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Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan

Neuronal migration disorders are human (or animal) diseases that result from a
disruption in the normal movement of neurons from their original birth site to their
final destination during early development. As a consequence, the neurons remain
somewhere along their migratory route, their location depending on the pathological
mechanism and its severity. The neurons form characteristic abnormalities, which
are morphologically classified into several types, such as lissencephaly, heterotopia,
and cobblestone dysplasia. Polymicrogyria is classified as a group of malformations
that appear secondary to post-migration development; however, recent findings of
the underlying molecular mechanisms reveal overlapping processes in the neuronal
migration and post-migration development stages. Mutations of many genes are involved
in neuronal migration disorders, such as LIS1 and DCX in classical lissencephaly
spectrum, TUBA1A in microlissencephaly with agenesis of the corpus callosum, and
RELN and VLDLR in lissencephaly with cerebellar hypoplasia. ARX is of particular
interest from basic and clinical perspectives because it is critically involved in tangential
migration of GABAergic interneurons in the forebrain and its mutations cause a variety
of phenotypes ranging from hydranencephaly or lissencephaly to early-onset epileptic
encephalopathies, including Ohtahara syndrome and infantile spasms or intellectual
disability with no brain malformations. The recent advances in gene and genome analysis
technologies will enable the genetic basis of neuronal migration disorders to be unraveled,
which, in turn, will facilitate genotype-phenotype correlations to be determined.

Keywords: lissencephaly, heterotopia, polymicrogyria, tubulinopathy, interneuronopathy, LIS1, DCX, ARX

Introduction

The characteristic six-layered neocortex in the human brain is formed by two types of neuron,
projection neurons and interneurons, which migrate from their birth places, such as the ventricular
zone and ganglionic eminence, respectively. Neuronal migration disorders are human (or animal)
diseases that result from the disruption of normal movement of neurons from their original
birth site to their final destination during early development. As a consequence, the neurons
remain somewhere along their migratory route, their location depending on the pathological
mechanism and its severity. Many genes have been found to be responsible for neuronal
migration disorders, such as LIS1 and DCX in classical lissencephaly spectrum, TUBA1A in
lissencephaly with cerebellar hypoplasia, ARX in X-linked lissencephaly with abnormal genitalia
(XLAG), FLNA and ARGEF2 in periventricular heterotopia, FCMD and glycosylation-related
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genes, such as POMT1, POMT2, POMGNT1, POMGNT2,
FKRP, LARGE, TMEM5, POMK, ISPD, GMPPB, B3GNT1,
and B3GALNT2 in cobblestone dysplasias, GPR56, SRPX2,
and some tubulin-related genes, e.g., TUBA8, TUBB2B,
and TUBB3, in polymicrogyria (Kato and Dobyns, 2003;
Vuillaumier-Barrot et al., 2012; Buysse et al., 2013; Stevens
et al., 2013; Fry et al., 2014). Recently, we found that mutations
in COL4A1, which encodes type IV collagen alpha 1 subunit,
cause schizencephaly accompanied by polymicrogyria in
the adjacent cortex of the transmantle cleft as well as focal
cortical dysplasia (Yoneda et al., 2013). Historically, brain
malformations including neuronal migration disorders
have been classified based on a postmortem examination.
The advancement and spread of neuroimaging techniques,
particularly magnetic resonance imaging (MRI), make it easier
to find out many types of brain malformations, but make it
more complicated to classify them. Moreover, the unveiling
of responsible genes for brain malformations has changed
the classification scheme and causes most neuroscientists
and even physicians trouble to follow it. Here, I review the
clinical manifestation of neuronal migration disorders, focusing
mainly on lissencephaly, in terms of genotype-phenotype
correlations.

Lissencephaly Spectrum: Classical
Lissencephaly to Subcortical Band
Heterotopia

Lissencephaly is classified as a spectrum of disorders caused
by widespread abnormal transmantle migration, ranging from
classical lissencephaly (agyria or pachygyria) to subcortical band
heterotopia or double-cortex syndrome (Barkovich et al., 2012).
Classical lissencephaly is characterized by a smooth (lissos in
Greek) brain surface with a decreased number of sulci and wide
gyri. Mutations in LIS1, located on chromosome 17p13.3, orDCX
on Xq23 are the main cause for classical lissencephaly (Table 1)
(Kato and Dobyns, 2003). Mutations in DCX are causative for
classical lissencephaly in male individuals and subcortical band
heterotopia in female individuals. A combination of a severity
grading scale [the most severe form, Grade 1 (total agyria) to
the mildest form, Grade 6 (subcortical band heterotopia) via
the intermediate forms comprised of a combination of agyria,
pachygyria, and subcortical band heterotopia] and an anterior or
posterior gradient scale is useful to predict the causative gene for
lissencephaly spectrum (Kato and Dobyns, 2003). For instance,
mutations of LIS1, ARX, or TUBA1A result in a posterior
more severe than anterior gradient, while mutations of DCX or
RELN lead to an anterior more severe than posterior gradient.
LIS1 participates in cytoplasmic dynein-mediated nucleokinesis,
somal translocation, and cell motility (Smith et al., 2000) as
well as mitosis or neurogenesis and chromosomal segregation
(Faulkner et al., 2000). DCX is a microtubule-associated protein
and is involved in microtubule polymerization and stabilization
(Gleeson et al., 1999).Missensemutations inDCX responsible for
lissencephaly spectrum are mainly located in two tandem repeats
(N-terminal or C-terminal doublecortin domains), which bind to

microtubules or free tubulin and other components (Friocourt
et al., 2005), respectively.

MRI of the brain is useful to discriminate agyria, pachygyria,
and subcortical band heterotopia. Agyria is generally
characterized by the disappearance of deep sulci in more
than one lobe and the thickness of the cortex is 10–20mm
(Figure 1). The gyri in pachygyria are wider than in the normal
cortex and the thickness of the cortex is 4–9mm (Figure 2).
Brain MRI of subcortical band heterotopia shows bilateral
continuous symmetric bands of gray matter underlying an
almost normal cortical mantle with relatively shallow sulci
(Figure 3). More than 90% of patients with subcortical band
heterotopia are female and the cause is usually heterozygous
DCX mutation. Subcortical band heterotopia in male patients
is caused by somatic mosaic DCX mutations or LIS1 mutations
(Gleeson et al., 2000; Kato et al., 2001; D’agostino et al., 2002;
Poolos et al., 2002). Coexistence of agyria and pachygyria or
pachygyria and subcortical band heterotopia can be seen in
the same patient, suggesting common mechanisms for these
phenotypes. Microscopically, agyria and pachygyria present a
four-layered cortex with an outer molecular layer, superficial
layer, cell sparse layer, and deep cellular layer. In the marginal
zone between pachygyria and subcortical band heterotopia, the
outer molecular layer corresponds to layer I of the normal six-
layered cortex, the superficial layer corresponds to layers II–VI,
the cell sparse layer corresponds to subcortical white matter, and
the deep cellular layer corresponds to band heterotopia with
a mass of unlayered ectopic neurons (Figure 4). The primary
pathology of lissencephaly due to theDCX mutations shows only
minor differences compared with that caused by LIS1mutations,
for example, inferior olivary ectopia is present in LIS1 mutation
brains but is absent in DCX mutation brain (Berg et al., 1998);
however, Viot et al. report a different cortical architecture for
DCX lissencephaly (Viot et al., 2004).

The severity of the clinical manifestations of lissencephaly
spectrum is correlated with the degree of brain malformation.
Patients with agyria show severe muscle hypotonia from infancy
(known as floppy infant) and achieve neither head control nor are
they able to say meaningful words. A specific form of epileptic
seizure, epileptic spasms, occurs in 80% of patients with agyria
or pachygyria, although electroencephalography (EEG) may not
present with typical hypsarrhythmia, which is characteristically
seen in infantile spasms or West syndrome (Guerrini, 2005).
However, the main clinical features of subcortical band
heterotopia are intellectual disability and epileptic seizures,
both of which are milder than those of agyria or pachygyria.
Intellectual disability ranges from normal to severe retardation
and correlates with the thickness of the band and the degree of
pachygyria (Barkovich et al., 1994; Bahi-Buisson et al., 2013).
Genetic counseling is particularly important for parents that have
a boy with classical lissencephaly or a girl with subcortical band
heterotopia because the mother may be a heterozygous carrier of
the DCX mutation.

Miller-Dieker syndrome is a contiguous gene syndrome
caused by a microdeletion in 17p13.3, a region that contains
LIS1 and YWHAE (which encodes 14-3-3 protein epsilon).
Phenotypes of Miller-Dieker syndrome are more severe than
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FIGURE 1 | Complete agyria in a DCX mutation patient (Grade 1 on the
severity scale). T2-weighted axial MRI image. Wide shallow sylvian fissures
create a figure-of-eight appearance. The thickness of the cortex is over
10mm. A high-intensity (white) line (arrow heads) beneath the cerebral surface
is consistent with a cell sparse layer of the four-layered cortex.

FIGURE 2 | Anterior pachygyria and posterior agyria in a LIS1 mutation
patient (Grade 3 on the severity scale). T2-weighted axial MRI image. Note
the difference in the width of gyri, the depth of sulci and the thickness of the
cortex (bars) between anterior and posterior regions.

that of classical lissencephaly because of an isolated LIS1
mutation. They are characterized by complete agyria and
facial abnormalities including prominent forehead, bitemporal
hollowing, short nose with upturned nares, prominent upper lip
with downturned vermilion border and small jaw, and sometimes
other congenital defects involving the heart, kidneys, intestine,
or fingers (Kato and Dobyns, 2003). Neurological findings of
Miller–Dieker syndrome are similar to those of patients with
agyria, such as severe developmental delay with weak muscle
tone and profound intellectual disability, intractable seizures,

FIGURE 3 | Subcortical band heterotopia or double cortex syndrome in
a DCX mutation patient (Grade 5 on the severity scale). T2-weighted
axial MRI image. Subcortical heterotopic gray matter in the posterior region
fuses into the pachygyric cortex in the anterior region (arrowheads).

FIGURE 4 | Schematic diagram of cortical layers in the lissencephaly
spectrum compared to the normal brain. Deep cellular layer of the
pachygyric or agyric cortex fuses with laminar or band heterotopia in the
subcortical white matter, but not with normal six-layered cortex.

dysphagia, and poor prognosis with recurrent infection of the
respiratory system.

Tubulin-Related Disorders, Tubulinopathies

Microtubules provide the main structural framework for the
shafts of axons and dendrites, and with actin serve as tracks
for intracellular trafficking and to provide the driving force
underlying neurite extension and intracellular movement of
organelles during mitosis (Flynn et al., 2013). Recently, genes
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involved in microtubule function have been identified to be
causative for various human diseases, such as lissencephaly
(Keays et al., 2007; Poirier et al., 2007), polymicrogyria (Abdollahi
et al., 2009; Jaglin et al., 2009; Jansen et al., 2011), simplified
gyral patter in which the cortical thickness is normal (Cushion
et al., 2014), complex brain malformations (Poirier et al., 2010,
2013; Breuss et al., 2012), abnormal eye movement (Tischfield
et al., 2010), torsion dystonia (Hersheson et al., 2013), and
hypomyelinating leukodystrophy (Simons et al., 2013). All the
above are classified as tubulinopathies (Cushion et al., 2013;
Bahi-Buisson et al., 2014). Microtubules are assembled from
soluble tubulin heterodimers consisting of alpha- and beta-
tubulin. Multiple isoforms of both tubulins are encoded by
different genes. Mutations of TUBA1A, which encodes alpha
tubulin, cause lissencephaly spectrum, particularly diffuse agyria
or perisylvian pachygyria, with microcephaly, agenesis of the
corpus callosum, and cerebellar hypoplasia (Figure 5) (Bahi-
Buisson et al., 2008). TUBA1A mutations account for only 1%
of isolated classical lissencephaly; however, they account for
approximately 30% of patients with lissencephaly associated with
cerebellar hypoplasia (Kumar et al., 2010). Dysgenesis of the
anterior limb of the internal capsule and disorganization of
the hippocampus are other neuroimaging features for TUBA1A
mutation (Poirier et al., 2007). Mutations of TUBA1A cause
polymicrogyria as well. Interestingly, mutations of TUBB2B
cause polymicrogyria with or without congenital fibrosis of
the external ocular muscles as well as bilateral perisylvian
pachygyria(Cederquist et al., 2012; Romaniello et al., 2014).
Polymicrogyria is classified as a group of malformations that
appear secondary to post-migration development; however,
recent findings of the underlying molecular mechanisms reveal
overlapping process in neuronal migration and post-migration
development stages.

Mutations of TUBA8 cause polymicrogyria with optic
nerve hypoplasia and display autosomal recessive inheritance

(Abdollahi et al., 2009). Mutations of TUBB2A, which encodes
beta-tubulin, cause infantile-onset epilepsy with simplified gyral
patterning (Cederquist et al., 2012; Cushion et al., 2014;
Romaniello et al., 2014). Mutations of TUBB3 cause two
distinct forms. One is congenital fibrosis of the external
ocular muscles or oculomotor nerve hypoplasia and later-onset
peripheral axon degeneration with dysgenesis of the corpus
callosum, anterior commissure, and internal capsule, but with no
cortical dysplasia suggesting migrational defects (Tischfield et al.,
2010). Another is cortical dysgenesis including polymicrogyria,
pontocerebellar hypoplasia, and abnormal basal ganglia, but
with no ocular motility defects (Poirier et al., 2010). The
main mechanisms underlying the phenotypes caused byTUBB3
mutations are impaired axon guidance owing to disrupted
microtubule dynamics and kinesin interaction (Tischfield et al.,
2010). Tubulinopathies caused by the mutations of the genes
encoding alpha- or beta-tubulin demonstrate more extensive
phenotypes compared to other gene mutations, such as LIS1,
DCX, or RELN. Mutations of TUBA1A, which encodes alpha-
tubulin 1A, is the most frequently found in patients with brain
malformations, while more genes encoding beta-tubulin, such as
TUBB2A, TUBB2B, TUBB3, TUBB4A, and TUBB, are identified
in a wide spectrum of disorders besides brain malformations.
Pathological mechanisms and discrepancy between alpha- and
beta-tubulinopathies should be elucidated.

ARX-Related Disorders,
Interneuronopathies

The embryonic cerebral cortex at the stage of neuronal
migration contains neuronal cells with two modes of migration;
radial migration from the ventricular zone toward the pia
and tangential migration from ganglionic eminence along
a tangential trajectory into the developing cortex. Radially

FIGURE 5 | Complete agyria in a TUBA1A mutation patient (Grade 1 on the severity scale). T2-weighted axial MRI image (left) and midsagittal image (right).
The boundary of the caudate nucleus and lentiform nucleus is obscure. Complete agenesis of the corpus callosum and pontocerebellar hypoplasia are also seen.
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migrating neurons in the cortex are mainly excitatory projection
neurons expressing glutamate as a neurotransmitter. Tangentially
migrating neurons are inhibitory interneurons expressing
the neurotransmitter GABA. XLAG is caused by mutation
of ARX, which is expressed in the embryonic ganglionic
eminence, neocortex, and hippocampus and plays important
roles in neuronal proliferation, interneuronal migration, and
differentiation in the embryonic forebrain, as well as a secondary
role in differentiation of the testes (Kitamura et al., 2002).
Patients with XLAG present occipital-predominant classical
lissencephaly, particularly anterior pachygyria and posterior
agyria, or a simplified gyral pattern, agenesis of the corpus
callosum, and abnormal basal ganglia (Kato et al., 2004). In
the most severe form of XLAG, patients show hydranencephaly
with a large occipital cavity. Female carriers of ARX mutations
causing XLAG have a risk of agenesis of the corpus callosum
with no cortical defects. Abnormalities of external genitalia range
from hypoplastic penis or undescended testes to complete female
appearance, while the karyotype is 46,XY. Neuropathological
studies show a complete loss or a decreased number of
cortical interneurons in human XLAG and in Arx-null mice
(Bonneau et al., 2002; Kitamura et al., 2002) and a three-layered
cortex in human XLAG (Forman et al., 2005). Patients with
XLAG show intractable seizures soon after birth, suggesting
a great disparity between excitatory projection neurons and
inhibitory interneurons. ARX mutations in patients with XLAG
are null mutations or non-conservative missense mutations at
critical amino acids in the homeodomain, while other missense
mutations or expansion mutations in the polyalanine tract result
in X-linked intellectual disability with or without dystonia,
West syndrome, Ohtahara syndrome, or early infantile epileptic
encephalopathy with suppression burst on EEG but with no
brain malformation (Bienvenu et al., 2002; Stromme et al., 2002;
Guerrini et al., 2007; Kato et al., 2007, 2010). Interestingly, longer
polyalanine expansion is correlated with more severe and earlier
onset phenotypes. A wide spectrum of ARX-related disorders
forms a group of interneuronopathies based on the role of ARX
during neurogenesis, as seen in patients and in the Arx-null
mouse model (Kato and Dobyns, 2005; Marsh et al., 2009).

Classical Lissencephalies Associated with
Other Forms of Brain Malformation

Classical lissencephaly caused by LIS1 or DCX mutations usually
exist in isolated forms and only show cortical dysplasia on
brain MRI. Rare variant forms of lissencephaly are associated
with congenital microcephaly, cerebellar hypoplasia, or agenesis
of the corpus callosum. Each form demonstrates characteristic
radiological findings and some of the causative genes have been
identified.

A lissencephaly group with cerebellar hypoplasia can be
classified into several types according to brain imaging,

additional clinical features, and causative genes (Ross et al., 2001).
Among them, frontal predominant mild lissencephaly (diffuse
pachygyria) with severe hippocampal and cerebellar hypoplasia
or Reelin-type lissencephaly is caused bymutation of eitherRELN
or VLDLR and shows autosomal recessive inheritance (Hong
et al., 2000; Boycott et al., 2005). Dysequilibrium syndrome is an
allelic disorder of the VLDLR locus (Moheb et al., 2008). Reelin-
type lissencephaly has an inverted or no clear pattern of cortical
lamination attributable to abnormal migration of the neurons in
an outside-in birth order (Cooper, 2008; Dekimoto et al., 2010).

Lissencephaly can be associated with congenital microcephaly,
though the head circumference of lissencephaly caused by the
LIS1 or DCX mutations is usually within the normal range.
Lissencephaly with a head circumference of less than −3 SD
at birth is classified as microlissencephaly (Barkovich et al.,
2005) ormicrocephaly with lissencephaly (Barkovich et al., 2012).
Although many genes identified to be responsible for primary
microcephaly, such as MCPH1, ASPM, CENPJ, CDK5RAP2, and
PNKP, are involved with the cell-cycle phase of mitosis affecting
neurogenesis (Barbelanne and Tsang, 2014), the causative
genes for microlissencephaly remain unknown in many cases.
Mutations of WDR62, which encodes a protein localized to
centrosomes throughout mitosis and nucleoli during interphase,
cause microcephaly with pachygyria or polymicrogyria (Bilguvar
et al., 2010). Mutations of NDE1, which encodes a protein that
binds dynein and functions in centrosome duplication, as well
as the TUBA1Amutations mentioned above, cause microcephaly
with a simplified gyral pattern, agenesis of the corpus callosum,
and cerebellar hypoplasia (Alkuraya et al., 2011; Bakircioglu et al.,
2011).

Conclusion

Neuronal migration disorders are classified based on causative
genes as well as on brain MRI and neuropathological findings.
There are strong relationships between clinical manifestations
and mutation of a particular gene, in accordance with the
expression and functions of that gene. Recent advances in
gene and genome analysis technology will enable the genetic
basis of neuronal migration disorders to be readily determined,
facilitating the elucidation of genotype-phenotype correlations.
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