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Abstract

Background: Molecular characterization of circulating tumor cells (CTC) is promising for personalized medicine. We
aimed to identify a CTC gene expression profile predicting outcome to first-line aromatase inhibitors in metastatic
breast cancer (MBC) patients. Methods: CTCs were isolated from 78 MBC patients before treatment start. mRNA
expression levels of 96 genes were measured by quantitative reverse transcriptase polymerase chain reaction. After
applying predefined exclusion criteria based on lack of sufficient RNA quality and/or quantity, the data from 45
patients were used to construct a gene expression profile to predict poor responding patients, defined as disease
progression or death <9 months, by a leave-one-out cross validation.

Results: Of the 45 patients, 19 were clinically classified as poor responders. To identify them, the 75 % most
variable genes were used to select genes differentially expressed between good and poor responders. An 8-gene
CTC predictor was significantly associated with outcome (Hazard Ratio [HR] 4.40, 95 % Confidence Interval [CI]:
2.17–8.92, P < 0.001). This predictor identified poor responding patients with a sensitivity of 63 % and a positive
predictive value of 75 %, while good responding patients were correctly predicted in 85 % of the cases. In
multivariate Cox regression analysis, including CTC count at baseline, the 8-gene CTC predictor was the only factor
independently associated with outcome (HR 4.59 [95 % CI: 2.11–9.56], P < 0.001). This 8-gene signature was not
associated with outcome in a group of 71 MBC patients treated with systemic treatments other than AI.

Conclusions: An 8-gene CTC predictor was identified which discriminates good and poor outcome to first-line
aromatase inhibitors in MBC patients. Although results need to be validated, this study underscores the potential of
molecular characterization of CTCs.
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Background
Metastatic breast cancer (MBC) is a highly heteroge-
neous disease leading to an urgent need for a more per-
sonalized treatment approach. For those patients with
estrogen receptor (ER)-expressing tumors, endocrine
therapy is the mainstay of treatment. Although many
patients greatly benefit from such endocrine therapies,
approximately 30 % of the MBC patients never respond
while virtually all initial responders eventually relapse
and develop progressive disease. Numerous factors
accounting for resistance to endocrine treatment have
been revealed, including loss of ER expression [1–3],
overexpression of the HER2 receptor [4], hyperactivation
of the phosphatidylinositol 3-kinase (PI3K) pathway [5],
and overexpression of Enhancer of Zeste Homolog 2
(EZH2) [6]. Determination of these factors in tumor
tissue may therefore contribute to a more personalized
treatment approach of individual patients.
Predictive factors contributing to treatment decision

making are nowadays most commonly identified in the
primary tumors. However, heterogeneity in molecular
characteristics between primary tumor and metastases,
including clinically relevant factors, is increasingly recog-
nized. For example, differences in ER expression between
primary tumor and metastases occur in approximately
20 % of the patients leading to treatment changes in a sub-
stantial number of patients [1, 7, 8]. Since this heterogen-
eity increases over time and under treatment pressure [7],
repetitive analyses of the characteristics of metastatic
tumor cells are likely to offer better guidance of treatment
choices than characterization of the primary tumor.
Unfortunately, metastatic tissue is often hard to obtain
and only possible through invasive procedures.
Circulating tumor cells (CTCs) are tumor cells found in

the peripheral blood and are thought to better represent
the actual or clinically relevant metastatic tissue burden
than the primary tumor does, in particular in those pa-
tients whose primary tumors have been removed several
years prior to diagnosis of MBC. The CTC count has
shown to be a powerful prognostic factor in MBC and a
rise or decline in CTC count after the first cycle of
systemic therapy is an early predictor of outcome [9–12].
Additionally, CTC characterization holds great promise
and for that purpose, several techniques to molecularly
characterize CTCs for drug target expression [13–15],
mutations [16] and gene expression [17–19] have been
developed. CTCs however occur in relatively low numbers
in patients with MBC and, even after the epithelial cell
adhesion molecule (EpCAM)-based enrichment of the
CellSearch® system, they need to be identified and charac-
terized amongst approximately a thousand of remaining
leukocytes [20]. This greatly hinders the interpretation of
results from techniques non-selective for tumor cells such
as quantitative reverse transcriptase polymerase chain

reaction (qRT-PCR) on whole lysates. Nevertheless, by
focusing on genes that are not, or only at a much lower
level, expressed by leukocytes, we have previously shown
that the expression levels of 96 genes in CTCs can be
quantified in MBC patients through qRT-PCR [18].
In this study, we aim to quantify this panel of 96 genes

in CTCs of MBC patients with ER-expressing primary
tumors prior to start of first-line therapy with an aroma-
tase inhibitor (AI) in order to identify a CTC predictor
discriminating between good and poor responders.

Methods
Ethics statement
This study has been approved by the medical ethics
committee of the Erasmus MC Rotterdam, The
Netherlands and local Institutional Review Boards (ethics
boards of Oncology Center GZA Hospitals Sint-Augusti-
nus, Antwerp, Belgium; Ikazia Hospital, Rotterdam,
The Netherlands; Sint Franciscus Gasthuis, Rotter-
dam) (METC 2006–248 and METC 2009–405). All
patients gave their written informed consent.
We adhered to the Reporting Recommendations for

Tumor Marker Prognostic Studies wherever possible [21].

Collection of blood samples and characteristics of
recruited patient cohort
MBC patients had been included between October 2008
and August 2012 in 5 hospitals. From 78 MBC patients
who were not previously treated for MBC and prior to
start of first-line AI therapy (irrespective of type), 2 ×
7.5 mL blood samples were prospectively drawn for
CTC enumeration and isolation. Due to insufficient
RNA quality and/or quantity and/or lack of expression
of previously described CTC-specific genes [18] (for
details see next), 33 (42 %) samples were excluded, pro-
viding 45 patients for further analysis (Additional file 1:
Figure S1). Detailed clinicopathological information for
these 45 patients is provided in Table 1.
In order to be able to decipher whether obtained

results from this AI-treated patient cohort are of prog-
nostic or predictive nature, we used an independent pa-
tient cohort composed of 71 MBC patients that received
other types of first-line therapy. Of these, 21 patients
were treated with chemotherapy, 40 patients with
chemotherapy combined with targeted therapy, and 10
patients with tamoxifen therapy. This patient cohort had
been extracted from MBC patients described in our re-
cently published study in which the same techniques for
CTC enrichments and gene expression determination
were applied [22].

Enumeration of CTCs
In order to isolate CTCs for CTC enumeration, 7.5 mL
blood was drawn in CellSave tubes (Veridex™ LCC,
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Raritan, NJ, USA) and processed on the CellTracks
AutoPrep System by using the CellSearch Epithelial Cell
Kit (both Veridex LCC). CTC enumeration was
performed on the CellTracks Analyzer (Veridex LCC)
according to the manufacturer’s instructions and as
described previously [23–25].

mRNA isolation from CTCs, qRT-PCR and quantification of
gene transcripts
Together with the blood samples for CTC enumeration,
another 7.5 mL blood of the same patients was drawn in
EDTA tubes. These samples were enriched for CTCs on
the CellTracks AutoPrep System using the CellSearch
Profile Kit (Veridex LCC). Isolated cells were lysed by
adding 250 μL of Qiagen AllPrep DNA/RNA Micro Kit
Lysis Buffer (RLT+ lysis buffer) (Qiagen BV, Venlo, The
Netherlands) and immediately stored at −80 °C until
RNA isolation was performed with the AllPrep DNA/
RNA Micro Kit (Qiagen) according to the manufac-
turer’s instructions and as previously described [18].
The generation of cDNA from isolated RNA from CTCs

and subsequent pre-amplification and TaqMan-based
PCR analysis were performed as described before [20].
The 96 measured mRNA transcripts have previously been

Table 1 Patients and their clinico-pathological characteristics

Characteristic No. of patients %

All patients 45 100 %

Time between primary surgery and
CTC sampling (DFI)

≤ 5 years 16 36 %

> 5 years 21 47 %

Primary not removed 8 18 %

Age at CTC sampling

≤ 50 years 4 9 %

> 50 years 41 91 %

Menopausal status

Premenopausal 2 4 %

Postmenopausal 43 96 %

Histologic grade (Bloom-Richardson)

I, well differentiated 5 11 %

II, moderately differentiated 23 51 %

III, poorly differentiated 4 9 %

Unknown 13 29 %

Pathological tumor size

pT1, ≤2 cm 20 44 %

pT2-4, >2 cm 22 49 %

Unknown 3 7 %

Lymph nodes involved

No 14 31 %

Yes 27 60 %

Unknown 4 9 %

ERa statusa

Negative 1 2 %

Positive 44 98 %

PgR statusa

Negative 5 11 %

Positive 36 80 %

Unknown 4 9 %

HER2/neu statusa

Negative 37 82 %

Positive 3 7 %

Unknown 5 11 %

Histological type

Lobular 13 29 %

Ductal 28 62 %

Ductolobular 3 7 %

Ductal, signet-cell 1 2 %

Table 1 Patients and their clinico-pathological characteristics
(Continued)

Adjuvant chemotherapy

No 31 69 %

Yes 14 31 %

Adjuvant hormonal therapy

No 24 53 %

Yes 21 47 %

Any adjuvant therapy

No 22 49 %

Yes 23 51 %

Site of metastasis

Visceral 5 11 %

Non-visceral 26 58 %

Both 14 31 %

1st line treatment

Anastrozol 15 33 %

Letrozol 16 36 %

Exemestane 14 31 %

Median progression-free survival
(PFS in days; range)b

358 (14–1255)

Median baseline CTC count (range in
7.5 mL blood)

8 (0–32,492)

aAs retrieved from pathology reports
bAlso includes censoring data from patients censored at last follow-up date

Reijm et al. BMC Cancer  (2016) 16:123 Page 3 of 9



selected and validated based on their clinical relevance
and potential CTC-specificity [18, 20].

Reference genes, data normalization, and quality control
The procedure of data normalization and quality control
was performed as previously described [18, 20]. In short,
relative expression levels were quantified by using the
delta Ct method, which is the difference between the
average Ct of the reference genes HMBS, HPRT1, and
GUSB and the Ct of the target genes. Samples that were
able to generate a signal within the chosen cut-off set at
26 Ct of the average of the reference genes were consid-
ered of sufficient quality and quantity to be included in
the study and quantified for the levels of the remaining
93 target genes. By the use of this threshold, 5 of our
initial 78 CTC samples (6 %) were excluded from further
analysis.
Finally, samples were checked for sufficient expression

levels of a 12-gene mRNA cluster that has previously
been determined as epithelial-specific and associated
with the presence of CTCs [18]. Due to lack of sufficient
expression of these genes and our aim to generate a
CTC-specific predictor, another 28 CTC samples (36 %)
were excluded from further analysis.

Statistical analysis
Statistical analyses were done with the STATA statistical
package, release 12.0 (STATA Corp., College Station,
TX). Primary endpoint was progression-free survival
(PFS), defined as the time elapsed between start of first-
line treatment with AI and clinical and/or radiological
progression or death, whichever came first. Patients who
were alive and had not progressed were censored at the
last follow-up date, which was at least 9 months after
start of 1st line therapy. Those patients with progression
or death <9 months were considered as poor responders.
This 9-month cut-off was chosen based on the median
PFS for first-line therapy in MBC patients as reported in
the literature [26, 27]. In all 45 eligible patients, a leave-
one-out-cross validation (LOOCV) was conducted using
the Support Vector Machines (SVM) method within Bio-
metric Research Branc ArrayTools (http://linus.nci.nih.gov/
BRB-ArrayTools.html) after selecting the top 75 % most
variable genes from the 93 genes described above. With this
LOOCV method, a gene signature was generated that con-
sisted out of the most differentially expressed genes that
were identified in the individual predictions and best
predicted the left-out sample. A panel of 8 genes was
identified that performed best in predicting the poor
responding patients. The SVM method proved superior
compared to the other prediction algorithms; based on
100 permutations, SVM was the only method with a sig-
nificant P-value of 0.01. Cluster 3.0 and TreeView (http://
bonsai.hgc.jp/~mdehoon/software/cluster/clustersetup.exe

and http://jtreeview.sourceforge.net/ [28]) were used to
cluster the samples according to the gene expression
values of these 8 genes and to visualize the results. Sur-
vival curves were generated using the Kaplan-Meier
method and a logrank test was used to test for differences.
All statistical tests were 2-sided with P < 0.05 considered
statistically significant.

Results
Patient characteristics
Characteristics of the 45 patients who were eligible for our
CTC-specific analyses to explore differentially expressed
genes between good and poor responders are listed in
Table 1. One patient was described to have an ER-negative
primary tumor but received hormonal treatment in both
adjuvant and first-line setting due to PR-positivity. Median
baseline CTC count in the 45 patient cohort was 8 (range
0 – 32,492 CTCs/7.5 mL blood). The extremely high CTC
count of 32,492 was assessed in a patient who did not
respond to treatment and died within one month after
treatment initiation due to progression of disease. The
9-month cutoff as based on literature data on the median
PFS in first-line MBC patients [26, 27] was well-chosen
considering the median PFS of 11.8 months (range 0 –
41.3 months) in our 45 patient cohort.

8-gene CTC profile predicts for outcome to treatment
Of the 45 patients, 19 patients were classified as
poor responders due to progression of disease or
death <9 months whereas the remaining 26 patients
were considered good responders. A LOOCV was per-
formed in this cohort yielding an 8-gene predictor in
which each gene had a univariate P-value of <0.1 (Table 2).
Application of this 8-gene CTC profile resulted in 16 pa-
tients with an unfavorable profile and were thus predicted
to be poor responders. Twelve of them truly showed
resistance to therapy <9 months (disease progression or
death) and four did not, resulting in a sensitivity of 63 %
and a positive predictive value (PPV) of 75 % (Table 3).
Applying the profile, 29 patients had a favorable pro-
file and were thus predicted not to show progressive
disease <9 months. Of these, 22 indeed did not fail
treatment <9 months rendering a specificity of 85 %
and a negative predictive value (NPV) of 76 %.
The Kaplan-Meier curves for PFS of the predicted good

and poor responding patients according to the 8-gene
CTC predictor are shown in Fig. 1 and were statistically
different (Logrank P < 0.001).
In univariate analysis, the 8-gene CTC predictor was

significantly associated with PFS (HR 4.40 [95 % CI:
2.17–8.92], P < 0.001). When including the traditional
predictive factors, disease-free interval (DFI), which was
defined as the time between primary surgery and CTC
sampling, the dominant site of relapse, and the CTC
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count at baseline in a multivariate analysis, only the 8-
gene CTC-profile was an independent predictor of PFS
(HR 4.59 [95 % CI: 2.16–9.75], P < 0.001) (Table 4). The
CTC count at baseline was not associated with PFS in
this 45 patient cohort, but showed to be significant in
the total cohort of 78 patients (HR 2.47 [95 % CI: 1.43-
4.27], P = 0.001) (Additional file 2: Figure S2).

Hierarchical clustering to identify clusters of patients
according to the 8-gene CTC predictor
Two-dimensional average linkage hierarchical cluster
analysis [28] was performed to compare the difference in
gene expression of the 8 identified genes in our 45 pa-
tients. This analysis resulted in a clustering of 2 major
and 5 minor groups of patients in which cluster 1 mainly
contained the good responders (10 out of 12), whereas
cluster 2 consisted of both good and poor responders
(Fig. 2). In this cluster, however, a subcluster existed
that, with 10 out of 12, predominantly contained poor
responders with higher expression of most of the identi-
fied 8 genes.

Testing the 8-gene CTC profile in an independent differently
treated patient cohort
Having identified the 8-gene CTC profile in AI-treated
patients, it was assessed whether this signature was
prognostic or predictive by investigating the association
between this profile and outcome in an independent pa-
tient cohort composed of 71 MBC patients that received

other first-line therapies than AI. Of these, 21 patients
were treated with chemotherapy, 40 with chemotherapy
combined with a type of targeted therapy such as trastu-
zumab, and 10 with tamoxifen therapy. Of this group, 35
patients had a PFS of less than 9 months and were
therefore classified as having a poor outcome. Applica-
tion of the 8-gene CTC profile resulted in 33 patients
with a favorable CTC profile. The CTC profile however,
could not properly discriminate the patients with a good
versus those with a poor outcome (P = 0.899; Table 5).

Discussion
Characterization of CTCs holds great promise to predict
response to treatment and to gain more insight into
mechanisms underlying resistance to systemic anti-
tumor agents. Although whole transcriptome analysis
would be most preferable, isolation of CTCs by the Cell-
Search technique does not result in pure fractions of
CTCs but only in fractions enriched for CTCs in which
an overload of leukocytes is still present. This makes in-
terpretation of whole transcriptome analysis impossible
since only techniques yielding pure CTC fractions would
allow such analyses. We have previously shown to be
able to measure mRNA expression levels of multiple epi-
thelial genes in CTCs enriched by CellSearch [18]. By
using these selected genes and applying the same tech-
nique, the current study demonstrates the ability of
using CTC characterization as a predictor for response
to endocrine therapy. To our best knowledge, this is the
first study that has generated an unique CTC-based gene
expression panel that is able to distinguish good and
poor responders to first-line AI therapy. From a clinical
point of view, it is probably more relevant to identify the
poor rather than the good responding patients, since
these patients might benefit more from another treat-
ment. Our identified 8-gene CTC profile however per-
formed better in predicting the good responders, since
the specificity of the predictor outperforms its sensitivity
(85 % vs. 63 %; Table 3). Nevertheless, this could still
impact clinical decision making since good responding
patients could undergo less intensive follow-up strat-
egies and fewer laboratory procedures which is not
only less demanding for patients but can also reduce
health care costs.
In order to explore whether this signature associ-

ated with outcome in AI-treated patients is prognostic
or predictive, we tested the profile in CTCs of a
group of 71 patients who were treated with types of
systemic treatments other than AI including chemo-
therapy (N = 21), chemotherapy combined with a type of
targeted therapy (N = 40), or tamoxifen therapy (N = 10).
In contrast to the AI-treated patients, the 8-gene CTC
profile could not discriminate patients with a good versus
those with a poor outcome in this group of patients (P =

Table 2 Significantly differentially expressed genes between
45 good and poor responders

Gene P-value t-value

TWIST1 0,001 −2,879

KRT81 0,018 −2,453

PTRF 0,029 −2,024

EEF1A2 0,031 −1,895

PTPRK 0,049 −1,793

EGFR 0,065 −1,701

CXCL14 0,080 2,229

ERBB3 0,096 2,26

A negative t-value corresponds to higher expression in poor responding patients;
a positive t-value to higher expression in good responding patients

Table 3 Test performance

8-gene CTC profile

PFS <9 months Favorable Unfavorable Total

No 22 4 26

Yes 7 12 19

Total 29 16 45

Pearson’s X2 statistic 10,93

P <0.001
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0.899; Table 5). Although this is not a true validation of
the test, it strongly supports that the identified profile is
predictive for outcome to AI therapy and not for outcome
to other agents. It needs to be underscored that the identi-
fied CTC profile has been obtained in a small number of
patients for which an LOOCV procedure to reveal such a
profile is commonly applied. It important to realize that
such an approach bears the risk of overfitting the data as a
consequence of which validation in an independent
patient cohort is needed before implementation in clinical
practice.
The development of a CTC-specific predictor required

exclusion of patients who lacked sufficient expression of
epithelial-specific genes. These are mainly patients with
no or few counted CTCs and are therefore more likely
to have a longer PFS which might have biased our
patient set [9]. Although most characteristics do not
show differences between in- and excluded patients
(Additional file 3: Table S1), the median PFS in the 33
excluded patients was 548 (40–1694) days which

significantly differs from the median PFS of 358 (14–
1255) days in the 45 included patients (Logrank P <
0.001). This exclusion criterion highly affected the num-
ber of patients available for further analysis. The low
number of remaining patients might be the reason for
the insignificant association between the CTC count at
baseline (divided in <5 vs. ≥5 CTCs) and PFS. In the
total cohort of 78 patients, CTC count was significantly
related to PFS (Additional file 2: Figure S2). Since co-
horts with few patients cannot be divided into independ-
ent discovery and validation sets, resampling the original
data through cross-validation is statistically the best
method [29].
Amongst the 8 genes that we found to be associated

with outcome to AI therapy through LOOCV, was the
epithelial marker KRT81. Many cytokeratins are highly
expressed in both normal and tumor epithelium in
which the pattern of expression can be used to identify
the tissue of origin [30]. Not much is known about this
specific cytokeratin and why high expression would lead

Fig. 1 Kaplan-Meier curve for patients as defined by the 8-gene CTC predictor. Blue (0): favorable profile; red (1): unfavorable profile; green (2): total
cohort (N = 45)

Table 4 Predictive value of the 8-gene CTC profile in uni- and multivariate analysis

Factor of base model Univariate analysis Multivariate analysis

PFS PFS

HR 95 % CI P HR 95 % CI P

<5 vs. ≥5 CTCs at baseline 1,11 0.57–2.15 0,753 1,31 0.65–2.62 0.455

Disease-free intervala 1,09 0.74–1.61 0,653 0,95 0.62–1.43 0.790

Dominant site of relapseb 1,34 0.69–2.58 0,384 1,11 0.56–2.18 0.768

8-gene CTC profile 4,40 2.17–8.92 <0.001 4,59 2.16–9.75 <0.001
aDefined as the time between primary surgery and CTC sampling and analyzed in 3 groups: ≤5 years (N = 12), >5 years (N = 21) and metastatic disease upon
diagnosis (N = 12)
bDivided into non-visceral vs. visceral metastases
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to a worse outcome. Mutations in KRT81 have been
described in monilethrix, a condition in which patients
develop diffuse hypothrichosis [31].
CXCL14 and ERBB3 were the only genes that were

more abundantly expressed in the good responding pa-
tients. This is discordant to what is currently known in
primary tumor tissue with respect to both genes. The
published literature, however, only considers gene
expression in primary tumors which cannot easily be
extrapolated to CTCs. CXCL14 is a chemokine that has
been shown to be upregulated in tumor myoepithelial
cells and enhances the proliferation, migration, and inva-
sion of epithelial cells after binding to their receptors
[32]. Expression of ERBB3 has, similar to EGFR in our
CTC predictor, previously been associated with endo-
crine therapy resistance when highly expressed in pri-
mary tumor tissue [33, 34]. The predictor also contained
high expression of PTRF and EEF1A2 to be associated
with poor outcome. This is in contrast with previously
published literature in which PTRF has been shown to
interact with pS2/TTF1 [35] which on its turn needs ER
as key transcriptional factor in order to be expressed

[36] and is associated with a better clinical outcome in
breast cancer [37–39]. EEF1A2 is an eukaryotic elong-
ation factor of which its expression downregulates
through interaction with protein p16 (INK4a) leading to
inhibition of cancer cell growth [40]. It is mainly known
as a potential oncogene in ovarian cancer in which its
expression enhances cell growth in vitro [41]. Overex-
pression of EEF1A2 has also been seen in breast tumors
[42] and it is one of the genes in the 76-gene signature
as identified in the ER-positive subset of 115 primary
breast tumors that represent a strong prognostic factor for
patients at high risk for developing metastases [43, 44].
With respect to the other genes of the predictor, PTPRK
belongs to the group of protein-tyrosine phosphatases
(PTPs) that control tyrosine phosphorylation. PTPs regu-
late the signaling of growth-factor receptors and can,
when deregulated, be associated with tumorigenesis [45].
Deregulation of PTPs can result in both their up- and
downregulation, which can explain the discordance be-
tween our established association between high expression
of PTPRK and poor outcome to AI therapy, while de-
creased expression of PTPRK has previously been related
to poor prognosis in MBC suggesting a more tumor sup-
pressive role [46]. TWIST1, at last, is a transcription factor
that is one of the most widely known factors to be in-
volved in the process of epithelial-to-mesenchymal-transi-
tion (EMT). Its overexpression has been associated with
endocrine therapy resistance due to downregulation of ER
promoter activity [47]. Moreover, through direct repres-
sion of E-cadherin cells and activation of mesenchymal
markers, TWIST1 plays an essential role in tumor metas-
tasis [48]. The appearance of TWIST1 in our 8-gene CTC
predictor is remarkable since our applied CTC isolation

Fig. 2 Unsupervised hierarchical cluster analysis comparing the 8-gene CTC predictor in 45 MBC patients treated with first-line AI therapy. Each
horizontal row represents a gene, and each vertical column corresponds to a sample. Red color indicates a mRNA expression level above the
median level, black color indicates a median expression level, and green color indicates an expression level below the median level of the assay
as measured in all 45 samples. The number of CTCs as established by the CellSearch Epithelial Kit is depicted below the figure. Blue: good
responder; red: poor responder. CTC count: blue: <5 CTCs; red: ≥5 CTCs

Table 5 Test performance of the 8-gene CTC predictor in 71
patients not treated with AI therapy

8-gene CTC profile

PFS <9 months Favorable Unfavorable Total

No 16 19 35

Yes 17 19 36

Total 33 38 71

Pearson’s X2 statistic 0,016

P 0.899
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method relies on an EpCAM-based enrichment step and
tumor cells undergoing EMT might become EpCAM-
negative [49]. The dependency on EpCAM-expression by
CTCs renders the CellSearch method therefore not the
best method to capture all CTCs, but it is still the only
FDA-cleared method which will enable its implementation
and obtained results in clinical studies. In addition,
whether EpCAM loss always accompanies EMT is still
under debate [50].
Although ER is amongst the 93 target genes that were

measured, its mRNA expression in this study was not as-
sociated with outcome to AI therapy. Several techniques
have been explored to determine ER expression in CTC,
but so far, none of these studies could show an association
with outcome (reviewed in [19]). Recently, Babayan et al.
have demonstrated the possibility of measuring ER protein
expression in single CTCs through immunofluorescence.
This study revealed that CTCs of individual MBC patients
with ER-positive primary tumors are frequently a hetero-
geneous population consisting of both ER-positive and
ER-negative CTCs [51]. Similar to primary tumor tissue,
the percentage of ER-positive CTCs may be the best par-
ameter associated with outcome rather than ER mRNA
expression of the total CTC fraction as was measured in
our study.

Conclusion
In conclusion, we have here defined an 8-gene expres-
sion predictor established in CTCs that is associated
with outcome to first-line AI therapy in MBC patients.
Importantly, before the results of the current study can
be implemented, an independent patient cohort is war-
ranted to validate the results found here. Nevertheless,
this study underscores the enormous potential that mo-
lecular characterization of CTCs has.
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