Hoechst

SiR-Hoechst

GFP-CENPA
α-Tubulin

Lagging chromosomes in BAL27862-treated cells
after monastrol release

Fig. 6 Complete KT–MT occupancy prevents lagging chromosomes. a Time lapse images of hTert-RPE1 GFP-CENPA cells released from a monastrol-
treatment (T= 0min). SiR-Hoechst was used to visualize chromosomes; a lagging chromosome is marked with white arrowhead. Scale bar= 5 μm. b, c
Cumulative frequency graph of chromosome alignment (b) and anaphase time (c) in hTert-RPE1 GFP-CENPA cells treated with DMSO (black) or 12 nM
BAL27862 (red) in a monastrol-release assay. T= 0 at monastrol release. N= 9, n= 530–549 cells. d Percentage of cells treated with DMSO or 12 nM
BAL27862 with lagging chromosomes in anaphase after a monastrol release, * DMSO vs BAL27862 p= 0.0135 in ratio paired two-tailed t-test, N= 9, n=
459–469 cells, error bars show s.e.m. e Immunofluorescence images of 10 hTert-RPE1 GFP-CENPA cells from a single monastrol release experiment. Cells
were treated in parallel with DMSO or 12 nM BAL27862 and 100 μMmonastrol (4 h), released from monastrol for 60min, fixed and stained with α-tubulin
antibodies (red). Scale bars= 5 μm. Inserts show single, merotelically attached KTs. Scale bars= 250 nm

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04427-x ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2042 | DOI: 10.1038/s41467-018-04427-x | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the “incorrect” one, resulting in a force differential53,54. This force
differential can correct merotelic laggards in anaphase, by
segregating merotelically attached KTs towards the correct
pole53,54. Since the number of KT–MTs on the “incorrect” side
of a sister-KT can vary, a high occupancy might ensure that there
is always a surplus of MTs on the “correct” side, to favour
segregation towards the correct pole. Conversely, low MT
occupancy might increase the probability of a force balance,
and thus prevent the anaphase-driven error correction. To test
this hypothesis we inferred the force acting on KTs in early
anaphase by quantifying the speed at which sister-KTs segregate
from one another using hTert-RPE1 GFP-CENPA cells (Fig. 7c):55

sister-KT separation was slowed down by 41% or 1.5 μmmin−1

in BAL27862-treated cells when compared to DMSO-treated cells
(median 3.63 ± 0.38 μmmin−1 95% CI for DMSO and 2.16 ±
0.55 μmmin−1 for BAL27862; N= 3; Fig. 7c, d). We conclude
that BAL27862 reduces anaphase velocity.

Anaphase sister-KT separation is not only driven by KT–MT
generated forces (anaphase A), but also by spindle elongation
(anaphase B), which is driven by pulling forces on MTs and MT
sliding at inter-polar MTs56,57. Immunofluorescence microscopy
revealed that a low nanomolar BAL27862 treatment led to smaller
asters at the poles (Supplementary Fig. 2a) and a 24.5% reduction
in PRC1 intensity, a marker for inter-polar MTs58 (±3.3% based
on 95% CI; N= 3; Fig. 8a, b). Nevertheless, when we performed
4D KT and spindle pole-tracking in hTert-RPE1 Centrin1-GFP/
GFP-CENPA cells we found no change in spindle elongation
rates between DMSO and BAL27862-treated cells, even though
average inter-KT distances were low (Fig. 8c, d; Supplementary

Fig. 2b and c). We conclude that the reduction in anaphase forces
is only due to changes in anaphase A.

Finally, anaphase A itself is driven by both plus-end and
minus-end MT depolymerization. Minus-end depolymerization
at spindle poles gives rise to poleward MT flux, which has been
shown to contribute to up to 20% of anaphase speed59. We
therefore performed a photoactivation assay using hTert-RPE1
PA-GFP-α-tubulin cells to measure poleward MT flux in
BAL27862-treated cells. We found that flux rates decreased by
0.4 μm min−1 (0.69 ± 0.11 μm min−1 s.e.m; N= 3) when
compared to DMSO (1.09 ± 0.11 μm min−1 s.e.m.; N= 3; Fig. 8e
and f). Since the reduction in anaphase A speed is much larger
(1.5 μm min−1; Fig. 7d), we conclude that the reduction in flux
rate only mildly contributes to reduced anaphase A forces.
Overall, we conclude that a reduction in MT occupancy
diminishes the forces acting on KTs in early anaphase, and they
provide support for our model that a reduction in MT occupancy
diminishes the probability of a robust force differential at
merotelically attached KTs (Fig. 9a,b).

Discussion
Our data indicate that the segregation of merotelically attached
kinetochores is favoured by high microtubule occupancy, which
ensures a strong anaphase A force. The usage of nanomolar
concentrations of BAL27862 furthermore gave us key new
insights into how forces affect chromosome movements and the
KT structure itself. Finally, we demonstrate that high MT occu-
pancy and the resulting inter-KT stretching is neither required for
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SAC silencing nor is it involved in the detachment of syntelic MT
attachments by Aurora-B (Fig. 9a).

Our data show that BAL27862 treatment cells slow
down anaphase A movements by 1.5 μmmin−1, without affecting
spindle elongation (anaphase B). Assuming that at the sub-
cellular levels viscous forces dominate, and that the velocity of
chromosome movements are directly proportional to the
forces acting on them55, we infer a 40% reduction in the forces

pulling on chromosomes. Our experiments point to two
causes for this force reduction: a minor contribution of
poleward MT flux, which is reduced by 0.4 μmmin−1, and a
major contribution from the reduction in KT–MT occupancy.
The minor contribution of poleward MT flux is consistent with
experiments showing that abrogation of poleward MT
flux in human cells only leads to a mild reduction in anaphase
velocity59.
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Based on our anaphase velocity measurements, we postulate
that the reduction in anaphase A forces decreases the likelihood
of a high force differential between the correct and incorrect side
of a merotelically attached KT. This increases the chances that a
merotelic chromosome remains in the middle of the spindle for a
long time, being caught in a tug of war of equal pulling forces
(Fig. 9b). Importantly, even if such a chromosome is ultimately
segregated, it will form genetically unstable micronuclei60. We
postulate that the high number of KT–MTs ensures a robust
anaphase A force to promote efficient chromosome segregation.

The treatment of RPE1 cells with a low nanomolar con-
centration of BAL27862 also provides insights into the mechanics
of sister-KT movements. Under these conditions the sister-KTs
move more slowly and do not stretch their centromeres (low
inter-KT distances); nonetheless, sister-KTs were still able to
undergo oscillatory motion along the spindle axis, albeit with a
shorter period (Fig. 2). This suggests that high inter-KT stretch-
ing of the centromere is not essential to drive KT directional
switching and points to small changes in the spring force being
sufficient to regulate switching events61. A second striking finding
is that a reduction in the force acting on sister-KTs led to no
change or even to an increase in intra-KT distances (it is difficult
to distinguish between the two, as the increase we saw is close to
the known methodological uncertainty). This further supports the
model that KTs are non-compliant structures42,62, and that

changes in intra-KT distances most likely reflect conformational
changes in response to attachment status, rather than a force-
dependent stretching of the KT itself.

Our data further directly show that inter-KT stretching is not
required for rapid SAC satisfaction of wild-type KTs, corrobor-
ating previous studies that used KTs with non-phosphorylatable
Ndc80 mutants21,22. Moreover, we demonstrate that KTs that
have ~2/3rd of MT-binding sites occupied satisfy the SAC and do
not load Mps1. These data are in agreement with the Ndc80
complexes “lawn” model, in which MTs bind to different num-
bers of Ndc80 complexes depending on MT occupancy40. Fur-
thermore, it would indicate that cells do not “check” if KTs reach
full MT occupancy, but rather rely on the time window between
checkpoint satisfaction and anaphase onset to fully mature their
KT fibres.

The final, major implication of our data is that low inter-KT
distances do not induce Aurora-B-dependent error correction.
Our data are consistent with the presence of an Aurora-B activity
gradient, as we find that low inter-KT distances enhance phos-
phorylation of the Mis12 and Ndc80 complexes, but the increase
in phosphorylation is only modest, and not sufficient for MT
detachment. This indicates that in chromosomes with syntelic
attachments, the low inter-KT distances and the Aurora-B
activity gradient do not suffice to explain error correction, and
that alternative or additional mechanisms must exist (Fig. 9a).
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Fig. 9 Speculative model for the role of complete KT–MT occupancy. a, b Schematic model of the impact of reduced KT–MT occupancy on sister-KTs
before (a) and after (b) anaphase onset. KTs are in green, Aurora-B activity gradient in red, and MTs in red-black. Full and dashed “inhibition” signs in red
represent the respective strength of Aurora-B activity on KTs. Full and dashed black arrows represent the respective strength of the force applied by MTs
on sister-KTs at anaphase. We postulate that before anaphase (a) complete MT occupancy and high inter-KT stretching is not required for SAC
satisfaction; moreover, low inter-KT distances are not sufficient to induce Aurora-B-dependent MT detachment. This indicates that Aurora-B must
recognize additional features in syntelic KT pairs. After anaphase onset (b), complete MT occupancy favours the segregation of merotelic chromosomes by
increasing the likelihood of a high force differential between the “correct” and “incorrect side of the lagging chromosome
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One possibility is the inherent geometric deformation of the
centromeric DNA in syntelic KT–MT attachments, which could
enhance Aurora-B activity. A second possibility is that Aurora-B
synergistically cooperates with centrosomal Aurora-A, which
destabilizes KT–MTs in the vicinity of spindle poles63–65. Such a
cooperative mechanism might be necessary to discriminate
between syntelically attached chromosomes, which are located
close to spindle poles, and the bi-oriented sister-KTs on the
metaphase plate. Indeed, the inter-KT distances in bi-oriented KT
pairs are not static but “breathing”, with a period of 45–60 s45,
meaning that even bi-oriented sister-KT pairs remain close for
extended periods of time. Therefore, relying purely on inter-KT
distances to identify erroneous KT–MT attachments would be
counter-productive, as it would lead to a high rate of false
positives.

Methods
Cell culture and drug treatments. hTert-RPE1 GFP-CENPA45, hTert-RPE1
Centrin1-GFP/GFP-CENPA (kind gift of A. Khodjakov), and hTert-RPE1 H2B-
mCherry/EB3-eGFP (kind gift of W. Krek) cell lines were cultured in Dulbecco's
modified Eagle's medium (DMEM; Thermofisher, Switzerland) supplemented with
10 fetal calf serum (FCS), 100 Uml−1 penicillin, and 100 mgml−1 streptomycin.
hTert-RPE1 eGFP-α-tubulin (kind gift of D. Gerlich) and hTert-RPE1 PA-GFP-α-
tubulin cells66 were cultured in DMEM (Thermofisher, Switzerland) medium
supplemented with 10% FCS, 100 Uml−1 penicillin, and 100 mgml−1 strepto-
mycin and either with 0.5 μg ml−1 puromycin (Life Technologies; hTert-RPE1
GFP-α-tubulin) or 500 μg ml−1 G418 (Life Technologies; hTert-RPE1 PA-GFP-α-
tubulin). hTert-RPE1 Venus-Mad2 cells (kind gift of J. Pines) were cultured in
DMEM/F12 Ham with 3151 mg l−1 dextrose, 2.5 mM L-glutamine, 15 mM HEPES,
55 mg l−1 sodium pyruvate (Sigma Aldrich) containing 10% FCS, 100 Uml−1

penicillin, 100 mgml−1 streptomycin, and 0.25 μg fungizone (Bioconcept, Swit-
zerland). HeLa HaloTag-CENPA cells42 were cultured in DMEM supplemented
with 10% FCS, 100 Uml−1 penicillin, 100 mgml−1 streptomycin, and 300 μg ml−1

G418. All cells were cultured in 37 °C with 5% CO2 in humidified incubator. Live
cell experiments were performed using ibidi 8-well chambers (Vitaris, Switzerland)
or μ-Dish 35 mm (Vitaris) in Leibovitz L-15 (Thermofisher) medium supple-
mented with 10% FCS. Cells were treated with 1 μM reversine (Mps1 inhibitor;
Sigma Aldrich), 100 μM monastrol (Eg5 inhibitor; Sigma Aldrich) for 4 h, 2 μM
ZM1 (Aurora-B inhibitor; Enzo Life Sciences, Switzerland) for 4 h, 10 μM MG132
(proteasome inhibitor; Sigma Aldrich) for 2 h, 1 μg ml−1 nocodazole (Sigma
Aldrich) for 1–4 h, and various concentrations of BAL27862 (kindly provided by
Basilea Pharmaceutica International Ltd, Switzerland) for 4 h. The concentration of
BAL27862 was 12 or 15 nM, depending on the cell line. This variation was due to
the fact that different RPE1 cell lines had slightly different concentrations to obtain
a consistent phenotype: a reduction of at least 50% in inter-KT stretching when
compared to the resting distance, no block in anaphase onset, and robust sister-KT
oscillations as measured in our automated KT-tracking assay45. The used con-
centrations are indicated in the figure legends.

Live cell imaging and KT tracking. Cells were imaged either using a Nikon Eclipse
Ti-E wide-field microscope (Nikon, Switzerland) equipped with a DAPI/eGFP/
TRITC/Cy5 filter set (Chroma, USA) and a 40× NA 1.3 objective (mitotic timing)
and recorded with an Orca Flash 4.0 CMOS camera (Hamamatsu, Japan) and the
NIS software; an Olympus DeltaVision wide-field microscope (GE Healthcare,
Switzerland) equipped with a eGFP/RFP filter set (Chroma) and with 40× NA 1.3
(monastrol release), 60× NA 1.4 (Mad2 clearance), or 100× NA 1.4 objectives (KT
tracking) and recorded with a Coolsnap HQ2 CCD camera (Roper Scientific, USA)
and the Softworx software (GE Healthcare). For measurements of intra-KT dis-
tances, cells were imaged using a confocal spinning-disk microscope (VOX
UltraView; PerkinElmer, UK), with a 100× 1.4 NA oil objective and recorded with
a Hamamatsu ORCA-R2 camera using Volocity 6.0 software (PerkinElmer). The
12 µm z-stacks were imaged with z-slices separated by 200 nm, imaged for each 488
(525) and 561 nm (615 nm) excitation (emission) wavelengths, with 50 ms expo-
sure per z-slice. To measure mitotic timing hTert-RPE1 H2B-mCherry/EB3-eGFP
were imaged every 3 min for 12 h with 2 μm z-stacks. DMSO or BAL27862 were
added at the beginning of the imaging. hTert-RPE1 Venus-Mad2 cells were co-
incubated for 4 h with 25 nM SiR-Hoechst (Spirochrome AG, Switzerland) and
DMSO or BAL27862, and imaged every 30 s for 15 min with 0.5 μm z-stacks.
Venus-Mad2 levels were calculated on unattached KT prometaphase cells after
background subtraction. The decay of Venus-Mad2 levels was analysed on
deconvolved images using ImageJ. For the monastrol release experiment hTert-
RPE1 GFP-CENPA were imaged every 3 min for 2 h after monastrol release using
2 μm z-stacks. Lagging chromosomes in time lapse movies were scored using the
IMARIS (Bitplane, Switzerland) software. All recorded images were transferred to
ImageJ and mounted in Illustrator (Adobe). KT tracking of hTert-RPE1 GFP-
CENPA and hTert-RPE1 Centrin1-GFP/GFP-CENPA cells was adapted based on

our previous work67. Briefly, to generally track KTs 3D stacks of single
cells were recorded in 0.5 μm steps at a sampling rate of 15 s over a period of 15
min. To specifically measure the resting distance between sister-KTs a sampling
rate of of 7.5 s for 5 min was applied. The 3D z-stacks were deconvolved using
SoftWorx software and analysed in MATLAB (The MathWorks, Inc., Natick, MA,
USA) with an automated KT tracking code45,67 (the latest code is available under
https://github.com/cmcb-warwick). Briefly, this gave us the frame-to-frame dis-
placement of sister-KTs, as well as their relative position with regard to the centre
of the metaphase plate. From these data, we extracted the inter-KT stretching of
sister-KT pairs, and we used an autocorrelation function to reveal the oscillatory
sister-KT movements along the spindle axis. KT velocities were calculated by
plotting the distribution of all sister-KT displacements and calculating the
standard deviation of this distribution. Anaphase velocity in single cell was
extracted from the slope of the inter-KT curve between 2 and 7 μm and quantified
with a modified KT-tracking software67. Anaphase spindle elongation velocities
were calculated based on the position of the centrosomes in hTert-RPE1 Centrin1-
GFP/GFP-CENPA cells during the time frame in which sister-KTs moved 7 μm
apart.

Electron microscopy. hTert-RPE1 GFP-CENPA cells were first incubated with
DMSO or BAL27862 alone for 2 h before adding 10 μMMG132 for an additional 2
h to enrich for metaphase cells. The mitotic cells were collected in 10 ml tubes
using a mitotic shake-off, centrifuged at 100 × g for 5 min in a Megafuge 1.0
centrifuge (Heraeus Instrument, Switzerland) and fixed for 30 min at room tem-
perature with culture medium supplemented with 2% of EM-grade glutaraldehyde
(Sigma Aldrich). Cells were centrifuged again (100 × g for 5 min), collected into 1.5
μl Eppendorf tubes, and re-fixed without re-suspending the pellet with a 2% glu-
taraldehyde solution in 0.1 M sodium phosphate buffer (pH= 7.4) for additional
30 min at room temperature. Finally the pellet was centrifuged gently at 100 × g for
5 min in an Eppendorff mini-centrifuge (Eppendorff, Switzerland) and washed
once with phosphate-buffered saline. Fixed cells were further treated with 2%
osmium tetraoxyde in buffer and immersed in a solution of uranyl acetate 0.25%
overnight68. The pellets were dehydrated in increasing concentrations of ethanol
followed by pure propylene oxide, then embedded in Epon resin. Thin sections
were stained with uranyl acetate and lead citrate and observed in a Tecnai 20
electron microscope (FEI Company, USA). MT numbers in KT fibres were cal-
culated as reported:38 bundles of MTs were only counted as k-fibres if they were
within a 1 μm of a chromosome, if the bundle contained at least 7 MTs, and if the
MTs were separated by less than 80 nm. The MT number was assessed in a blind
manner.

Antibody production. PRC1 antibodies were raised in rabbits against the peptide
CSKASKSDATSGILNSTNIQS coupled to KLH injected into rabbits (Pepceuticals).
Polyclonal sera were collected according to a standard protocol.

Immunofluorescence. Cells were fixed with a fixation buffer (20 mM PIPES
(pH= 6.8), 10 mM EGTA, 1 mM MgCl2, 0.2% Triton X-100, 4% formaldehyde;
Sigma Aldrich) for 7 min at room temperature. The following primary antibodies
were used: mouse anti-CENPA (1:1000; Abcam ab13939), rabbit anti-MAD2
(1:1000; Bethyl A300-301A), mouse anti-α-tubulin (1:1000; Sigma Aldrich T9026),
rabbit anti-α-tubulin (1:1000; Abcam ab18251), rabbit anti-PRC1 (1:500, this
study), mouse anti-Ndc80Hec1 (1:1000; Abcam 9G3), mouse anti-Mps1 (1 μg ml−1;
Abcam ab170190) and rabbit anti-pS100-Dsn1 (1:1000; kind gift of I. Cheeseman).
For rabbit anti-pSer44-Ndc80 antibody (kind gift from J. DeLuca) cells were first
pre-treated with the following lysis solution: PMEM buffer (60 mM PIPES; 25 mM
HEPES; 10 mM EGTA; 4 mM MgSO4; pH= 7.0, Sigma Aldrich) with phosphatase
inhibitor Calyculin A 100 nM (Life Technologies) for 1 min in 37 °C and fixed with
4% formaldehyde in PMEM buffer for 20 min in 37 °C. For visualization of astral
MTs, PRC1 measurements and cold stable assay hTert-RPE1 GFP-CENPA cells
were first briefly rinsed with a cytoskeleton buffer (CB buffer; 10 mM MES, 150
mM NaCl2, 5 mM MgCl2, 5 mM glucose; Sigma Aldrich) and fixed with a glu-
taraldehyde solution in CB buffer (0.05% glutaraldehyde, 3% formaldehyde, and
0.1% Triton X; Sigma Aldrich) for 15 min at room temperature. To calculate
chromatic aberration, HeLa HaloTag-CENPA cells were incubated before fixation
for 15 min with growth medium containing 2.5 µM Oregon Green and 1 µM TMR
(both Promega), followed by 30 min of growth medium alone. The cold stable assay
was analysed in a blind manner. Cells treated with cold for 6 min were grouped in 4
distinct classes reflecting the increased loss of KT-MTs. For KT fibre fluorescence
measurements of hTert-RPE1 eGFP-α-tubulin cells and for visualization of mer-
otelic attachments in hTert-RPE1 GFP-CENPA cells, a previously described
methanol fixation was used69. hTert-RPE1 eGFP-α-tubulin cells were pre-sorted by
fluorescence-activated cell sorting to obtain a population of cells expressing similar
levels of eGFP-α-tubulin protein and then treated for 4 h with 12 nM of BAL27862
and for 2 h with 10 µM of MG132 prior fixation. Cross-adsorbed fluorochrome-
conjugated secondary antibodies were used according to the providers’ instructions
(Thermo Fisher Scientific). Three-dimensional image stacks of mitotic cells were
acquired with 0.2 μm steps using a 60× NA 1.4 objective on an Olympus Delta-
Vision microscope (GE Healthcare) equipped with a DAPI/FITC/TRITC/CY5 filter
set (Chroma, Bellow Falls, VT) and a CoolSNAP HQ camera (Roper Scientific,
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Tucson, AZ). Images were 3D-deconvolved using Softworx (GE Healthcare) and
the KT protein intensities were analysed in ImageJ. For k-fibre intensities and
visualization of merotelics, the three-dimensional image stacks of mitotic cells were
acquired with a laser scanning LSM800 confocal microscope (Zeiss) using an
Airyscan function, 63× NA 1.4 Oil DIC f/ELYRA objective with 405/488/561/640
nm lasers and Airyscan-mode optimized settings providing a final pixel size of 35
nm and 190 nm in z resolution. Images of 4 µm thickness were then 3D-
deconvolved using ZEN software (Zeiss) and analysed in MATLAB (The Math-
Works, Inc. Natick, MA, USA).

Poleward MT flux measurements. hTert-RPE1 PA-GFP-α-tubulin cells were
stained with 25 nM SiR-Hoechst (Spirochrome; 4 h), DMSO or 12 nM BAL27862
(4 h) and 10 µM MG132 (2 h). As a negative control, cells were alternatively
incubated with 10 µM taxol in MG132-arrested cells (30 min; Sigma Aldrich).
Single focal planes were acquired using an A1r point scanning confocal microscope
(Nikon), 60× 1.4 NA CFI Plan Apochromat objective. Spindles were photoactivated
in the vicinity of the metaphase plate using 1 pulse of 1.9 s duration with 100% 405
nm laser power and then imaged every 5 s for 1 min. Photoactivated k-fibres were
detected using an in-build “spot” function (500 µm diameter) and the centre of the
mass of the metaphase plate was assigned for each frame using the “surface”
function in Imaris (Bitplane) software. Spots were tracked for 60 s and the distance
between each spot and the centre of the mass of the metaphase plate was computed
for each frame. The flux rate was calculated as the difference between the initial
position of each photoactivated spot and its final position 60 s later.

High-resolution KT tracking. The inner KT (eGFP-CENPA) position was
detected by splitting the histogram of intensities, and localizing the spot centres
using mixture model fitting (MMF) of 3D Gaussians. The outer KT (Ndc80)
position was detected by finding the maximum intensity pixel within a radius of
300 nm of the inner KT position after preliminary correction for chromatic
aberrations, and and spot centring refinement by MMF. Outer kinetochore posi-
tion was finally corrected for chromatic aberrations by enforcing that the cell-
average distance between inner and outer kinetochore markers in each microscope
x-, y-, and z-coordinate was equal to zero, as previously demonstrated to be the
case after accurate correction for chromatic aberrations42. Preliminary chromatic
aberrations were calculated daily as the average distance in x, y, and z between
Oregon Green- and TMR-labelled in HeLa HaloTag-CENPA cells. Kinetochores
were manually paired to generate lists of kinetochore sisters. The intra-kinetochore
distance was defined as the distance between the inner and outer kinetochore
markers, pointing towards the outer kinetochore. The 3D intra-kinetochore dis-
tance was calculated as the 3D Euclidean distance between inner and outer kine-
tochore markers for each kinetochore. The 3D swivel was defined as the angle
tended between the intra-kinetochore axis (vector pointing from the inner to the
outer marker) and the inter-kinetochore axis (vector lying through both inner
markers for a given sister pair, pointing towards the kinetochore in question;
Fig. 2c). The 3D measurements were corrected per experiment for inflationary
effects70 by fitting a maximum likelihood fit to the probability distribution:

p3D ¼
ffiffiffi

2
π

r

� Δ3D

σμ
� exp �Δ2

3D þ μ2

2σ2

� �

� sinhðμΔ3D

σ2
Þ;

where μ and σ are the “true” mean 3D intra-KT distance and measurement
standard deviation, respectively, for a dataset of 3D Euclidean intra-KT measure-
ments, Δ3D. Mean values given in Fig. 2d are the mean inflation-corrected distances
from N= 4 experiments. Y-swivel was defined as the angle tended between the
intra-KT axis (vector pointing from the inner to the outer marker) and the inter-
KT axis (vector lying through both inner markers for a given sister pair, pointing
towards the KT in question; Fig. 2c) in the xy plane.

Image processing and analysis of k-fibre intensities. The 3D confocal images
were analysed with a custom-made framework written in MATLAB (The Math-
Works, Inc., Natick, MA, USA) version 1.2. Briefly, based on the CENPA channel
the user identifies KTs within a focal plane. Based on the brightness of the tubulin
channel the code identifies the MT bundle associated to a given KT within 400 nm.
To quantify k-fibre intensity the code calculates the mean tubulin intensity in a
region of interest of 500 × 420 nm that is centred on the brightest tubulin spot and
that is oriented along the axis of the MT bundle. The local background signal,
whose position is determined by the user, is subtracted from the obtained intensity.

Statistical analysis. All experiments are based on at least three independent
experiments. Numbers of independent experiments (N) and number of analysed
cells/KTs (n) are indicated in the figure legends. All statistical evaluations were run
on PRISM 7.02 (GraphPad, USA); the specific statistical tests and the p values are
indicated in the figure legends. Graphs were plotted in PRISM 7.02 and mounted in
Adobe Illustrator (Adobe).

Code availability. The fully modifiable MATLAB code to quantify the intensity of
the KT-fibres is available under https://github.com/Bioimaging/Kinetochore-
Microtubule-Intensity.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its supplementary information files or
from the corresponding author upon reasonable request. The primary and sec-
ondary data generated in the course of this project are available upon request. Due
to their large size they can only be sent on external hard disks.
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