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b3-adrenergic receptor (b3-AR) is the last b-adrenoceptor subtype identified. b3-AR is
widely expressed and regulates numerous physiological processes, and it is also a
potential target for the treatment of many diseases, including cancers. For some types
of cancers, bone marrow transplant (BMT) represents a valid therapeutic support,
especially in the case of the necessity of high-dose chemotherapy and radiotherapy.
For a successful BMT, it is necessary that a donor’s hematopoietic stem cells (HSCs)
correctly reach the staminal niche in the recipient’s bone marrow (BM) and contribute to
restore normal hematopoiesis in order to rapidly repopulate BM and provide all the healthy
blood cells of which the patient needs. Generally, it takes a long time. Control and
accelerate homing and engraftment of HSCs could represent a helpful approach to avoid
the complications and undesirable effects of BMT. The evidence that the b-adrenergic
system has a role in the BM can be found in different studies, and this leads us to
hypothesize that studying this field could be interesting to meliorate the most critical
aspects of a BMT. Here, we collected the data present in literature about the role of b3-AR
in the BM with the purpose of discovering a possible utility of b3-AR modulation in
regulating HSC trafficking and hematopoiesis.

Keywords: b3-adrenoreceptor, cancer, hematopoietic stem cell (HSC), bone marrow, bone marrow
transplant (BMT)
b3-ADRENERGIC RECEPTOR

Adrenergic receptors (ARs) are a class of membrane proteins that mediates the multiple metabolic
and neuroendocrine effects of epinephrine and norepinephrine, the two neurotransmitters
responsible for sympathetic nervous system (SNS)–induced “fight-or-flight” stress responses.
Through the application of different functional and molecular techniques for studying ARs, it
was possible to identify three major categories that differ for function and localization: a1-
adrenoceptors, a2-adrenoceptors, and b-adrenoceptors (1). b-ARs (three subtypes identified, b1-,
b2-, and b3-AR, with a fourth b4-AR remaining controversial) belong to the G-protein-coupled
receptor (GPCR) family whose primary function is the transmission of information from the
extracellular environment to the interior of the cell. The classical signal transduction via GPCRs
depends on the receptor-mediated activation of heterodimeric G proteins. G proteins are classified
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into four families according to the a subunit, inhibitory G-
protein (Gi), stimulatory G protein (Gs), G12/13, and Gq with
different activities (2, 3). While b1-ARs are coupled to Gs, b2-
ARs are coupled to both Gs and Gi, with predominant activation
of the stimulatory one. b3-ARs are Gi protein coupled and
additional intracellular signaling includes the activation of
nitric oxide synthases (NOSs), activation of guanylate cyclase
(GC), and formation of cGMP. Therefore, the type of the
downstream effectors is determined by the subtype of b-AR
that is activated (4, 5). In response to a continuous exposure to
agonists, many GPCRs display desensitization, the fast loss of the
ability to respond. Desensitization involves three distinct stages:
receptor phosphorylation; interaction with scaffolding proteins;
and internalization. Two protein families, the G protein-coupled
receptor kinases (GRKs) and arrestins, were mainly found to
mediate desensitization. The internalized receptors do not
activate G proteins and may be recycled to the cell membrane
or undergo degradation. Indeed, despite their high degree of
sequence homology, each receptor displays characteristic
properties: b2-ARs are the most susceptible to this process; b1-
ARs undergo less rapid and efficient agonist-promoted
internalization, whereas numerous studies suggest that b3-AR
is resistant to these regulatory processes since b3-AR has no
phosphorylation sites necessary for internalization (6–8).
However, it has been recently reported in literature that b3-AR
is susceptible to desensitization at multiple levels, including the
downregulation of its mRNA, but this process occurs only in
specific models and treatments conditions and, in any case,
always in a less pronounced way compared to the other
receptors (9). b3-AR is the last b-AR recognized. Initially, the
b1- and b2-AR subtypes were identified, and only in the 1980s, a
third b-AR was discovered primarily in rat adipose tissue (10,
11), and later, in 1989, Emorine et al. isolated the human gene
encoding b3-AR (12). Ever since then, b3-AR expression has
been reported in several human tissues, mainly in white and
brown adipose tissue but also in the human gall bladder, colon,
prostate, human heart, brain, and skeletal muscle (13, 14). It is
now evident that b3-ARs are involved in the modulation of
different physiological processes, such as lipolysis and
thermogenesis, the regulation of bladder function, regulation of
gastrointestinal motility, cardiac functions, and other numerous
responses in health tissues. However, an aberrant expression of
the b3-AR subtype has been recently shown in several cancers
(15). These findings have led to the development of a large
number of compounds modulating the activity of b-ARs for the
clinical treatment of these numerous diseases. While the
pharmacological characteristics of b1- and b2-ARs have been
studied exhaustively, and a large number of clinically relevant
agonists and antagonists have been characterized in competition
binding and functional studies, less information is available
about the pharmacological profile of the b3-AR. Regarding the
endogenous agonists norepinephrine and epinephrine, according
to the binding data, the b3-AR would be a noradrenergic
receptor since it was observed to have a 30-fold higher affinity
for norepinephrine over epinephrine (16). Instead, synthetic
agonists can be distinguished in first-generation and second-
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generation compounds depending on the time of their discovery.
BRL37344 is the first b3‐AR agonist developed and shows a very
high potency in rodent b3‐AR relative to human b3‐AR, despite
their shared structural homology of 80%–90%. CL316243 is a
first-generation potent and highly selective b3-AR agonist. The
second generation includes the aryloxypropanolamine
CGP12177A, a 4-acylaminobenzene-sulfonamide derivative,
the L-755507, Mirabegron (YM178), Amibegron (SR58611A),
and other molecules that are currently being validated in phase II
and III clinical trials, such as Solabegron (GW427353).
Regarding antagonists, the drugs used most frequently are
sotalol, alprenolol, carvedilol, metoprolol, atenolol, bisoprolol,
SR59230A, and L-748,337, but their usefulness as selective
antagonists of the b3-AR has not been fully clarified (17).
b3-AR AND CANCER

It was demonstrated that the SNS, through b-AR signaling, can
influence the tumor biology, contributing to the regulation of
several cellular processes that occur typically during the
initiation and progression of cancer, for example, angiogenesis,
cell trafficking, and inflammation (18–20). Among the b-AR
subtypes, the specific role played by b3-AR in the oncological
context has been analyzed in various laboratories through the
evaluation of the b3-AR gene, mRNA, and protein expression
and its blockade using selective b3-AR antagonists and through
the siRNA silencing approach. Overall, accumulating lines of
evidence point to a relevant function of b3-AR in the onset and
progression of several types of cancer, such as vascular tumors
(21), colon and breast cancers (22, 23), and especially melanoma
(24). Recent studies have shown that b3-AR has a clear
implication in the melanoma microenvironment because its
expression was found upregulated not only in cancer cells but
also in various accessory cells such as stromal, inflammatory, and
vascular cells that sustain the tumorigenesis, and through them,
the b3-AR causes pro-invasive, pro-angiogenic, and
inflammatory effects. Moreover, b3-AR is able to increase the
stemness potential and aggressiveness of melanoma cells
favoring the malignancy progression, the effects reverted by the
pharmacological use of selective b3-AR antagonists (25, 26). In a
recent paper, the specific b3-AR antagonism has been useful in
demonstrating the crucial role of b3-AR also in neuroblastoma:
the treatment manages to decrease the proliferation rate of
neuroblastoma cells and simultaneously increases neuronal
differentiation. Moreover, it was seen that this switch from
stemness to cell differentiation is regulated by b3-AR through a
molecular interplay with sphingosine kinase 2 (SK2)/S1P
receptor 2 (S1P2) axis, typically implicated in neuroblastoma
biology (27). Interestingly, b3-AR expression has been reported
also in human leukemia (28) where it appears to be involved in
the survival of myeloid leukemia cells, especially under hypoxic
conditions, to such an extent that b3-AR could be considered as a
potential target also in this type of cancer, mostly to reduce
chemoresistance, a phenomenon that occurs frequently in
leukemic patients (29).
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BONE MARROW TRANSPLANT

The first human bone marrow transplant (BMT) was successfully
experimented from 1950 to 1970 by a team under the leadership
of Edward Donnall Thomas, whose work was later recognized
with the Nobel Prize in Physiology and Medicine (30).

Starting from Thomas’s studies up to the present day, BMT
has become the optimal therapy for a wide variety of
hematological and nonhematological diseases, including
leukemias (31), lymphomas, anemias, and immunological and
genetic disorders (32).

Today, BMT is often helpful in oncological patients who need
high-dose chemotherapy and/or radiat ion therapy.
Chemotherapy and radiotherapy can target the tumors because
cancer cells divide rapidly, more often than healthy cells.
However, BM cells also divide frequently, so high-dose
treatments can severely damage or destroy the patient’s BM.
BMT represents a valid support to restore BM function that
would otherwise be irreversibly altered; in this way, the patient
can retrieve the blood cells they need to carry oxygen, fight
infections, and prevent bleeding. The main objective of BMT is to
substitute a defective system for a healthy one. Particularly, for
the treatment of malignancies, it is important to eliminate
malignant cells through the administration of cytotoxic drugs
and/or radiation and the ability of donor cells to mediate the
immunologic effect termed “graft-versus-tumor” against the
malignant host cells; instead, for the treatment of immune
deficiency or genetic diseases, it is necessary to replace
defective host hematopoietic cells with normal hematopoietic
stem cells (HSCs) capable of re-establishing hematopoiesis.

The main stages of a BMT are essentially two: the first is a
recipient preparative treatment called “conditioning” regimens
that usually lasts 1 week; the second consists of the transfusion of
healthy BM.

The conditioning regimens are usually based on the
administration of supralethal doses of total body irradiation
and chemotherapeutic agents to the recipient with the goal of
providing sufficient immunoablation to prevent graft rejection
and reduce the tumor burden, increasing the chance of
engraftment and decreasing the chance of relapse. However, as
it was recognized that the graft-versus-tumor effects substantially
contributed to the effectiveness of the transplant, reduced-
intensity and nonmyeloablative conditioning regimens have
been developed, making the transplant applicable to older and
medically infirm patients (33).

In the second phase, the BM for transplantation is harvested
by multiple aspirations from the donor’s iliac crests, processed
and given to the recipient via intravenous infusion (34).

The period after a transplant is very crucial because it is
characterized by 1 or 2 weeks of marked marrow aplasia in which
the patient is at high risk of transmission of various pathogens or
of the reactivation of latent infections (35); therefore, it is very
important that a rapid BM repopulation occurs. BM
repopulation is an active process that involves a complex
interaction between many factors, molecules, and receptors in
order to allow the so-called “homing” or rather the migration of
the HSCs from the peripheral blood (PB) to the BM and their
Frontiers in Oncology | www.frontiersin.org 3
successful anchoring before proliferation (36). The HSCs are a
rare population of multipotent stem cells with the dual capacity
of self-renewal and differentiation to all hematopoietic lineages.
The HSCs typically lodge in a specific compartment of the BM
called a “staminal niche,” first mentioned by Schofield in 1978 to
describe an inductive microenvironment that sustains and
preserves the properties of HSCs (37). The niche provides all
those factors that attract the HSCs within the BM, and it is
unquestionable that the chemokine stromal-derived factor-1
(SDF-1) or Cxcl12 and its receptor CXCR4 axis plays a crucial
role in the regulation of this mechanism. The administration of
the granulocyte–colony stimulation factor (G-CSF) confirms the
Cxcl12 role in HSCs maintaining within the BM because G-CSF
is a glycoprotein able to stimulate the release of HSCs in the
bloodstream through a complex mechanism that involves the
induction of the proteolytic activity that cleaves Cxcl12 (38, 39).

It has been seen that the first population that regenerates the
BM after a transplant is represented by fat cells, followed by
immature, monotypic hematopoietic cells presumably originated
from committed stem cells that gradually mature and enlarge.
The normal marrow cellularity recovers gradually and, usually at
least 3 weeks post-transplantation, must pass for the marrow to be
approximately 50% normocellular and 8–12 weeks for a complete
repopulation (40). In some people, it may take longer. It is now
widely known that this trafficking of HSCs and other cells in and
out of the BM occurs under the control of the SNS.
b3-AR IN BONE MARROW

The notion that BM is innervated by sympathetic fibers dates
back many decades. Sympathetic nerve fibers enter in the BM
with blood vessels that provide nutrient and oxygen,
accompany the major arteries, and are distributed deeply into
the substance of the marrow (41). It was hypothesized that
these innervations provide a morphological basis for the neural
modulation of the proliferation, differentiation, and migration
of hematopoietic cells between the BM and the extramedullary
sites. The confirmation of this hypothesis has come from the
observation that any alteration of the SNS, for example, any
stressful event that causes a progressive denervation or a
premature aging of the innervations, simultaneously alters
hematopoiesis and induces a dramatic remodeling of the
hematopoietic niche (42). Some of the first evidence of
sympathetic regulation of hematopoiesis came from studies
on circadian rhythms, the daily oscillations that govern most
biological processes synchronizing them with the natural light–
darkness shift of day and night. Circadian activities are
orchestrated by the suprachiasmatic nucleus, a tiny region of
the brain in the hypothalamus that receives input signals from
the retina through the retino-hypothalamic tract, processes the
information, and generates adequate responses in different
tissues, including BM, through the SNS innervations (43).
The observation that continuous exposure to light or a “jet
lag” (defined as a shift of 12 h) altered the number of HSCs in
mouse BM, which indicates that photic cues could influence the
June 2022 | Volume 12 | Article 889634
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trafficking of HSCs (44). In vivo experiments indicate that, in
mice, a peak of HSCs has been detected in circulation during
the daytime, whereas their BM homing occurs during the night,
and the same trend has been also observed for ARs and their
ligands (45). By examining the kinetics of daily light and dark
cues at different zeitgeber time points of the day, Golan et al.
identified two major functionally distinct peaks of HSC activity
in the BM at 11:00 a.m. and 11:00 p.m., corresponding to
norepinephrine and the tumor necrosis factor bursts that
induce a metabolical reprogramming of HSCs. During the
11:00 a.m. peak, light induces an increase of the vascular
permeability and resulting to accentuated HSC egress from
the BM; in contrast, during the 11:00 p.m. peak, HSCs are
primed to a state of retention in the BM. Consequently, the
authors deduced that BM requires daily replenishment to
ensure a homeostatic balance between mature blood cell
production and stem cell maintenance (46). These HSC
oscillations occur also in humans but in an antiphase with
mice, being respectively diurnal and nocturnal species (47).
Frontiers in Oncology | www.frontiersin.org 4
On our side, we experimentally tested the b3-AR inhibition
effect on HSC homing/egress by using the selective antagonist
SR59230A in an in vivo model (Figure 1A). Considering the
daily oscillation of HSCs depending on light/darkness exposure,
we administered the treatment and collected the samples always
during the morning (Zeitgeber time 1–9). Through a
cytofluorimetric analysis of HSCs in the BM and PB of the
mice, we found that SR59230A administration increased the
number of HSCs in the BM, instead of decreasing their number
in the PB, confirming the aforementioned role of b3-AR in the
HSCs trafficking in and out of the BM (Figure 1B).

Furthermore, in several studies, it was noted that the number
of HSCs detectable in the bloodstream fluctuates in an antiphase
with the expression of Cxcl12, the principal chemokine that, after
the interaction with its receptor CXCR4 expressed by
hematopoietic progenitor cells, dynamically regulates HSC
attraction in the BM, and these rhythmic fluctuations are
under the control of adrenergic signals delivered locally in the
BM by nerves from the SNS.
A

B

FIGURE 1 | Study of b3-AR antagonism effect on HSC homing/egress. (A) In vivo model: C57BL/6 mice were treated with SR59230A 5 mg/kg twice a day for 4
days always during light hours (Zeitgeber time 1–9). Untreated mice were used as control. BM cells were obtained by flushing femur and tibia; PB cells were
obtained by a retro-orbital sinus blood collection and the lysis of red blood cells. Samples were always collected during light hours (Zeitgeber time 1–9). (B) Flow
cytometry analysis was performed by using a MACSQuant Analyzer 10 (Miltenyi Bio-tec). HSCs were identified as Lin-c-kit+Sca1+ cells. Results were reported as
the mean ± SD of four replicates. *p <0,05 SR59230A vs. CTRL.
June 2022 | Volume 12 | Article 889634
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To evaluate the exact contribution of ARs, it has been useful
to use selective and non-selective adrenergic agonists and
antagonists. Thanks to this strategy, it has been possible to
ascertain that adrenergic signaling in the BM is mainly
conveyed by b-ARs localized in many cellular components of
the hematopoietic niche: b3-AR is restricted to marrow-
adherent stromal cells producing Cxcl12, and b2-AR has
been identified on osteoblast and hematopoietic progenitor
cells. While the latter is involved in cell proliferation and bone
remodeling, b3-AR is probably the principal contributor to the
regulation of the SDF-1 expression level (48, 49). To gain more
insight into the mechanisms that regulate the circadian
fluctuations of Cxcl12, selective b3-AR agonists and
antagonists were used and a decrease and increase in the
Cxcl12 level was respectively found in a dose-dependent
manner. It has been finally noticed that b3-AR acts also
indirectly on the Cxcl12 through the regulation of the
transcriptional factor Sp1. Sp1 typically binds to the Cxcl12
promoter at specific sites to induce its expression; indeed, the
alterations of the Cxcl12 expression mirror the nuclear content
of the transcription factor Sp1.

Since the Sp1 DNA-binding activity is enhanced by
phosphorylation by the cAMP-dependent protein kinase
(PKA), b3-AR can contribute to the degradation of Sp1-
decreasing cAMP levels in the pathway that triggers after
coupling to Gi proteins. All these data demonstrate how the
Sp1 function is relevant for an efficient Cxcl12 expression and
consequently how the b3-AR can affect the circulation of HSCs
just acting on these elements (44, 51).

Based on ample evidence, the inhibition of b3-AR could be
used to support a crucial step for a successful BMT or the BM
Frontiers in Oncology | www.frontiersin.org 5
repopulation, through increasing the Cxcl12 release to stimulate
the homing of HSCs (Figure 2).
HYPOTHESIS: COULD b3-AR
MODULATION REGULATE HSC
DIFFERENTIATION?

After HSC homing, the engraftment step predicts stem cells to
multiply and begin to make new, healthy blood cells. It usually takes
several weeks before the number of blood cells returns to normal.
During this period, patients must remain under close medical care
and have a periodic follow-up appointment because of the risk of
infections or other complications. Engraftment failure remains an
important complication of BMT because of the high morbidity and
mortality associated with this event. Two different clinical forms of
defective engraftment have been distinguished: poor graft function
(PGF) and graft failure (GF). PGF is characterized by the presence
of an initial full donor engraftment. In the primary form, bone
marrow cellularity remains low, and patients present persistent
cytopenia. In the secondary form, a prompt recovery is followed by
a progressive decrease in blood counts. Instead, GF occurs as the
result of a classical alloreactive immune response mediated by
residual host immunity persisting after the conditioning regimen
(36, 50). Accelerating the engraftment and BM repopulation of
committed cells may, therefore, represent a valid strategy for
positive clinical outcomes in BMT. Considering this, we
wondered if b3-AR could represent a useful target to be exploited
in order to modulate these crucial phases of the BMT. With this
purpose, we set up a colony-forming unit (CFU) assay and a
cytofluorimetric analysis of BM cells obtained from mice treated
FIGURE 2 | Schematic representation of b3-AR action on Cxcl12 in BM. b3-AR signaling decreases Cxcl12 secretion by stromal cells (left). b3-AR blocking
increases Cxcl12 release, inducing the homing of HSCs to the BM (right).
June 2022 | Volume 12 | Article 889634
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and untreated with the b3-AR-selective antagonist SR59230A.
Considering that primitive hematopoietic cells, including HSCs,
do not express a variety of surface markers that are associated with
the terminal maturation of specific blood cell types, for the
cytofluorimetric analysis, we used a Lineage cell detection cocktail
(a panel of monoclonal antibodies that recognize antigens on T cells,
B cells, monocytes/macrophages, granulocytes, and erythrocytes) to
distinguish immature cells (Lineage negative) from differentiated
cells (Lineage positive). Comparing the percentages of Lineage-
negative or -positive BM cells between control and SR59230A, we
observed that the b3-AR blockade tends to decrease the percentages
of lineage-negative cells, while it increases the number of lineage-
positive cells (Figure 3A).

Moreover, we decided to perform a CFU assay on total mouse
BM cells because it is the most widely used assay to get
information about the frequency and types of progenitor cells
present in the original cell population and their ability to
proliferate and differentiate. As shown in Figure 3B, we counted
a higher number of colonies produced by BM cells harvested from
SR59230A-treated mice than in control. We can affirm that the
administration of SR59230A augmented colony-forming capacity,
indicative of increased progenitor cell proliferation and potential
differentiation. This result is in line with that obtained from
cytofluorimetric analysis because enhanced proliferation and
Frontiers in Oncology | www.frontiersin.org 6
differentiation of stem cells induced by b3-AR antagonism result
in higher percentages of committed lineage-positive cells.
A

B

FIGURE 3 | Study of the b3-AR antagonism effect on mouse BM cells (in vivo model as in Figure 1A). (A) Flow cytometry analysis of BM cells was performed by
using MACSQuant Analyzer 10 (Miltenyi Bio-tec, Gladbach, Germany). Cells were stained with the Lineage cell detection cocktail and anti-biotin antibody. Results
were reported as percentage (mean ± SD of three replicates) of Lineage-positive or -negative cells. (B) Images showing colonies obtained by performing a CFU assay
with a MethoCult medium (Stemcell Technologies, Vancouver, Canada) and relative quantification in SR59230A and control conditions after 10 days of culture.
Results were reported as the mean ± SD of three replicates. *p <0,05 **p <0,01 SR59230A vs. CTRL. ns, non significant.
FIGURE 4 | Study of the b3-AR antagonism effect on BM progenitor cells (in
vivo model as in Figure 1A). Flow cytometry analysis was performed by using
a MACSQuant Analyzer 10 (Miltenyi Bio-tec). CMP were identified as Lin-

Sca1-CD117+CD16/32-CD34+, CLP as Lin-Sca1low/intCD117low/intCD127+.
Results were reported as the mean ± SD of four replicates. *p <0,05
SR59230A vs. CTRL. ns, non significant.
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To verify if our data truly proved an increased hematopoietic
differentiation process in BM, rather than a redistribution of
hematopoietic cells between BM, PB, and secondary lymphoid
organs, we also analyzed the number of common myeloid
progenitors (CMPs) and common lymphoid progenitors
(CLPs) in the mouse BM, PB, and spleen. Cytofluorimetric
analysis showed a higher number of CMPs in the BM of
SR59230A-treated mice compared to control mice and no
significative variation on the CLP number (Figure 4).
However, we measured very few cytofluorimetric events and
no significative differences in these progenitor numbers between
the b3-AR antagonist treatment and control condition in PB and
spleen (data not shown). These results confirm our hypothesis
that the increased percentage of lineage-positive cells found in
the BM of mice that received SR59230A administration was not
due to a simple redistribution of cells between different districts
but rather to an enhanced intramedullary differentiation.
CONCLUSION

Here, we have described a brief overview of the basic information
regarding b3-AR and BMT, and we have speculated that targeting
Frontiers in Oncology | www.frontiersin.org 7
b3-AR could represent a new strategy to overcome complications
related to BMT. Collectively, the studies reported here proved that
the HSC release is not random or steady but rather follows a
circadian rhythm regulated by “the molecular clock” of the SNS that
exerts this function through the rhythmic secretion of
catecholamines from the nerves in the BM, activation of the b3-
AR, degradation of Sp1, and downregulation of Cxcl12. We focused
on the possibility of a b3-AR inhibition to support the homing of
HSCs in the BM, the step of a BMT in which the donor’s HSCs
infused in the recipient patient must reach the staminal niche. In
addition, with pilot experiments, we have put forward the
hypothesis that b3-AR may also be involved in the HSC
differentiation, an essential goal for a sustained long-term and
effective engraftment phase of BMT (Figure 5). Our hypothesis
leads the way to future explorations about the use of the b3-AR
pharmacological modulation to ensure a successful BMT.
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