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The way in which viruses gain access to the central nervous system (CNS) 
in natural infection and after extraneural inoculation has interested pathologists 
and virologists since experiments with rabies in the early 19th century. Various 
theories of hematogenous and neural pathways have been proposed; the latter 
being the more popular until the recent reassessment of the pathogenesis of 
poliomyelitis gave impetus to theories of blood-borne CNS infection. The many 
studies on this problem now clearly establish that some viruses enter the CNS 
from the blood and others by centripetal movement in nerves. However, the 
"blood-brain barriers" to viruses are largely undefined, and the structures of 
peripheral nerve through which viruses move remain lm]~uown. Regarding the 
neural route Burnet (1) has said, " . . .  it is quite impossible to review the 
literature without accepting the existence of such movement and almost equally 
impossible to believe in its physical reality." 

More precise studies of pathogenesis are now possible utilizing techniques of 
immunofluorescence by which specific cellular infection during the incubation 
period can be determined. However, this method has received only limited 
application in the study of the pathogenesis of encephalitis. With fluorescent 
antibody staining Liu and Coffin (2, 3) found canine distemper virus antigen in 
the cytoplasm of endothelial cells of small cerebral veins and capillaries, and in 
encephalitic cases, infection of cerebral parenchyma followed this vascular in- 
volvement. Similar findings, which could be interpreted as growth through 
endothelium of small cerebral vessels, have recently been reported with West 
Nile virus infections in mice (4). However, with tick-borne encephalitis virus 
Albrecht (5) found no fluorescence in vascular endothelium in experimental 
murine encephalitis, and to date no study has implicated this mechanism of 
hematogenous infection with a virus which is a major cause of human encephaii- 
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tis. Fu r the rmore ,  no f luorescent  an t i body  studies h a v e  been repor ted  defining 

the  p a t h w a y  of spread to the  C N S  along nerves.  

Herpes  s implex virus  was selected for s tudy  because it  is an  i m p o r t a n t  cause 

of severe  h u m a n  encephal i t is  (6) and  because different  inves t iga tors  h a v e  sug- 

gested tha t  i t  m a y  reach the  C N S  by  e i ther  hematogenous  or  neura l  routes.  

Th is  s t udy  combines  f luorescent  an t i body  s ta ining wi th  conven t iona l  histologic 

and t i t r a t ion  me thods  to demons t r a t e  the  vascular  and neura l  routes  by  which 

herpes virus  enters  and  spreads wi th in  the  C N S  of i m m a t u r e  mice.  

Materials and Methods 

Virus.--The HFEM strain of herpes simplex (7), originating from the classical Rockefeller 
HF strain (8), was used. 

M/ce.--Multicolored outbred mice of the Hall Institute strain were used. For maximal 
susceptibility to extraneural inoculation the youngest mice suitable for inoculation and histo- 
logic sectioning were selected; 4- to 5-day-old suckling mice proved most satisfactory and 
were used throughout this study. 

Inoculations.--The standard diluent was 0.5 per cent gelatine in borate-buffered saline. 
Intracerebral and subcutaneous injections in 0.03 ml volumes and intraperitoneal injections 
in 0.05 ml volume were used. Intranasal inoculation was performed by dropping 0.025 ml of 
inoculum over the nares and holding the mice until the drop was inhaled. End points were 
calculated by deaths using the method of Reed and Muench (9) after daily observation of 
mice for 20 days. 

Titrations.---Organ titrafions were performed daily on pooled specimens from 3 animals. 
Mice from different litters were killed by exsangnination and organs removed aseptically. 
Whole blood and organs were prepared as 20 per cent suspensions and titrated in 10-fold dilu- 
tions on chorioallantoic membranes of ll-day-old embryonated eggs, using 4 eggs per dilution. 
Titers are expressed as pock-forming units (pfu) per gram of tissue or milliliter of whole blood. 

Fluorescence Microscopy.--Tissues for fluorescent antibody staining were frozen in con- 
tainers in a bath of liquid nitrogen and stored at --20°C. Sections (6/z) were cut on a rocker 
microtome at --20°C. Peripheral nerves were examined in cross-sections of whole limbs; spinal 
cords were examined in cross-sections of vertebral column and adjacent muscles, so that the 
relationships of cord, ganglia, and nerve roots were preserved. After intranasal inoculation 
heads were skinned and lower jaws disartieulated before freezing, and sagittal sections of the 
entire heads were made. To facilitate sectioning, lymph nodes, nerves, and other small tissues 
were mounted in gelatin capsules (I0) or liver before freezing. 

Sections on glass slides were dried at room temperature for 1 hour, fixed in acetone for 10 
minutes, and redried for 10 minutes; fixation in either formalin or methyl alcohol (at --50°C) 
and unfixed sections proved less satisfactory. Fluorescent antibody staining was done by the 
indirect method (11). Sections were treated with human herpes-immune serum for 20 minutes, 
washed in 2 changes of buffered saline for 20 minutes, and stained for 20 minutes with fluores- 
cein-labeled goat anti-human "y-globulin (Microbiological Associates, Bethesda). R.hodamine- 
conjugated bovine albumin was added to the fluorescein conjugate as a counterstain. After a 
final washing for 20 minutes in two changes of buffered saline, sections were mounted in 
neutral glycerol and examined with a Zeiss microscope equipped for fluorescence observations 
and illuminated with an Osram HBO 200 high pressure mercury lamp. 

Numerous human scra and antisera prepared in rabbits and roosters were tested before a 
serum giving adequate fluorescence was found. This quality was unrelated to neutralizing 
antibody titers as determined by pock neutralization tests. Several human and rabbit sera, 
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which were satisfactory for identifying infected cells in HeLa cell monolayers, did not give 
sui~dently clear definition of single infected cells against the non-specific fluorescence en- 
countered in suckling mouse brain sections. Direct conjugates prepared from the test serum 
also failed to yield sufficient contrast in staining; and, therefore, the more sensitive (12) but 
more time consuming indirect method was used. This serum-conjugate system stained only 
cytoplasmic antigen, and there was no antecedent development of nuclear fluorescence as has 
been described with a different herpes-immune serum system (13). Specificity of staining was 
determined by staining normal tissues and by indirect staining of infected tissues with non- 
immune human serum. With experience non-specific staining was easily differentiated and 
actually proved a helpful adjunct in anatomical localization. 

For confirmation of the cytology of infected cells fluorescence was recorded in photomicro- 
graphs with Ilford HP3 film, coverslips were floated off in 10 per cent formalin, and the sections 
were stained with hematoxylln and eosin or toluldine blue. 

RESU'LTS 

The pathogenesis of infections with the H F E M  strain of herpes simplex 
virus in suckling mice proved different with varied routes of inoculation. Re- 
sults with intracerebral, intraperitoneal, subcutaneous, and intranasal inocula- 
tion are, therefore, presented separately. 

Intracerebrat Inoculation.--Suckling mice were highly susceptible to intra- 
cerebral inoculation with HFEM,  the LD60 being equal t o  only 3 pfu. Mter  
intracerebral injection of 100 LDs0 mice remained well for 2 days. On the 3rd 
day signs of encephalitis developed, and mice died within a few hours. Virus 
fiters rose rapidly in the brain to about 10 e.~ pfu/gm by the 3rd day. There was 
no significant extraneural growth, although a few pfu of virus were irregularly 
recovered from blood, liver, or spleen. 

Fluorescent antibody staining revealed virus antigen only within the CNS. 
Twenty-four hours after inoculation numerous cells in the leptomeninges (Fig. 
1) and a few ependymal cells showed specific fluorescence. The rapid dispersion 
of virus in the cerebrospinal fluid (CSF) was shown by the infection of meninges 
of the caudal spinal cord at 24 hours. Infection of the cerebral meninges and 
and ependyma was extensive by  48 hours, and a few underlying parenchymal 
cells were fluorescent. At the end of the incubation period (72 hours) these 
subependymal and submeningeal loci had enlarged with widespread infection 
of both neural and glial cells. The cerebellum was less involved than the cere- 
brum despite confluent infection of the invaginations of leptomeninges between 
them. The choroid plexus was consistently free of infection. Only rarely were 
cells with specific apple-green fluorescence found near the needle track at the 
site of injection, although this track was surrounded by a green-orange non- 
specific fluorescence due to a concentration of cells from hemorrhage and in- 
flammation. This non-specific fluorescence was present in control mice inocu- 
lated with diluent. 

Thus, intracerebral inoculation resulted in dispersion of virus via the CSF 
with initial multiplication in the mesenchymal cells of the meninges and ecto- 



345 PATHOGENESIS OF HERPES VIRUS ENCEPHALITIS. I 

OI 0 z $ al  
z l  ~ OI 
"~1 ~ 0 ;  

o I 

I 

,.0 ~O ~ ¢ O  ¸ @4 

317b~11 -40 W~) ~13cl fl~d ° tO01  

~o~ 



RICHARD T, JOHNSON 347 

dermal lining of the ventricles. Infection then spread directly into the underly- 
ing CNS involving neurons and glial cells. 

Intraperitoneal Ittoculation.--Suckling mice were almost as susceptible to 
intraperitoneal as to intracerebral inoculation, the LDs0 being only 14 pfu. 
Mter injection of 100 LD6o intraperitoneally mice remained well until the 4th 
day, when they developed signs of encephalitis and died within 24 hours. 
Viremia developed between 2 and S hours after injection and continued until 
death with titers ranging from 10 ~.~ to 108"~ pfu per ml. Rapid virus multiplica- 
tion occurred in liver and spleen, but virus was not detectable in the CNS until 
the 3rd day after inoculation (Text-fig. 1 A). This sequence of growth in viscera 
and viremia preceding encephalitis suggested blood-borne CNS infection, as 
has been shown with arthropod-borne viruses and polioviruses (14--16). How- 
ever, Cooke et al. (17), using intravenous injection of herpes virus in rabbits, 
presented evidence that virus spread from infected viscera along afferent nerves 
to the spinal cord. Therefore, spinal cords were examined in the present study, 
and virus was found to appear later in the cord than in the brain (Text-fig. 1 A). 

Fluorescent antibody staining showed antigen first in free macrophages 
washed from the peritoneal cavity 6 hours after inoculation. At 24 hours a 
few serosal cells on the hepatic and splenic surfaces and a few Kupffer ceils 
and splenic red pulp cells were fluorescent. By 48 hours infection of the serosal 
surfaces of liver and spleen was almost confluent, and there were many loci of 
infection in the hepatic cells and in the red pulp of the spleen. These lesions 
were massive by 72 hours with central necrosis and loss of central fluorescence 
coincident with the leveling off of infectivity titers (Text-fig. 1 A). Foci of in- 
fection were occasionally found in kidneys, lungs, and adrenal cortex, but retro- 
sternal lymph nodes draining the peritoneal cavity remained free of infected 
cells. 

Foci of fluorescent neural and glial ceils were found in the brain at 96 hours. 
Unlike infection after intracerebral inoculation, meninges and ependyma were 
not involved, and foci were randomly distributed deep in the cerebrum and 
cerebellum unrelated to neural tracts. 

The initial growth in viscera, the late involvement of the spinal cord, and the 
distribution of cerebral lesions all suggested hematogenous spread of virus to 
the CNS. To confirm this hypothesis suckling mice were given 100 LD~0 of 
virus intraperitoneally. Seventy-two hours later, under ether anesthesia, the 
vena cava was cut, and India ink was injected into the left ventricle under 
minimal pressure. By this method blood was replaced with India ink, and the 
capillary system was outlined. Multiple horizontal sections of brains were pre- 
pared. In 2 mice small loci of fluorescent cells were found, and in both, these 
were associated with small cerebral vessels (Fig. 2). These were the only loci 
found in the brains of these mice establishing that the initial virus growth in the 
CNS occurred in or around the endothelium of small cerebral blood vessels. 
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In view of reports that herpes virus penetrates the spinal cord via afferent 
nerves following intraperitoneal inoculation (17-19), cords and ganglia were 
examined. In 1 mouse with multiple hematogenous foci of infection in the brain 
and no lesions in the spinal cord, infected neurons in a thoracic dorsal root 
ganglion were found. Although the ganglion lesion may have been caused by 
blood-borne infection, the possibility exists of an alternate neural route of 
spread taking place at a slower rate than the more important hematoge- 
nous dissemination. 

In summary, following intraperitoneal inoculation viremia developed within 
5 hours and continued until death. Initial virus growth was found in free peri- 
toneal macrophages and then along the serosal surfaces and within the paren- 
chyma of liver and spleen. Infection of the CNS was blood-borne with virus 
antigen appearing first around small cerebral vessels. 

Subcutaneous Inoculation.--Approximately 100 times as much virus is re- 
quired to produce disease in suckling mice by subcutaneous inoculation as by 
intraperitoneal inoculation. Doses of 50,000 pfu were given subcutaneously in 
the hindfoot-pad to produce 100 per cent mortality. No local lesions developed 
in the foot, and the mice remained well for about 5 days. Then they became 
unable to walk and lay supine with back flexed and hindlegs kicking. Forelegs 
appeared normal and, unlike the encephalitis after intracerebral and intra- 
peritoneal inoculation, no lethargy or convulsions developed. Disease lasted for 
1 or 2 days terminating with hindleg paralysis and abdominal distension. 

Viscera and blood obtained daily after inoculation failed to yield virus. Brains 
from moribund mice contained little if any virus. Fluorescent antibody staining 
of liver, spleen, and brain showed no virus antigen, and popliteal nodes dis- 
sected from 6 mice showed a small group of infected cells in only 1 node. No 
focus of local virus multiplication occurred at the injection site, but scattered 
elongated fluorescent ceils were present in the subcutaneous tissue. In the same 
area small subcutaneous nerve fibers contained fluorescent cells. This infection 
of endoneural ceils could be followed on serial sections to the main trunk of the 
sciatic nerve and into the corresponding dorsal root ganglia. The majority of 
these lumbar ganglion cells on the side of inoculation were fluorescent; many 
endoneural cells in the dorsal roots and a few cells in anterior roots were in- 
fected. The femoral nerve, which does not supply the inoculation site, contained 
no fluorescent ceils. 

Initial infection of the lumbar spinal cord was most marked in the ipsolateral 
posterior column corresponding to the entry zone of afferent fibers, but as in- 
fection spread within the spinal cord, neurons and glial cells in all quadrants 
were infected (Fig. 3). Fluorescent cells were more numerous toward the per- 
iphery of the cord, but no widespread involvement of meninges or central canal 
occurred to suggest spread v/a CSF. 

Subcutaneous inoculation of foot-pads of the forelegs resulted in a similar 
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spread of infection through cellular elements of the nerves to the dorsal root 
ganglia and cervical spinal cord. Within the cord, infection extended caudally as 
well as rostrally. The early involvement of cervical cord and medulla in these 
mice resulted in a more acute disease, and death occurred 1 day earlier than in 
mice inoculated in the hindleg. 

In summary, subcutaneous inoculation in foot-pads resulted in infection of a 
few subcutaneous cells (probably histiocytes) and the endoneural cells of sub- 
cutaneous nerve fibers. No viremia or visceral infection developed, and virus 
reached the CNS solely by centripetal infection of endoneural ceils. 

Intranasal Inoculation.--Susceptibility of suckling mice to nasal inoculation 
was similar to subcutaneous inoculation; inhalation of a droplet containing 
50,000 pfu was necessary for 100 per cent mortality. Mice remained well for 4 or 
5 days; then encephalitis developed with median time of death at 5 days. 
Organ titrations were similar to those obtained after intraperitoneal inoculation, 
but viremia was of lower titer ranging from less than 101 .a to 102.~ pfu per ml 
(Text-fig. 1 B). Initial rapid multiplication in the lungs was followed by hem- 
atogenous spread to the liver and spleen on the 2nd day. Again virus was not 
detectable in the CNS until the 3rd day after inoculation. 

Fluorescent antibody staining showed foci of infection in the lungs, but the 
extent varied greatly from mouse to mouse. Although a portion of inoculum was 
undoubtedly swallowed, no antigen was found in mucosa of stomach or in- 
testines. By the 4th and 5th day fluorescent hepatic and red pulp ceils were 
present, but these hepatic and splenic foci never attained the size or frequency 
of those following intraperitoneal inoculation. 

Stained sections of heads taken 2 and 3 days after inoculation showed areas 
of fluorescent nasal mucosa and fluorescent cells in the submucosa and in termi- 
nal nerve fibers. Fluorescent cells were not found within the CNS before the 
4th day. Semiserial sections of heads of 9 mice with encephalitis were examined. 
Seven had extensive infection of cells in 1 or both trigeminal nerves, and in 3 
this infection extended centrally into the brainstem, 5 showed direct viral in- 
vasion of the olfactory bulbs or their meninges, and 2 had multiple deep foci of 
CNS infection suggesting blood-borne infection. Of these latter mice, 1 had 
lesions in the ventral nucleus of the thalamus and in a cerebellar folium without 
involvement of cranial nerves or olfactory bulbs; the other had, in addition to 
infection of the olfactory bulbs, several foci in the cerebellum and one in the area 
postremata, despite the absence of other brainstem or trigeminal involvement. 

The pattern of fluorescent cells showed two types of spread into the olfactory 
bulbs. In 3 mice infection extended directly from nasal mucosa and submucosal 
tissue through the meninges into the subarachnoid space; this gave rise to wide- 
spread infection of meninges similar to that seen after intracerebral inoculation. 
In 2 mice, however, there was infection of the olfactory bulbs without menin- 
gitis. In 1 of these mice fine lines of fluorescent cells were found traversing the 
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cribriform plate and meninges in association with olfactory nerve fibers (Fig. 4); 
in this mouse mitral and glomerular neuron layers showed more extensive in- 
fection than other cells of the olfactory bulbs (Fig. 5). 

The many sagittal sections of heads prepared during the incubation period 
allowed a detailed study of the histology and chronology of infection along the 
trigeminal nerve. Antigen appeared to be limited to cells within the nerve (Fig. 
6). Mter recording fluorescence on photomicrographs sections were restained 
with conventional stains to identify fluorescent cells; Schwann cells were 
primarily involved, but perineural, and possibly endoneural, fibroblasts were 
also infected. During the incubation period a centripetal progression of infection 
occurred with individual infected cells seldom more than a millimeter proximal 
to  the area of major fluorescence. Fluorescence was not found in gasserian 
ganglion or in brainstem until the tide of infection reached these structures. 
Once the brainstem was penetrated, infection spread caudally and rostrally and 
even into the adjacent cerebellum. 

Cross-sections of infected trigeminal nerves showed fluorescence scattered 
throughout the nerve and extending into the perineurium (Fig. 7). By super- 
imposition of ultraviolet light and phase contrast photomicrographs, it was 
found that fluorescence was absent within visible myelin sheaths (Fig. 8); that 
is, no virus antigen was present in the large axons. Fluorescence often partially 
encircled the myelin sheaths further identifying infected cells as Schwann cells. 
Axons remained free of antigen even after extensive fluorescence was present in 
the perikaryon of the corresponding ganglion cells. 

Thus, after intranasal inoculation virus gained access to the CNS by multiple 
neural pathways and by blood-borne infection. Direct invasion of the suba- 
rachnoid space with dispersion of virus in the CSF similar to the spread after 
intracerebral inoculation, infection of cells along nerves (both olfactory and 
trigeminal) similar to the spread after subcutaneous inoculation, and hematog- 
enous infection similar to the spread after intraperitoneal inoculation were 
found. This diversity of pathogenesis may account for the apparently conflicting 
results obtained in previous studies of herpes virus encephalitis following in- 
tranasal inoculation (19-22). 

DISCUSSION 

These studies establish that herpes simplex virus can penetrate the CNS of 
suckling mice by both hematogenous and neural routes. Blood-borne infection 
was associated with virus multiplication in or around endothelium of small 
cerebral blood vessels; virus moved centripetally within nerves by infection of 
endoneural cells. The primary factors determining the pathway were the route 
of inoculation and initial site of virus growth, but often more than one pathway 
was utilized. Since these findings are contrary to many widely held theories on 
the pathogenesis of encephalitis, they will be discussed briefly in relation to 
previous studies. 
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A previous study employing fluorescent antibody staining in experimental 
herpetic encephalitis has been reported by Lebrun (13). Following intracerebra| 
inoculation of mice, she described fluorescence along the needle track and in 
ependyma and failed to find infected neurons. Concentration of infection along 
the needle track would not be anticipated, since it has been shown that intra- 
cerebral inoculum is not deposited in cerebral tissue but dispersed in CSF with 
overflow into the blood (23, 24). After intracerebral inoculation of poxviruses 
and Murray Valley encephalitis virus, Mims specifically noted absence of 
fluorescent cells along needle tracks (24). In the present study infected cells 
were limited to the meninges and ependyma during the first growth cycle 
and were only rarely found along needle tracks thereafter. Contrary to 
Lebrun's findings, fluorescence of neurons was present throughout the CNS. 
CNS cells supporting virus growth vary with different viruses; fluorescent 
antibody staining in mice has shown that poxviruses multiply solely in meninges 
and ependyma (24), arthropod-borne encephalitis viruses only in parenchymal 
cells (4, 5, 24-26), and the highly selective fixed rabies virus only in certain 
neurons (27). Herpes simplex virus multiplies in all CNS ceils, with possible 
exception of choroid plexus epithelium, and thus is similar to neurotropic 
strains of influenza virus (28, 29). 

Fluorescent antibody staining has not previously been used to study the 
pathogenesis of herpes virus encephalitis following extraneural inoculation, but 
in the past 40 years many studies have been made with other methods. Doerr 
and V~chting (30) first produced experimental herpetic encephalitis by corneal 
inoculation of rabbits. Since intravenous injection of virus produced similar 
encephalitis, they concluded that virus passed from cornea to brain via the 
blood. This theory, however, has received little support except for Anderson's 
(31) finding of inclusions in cerebral capillary endothelium in infected chick 
embryos and Field's (32) suggestion that vasomotor reflex might account for 
segmental CNS localization of lesions after extraneural inoculation of herpes 
virus. In the present study hematogenous spread of herpes virus to the CNS of 
suckling mice after intraperitoneal inoculation was clearly established by dem- 
onstrating the initial CNS infection around small cerebral vessels. 

Theories of pathogenesis of viral encephalitis were long dominated by the 
concept that the CSF was the nutritive fluid of the brain and that substances 
must enter the CSF before gaining access to cerebral tissue; deep lesions within 
the brain would not, therefore, be blood-borne. Even after this theory was 
discredited, the dye studies showing permeability of cerebral capillaries in the 
area postremata, neurohypophysis, pineal, choroid plexus, and intercolumnar 
tubercle led pathologists to look for lesions in these areas if hematogenous in- 
fection was suspected; but no virus was found selectively causing lesions in 
areas of permeability. Hurst (33) first suggested that virus might "grow 
through" cerebral capillaries, a mechanism which would lead to a scattered or 
diffuse infection of the brain. Subsequent quantitative studies on inclusion 
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bodies in the capillary endothelium in cases d fox encephalitis supported this 
theory (34); and Coffin and Liu's (3) fluorescent antibody studies with canine 
distemper showing antigen in endothelial cells gave it graphic confirmation. 

Further questions regarding the viral "blood-brain barrier" arise from the 
failure of most neurotropic viruses to cause encephalitis when inoculated intra- 
venously (35). A period of extraneural growth appears to be prerequisite. This 
might be explained if virus giving rise to encephalitis were attached to or within 
cells, which then settle in small vessels and infect endothelium or pass through 
endothelium by diapedesis. In the present study the majority of herpes virus 
in blood after intraperitoneal inoculation was recovered from plasma, but small 
quantities were also recovered from washed blood cells. Studies to determine 
the relative role of blood cell-borne virus are needed to better understand the 
pathogenesis of hematogenous CNS infection. 

Three years after Doerr and V6chting's report of experimental herpetic 
encephalitis Goodpasture and Teague (36) and Marinesco and Draganesco (37) 
reported evidence for the neural transmission of herpes to the CNS, and this 
became the accepted theory of pathogenesis. Many of the early experiments are 
of questionable validity, since either very gross titrations of tissues or solely 
pathologic or clinical criteria were employed to determine pathways. Wildy (38) 
recently presented the first unequivocal evidence of centripetal spread of 
herpes virus within nerves by titrating nerves after foot-pad inoculation of mice. 

How virus moves within nerves has remained a perplexing problem. Good- 
pasture and Teague (36) inoculated rabbits by varied routes and in different 
sites and found pathologic changes in corresponding CNS segments; they con- 
cluded that virus spread centripetally within axon cylinders, "not in sense of 
passive transport but by active reproduction." Herpes virus is now known to 
enter the nucleus before replication can take place, making this theory unten- 
able (39). Sabin (40) working with the two related herpes viruses, B virus and 
pseudorabies, found no evidence of replication in the axons. Nevertheless, he 
concluded that virus may travel up the long axis cylinders before any multipli- 
cation occurs. The argument might be advanced that Schwann cell infection 
seen in the present study only mirrored this axonal progression, with ceils being 
infected from non-replicating virus within the axon. However, the failure to 
find fluorescence in ganglion cells until the tide of infected endoneural cells 
reached them and the random spread of virus after reaching the spinal cord 
both militate against any transport within axoplasm. Indeed, above the cord 
segments initially infected, the ipsolateral dorsal column, which contains all of 
the presynaptic fibers from the infected peripheral nerve, was at times relatively 
free of infected ceils (Fig. 3). Thus, there appeared to be no relationship between 
axons and the pathway of neural infection. 

Although the theory of axonal spread has been popular for many years, it, 
like other theories, was not based on positive evidence but on the exclusion of 
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other pathways. The neural lymphatics were first incriminated in Marinesco 
and Draganesco's original study (37). However, subsequent work has shown 
neural lymphatic flow to be centrifugal unless the abdominal-subarachnoid 
pressure gradient is reversed by highly unphysiological procedures (41). 

Another theory of neural spread has been that virus ascends da tissue spaces 
between nerve fibers. Wright (42) has presented convincing evidence that tet- 
anus toxin penetrates the CNS via these interspaces and has concluded that 
viruses also may utilize this pathway. He refers to 3 possible conduits: axons, 
lymphatics, and tissue spaces. He rules out axons because of the viscous nature 
of axoplasm and lymphatics because a reverse flow of lymph would be needed. 
He, thus, implicates tissue spaces by exclusion, despite his own evidence that 
sclerosis of these spaces, which prevents tetanus, actually hastens the onset of 
herpetic myelitis in the rabbit. The present study clarifies this problem by 
showing that no conduit is necessary; cells within the peripheral nerve are in- 
fected, and infection spreads from cell to cell probably both directly and via 
the interspaces. 

Although this mechanism of neural spread has not previously been proposed 
in the pathogenesis of herpes simplex virus infections, ascending infection of 
neural cells has been suggested in the pathogenesis of pseudorabies. With this 
closely related virus Hurst (43) found numerous inclusion bodies in Schwann 
cells and postulated an ascending interstitial infection rather than penetration 
v/a the axoplasm. Immunofluorescence studies have demonstrated infected 
endoneural cells with ectromelia (10) and tick-borne encephalitis virus (5) 
infections in mice; however, these findings were unrelated to pathogenesis of 
CNS infection since infection of olfactory nerve cells after inhalation of ectro- 
melia did not lead to CNS infection and the generalized fluorescence of endo- 
neural cells with tick-borne encephalitis virus infection followed CNS involve- 
ment and appeared to result from centrifugal infection. 

It is of interest that Goodpasture (44), who founded the theory of axonal 
spread, raised the possibility of "ascending herpetic neuritis by propagation of 
the virus through cells of the neurolemma;" but he discarded this idea because 
pathologic changes were not prominent in the nerve. Restaining of highly 
fluorescent nerves in the present study confirmed the paucity of inflammatory 
reaction in infected nerves and absence of inclusions in infected Schwann cells, 
but this simply demonstrates the potential weakness of routine histologic 
methods in the study of viral pathogenesis. 

The pathogenesis of herpes simplex virus encephalitis and myelitis was 
studied in suckling mice using routine titration procedures and fluorescent 
antibody staining for the identification of infected cells. After intracerebral 
inoculation virus was shown to disperse rapidly in the cerebrospinal fluid (CSF), 
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multiply in meninges and ependyma, and then invade the underlying paren- 
chyma infecting both neurons and glia. 

Following extraneural inoculation virus gained access to the central nervous 
system (CNS) by both hematogenous and neural pathways. Mter intra- 
peritoneal and intranasal inoculation virus was found to multiply in viscera 
and produce viremia; loci of CNS infection then developed around small cere- 
bral vessels. 

After subcutaneous and intranasal inoculation neural spread of virus was 
demonstrated along corresponding peripheral and cranial nerves. This spread 
resulted from the centripetal infection of endoneural cells (Schwann cells and 
fibroblasts). Antigen was not found in axons even after infection of the corres- 
ponding ganglion cell perikaryon. Subsequent spread within the CNS was un- 
related to neural tracts, and there was no evidence of axonal spread of virus in 
the host-virus system studied. 

These findings are discussed in relation to previous and current theories of 
the viral "blood-brain barrier" and neural pathways of infection. 

The author is indebted to Professor F. J; Fenner and Dr. C. A. Mires for their helpful 
advice and criticism. 
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EXPLANATION OF PLATES 

PLA~ 37 

FzG. 1. Horizontal section of brain of suckling mouse 24 hours after intracerebral 
inoculation of herpes virus. Fluorescence is limited to meningeal cells of the olfactory 
bulb (above) and frontal lobe (below); infection has not yet spread to underlying 
parenchymal cells. X 40. 

FIG. 2. Section of cerebral white matter 72 hours after intraperitoneal inoculation. 
Fluorescence is around small cerebral vessels which have been filled with India ink. 
No other fluorescent cells were found in the CNS of this mouse. X 520. 
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(Johnson: Pathogenesis of herpes virus encephalitis. I) 



PLATE 38 

FIG. 3. Cross-section of thoracic spinal cord of suckling mouse 5 days after sub- 
cutaneous inoculation in the left hindfoot-pad. Fluorescent cells are present in all 
quadrants but are most numerous in the central grey matter and in the right anterior 
horn and white matter (lower left). The left dorsal column, the only tract of ascending 
presynaptic fibers, is outlined and is relatively free of fluorescent cells. Meninges are 
not infected. X 78. 
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(Johnson: Pathogenesis of herpes virus encephalitis. I) 



PLATE 39 

FIG. 4. Sagittal section across cribriform plate (below) and olfactory bulb (above) 
of suckling mouse 4 days after intranasal inoculation of herpes virus. Fluorescent endo- 
neural cells are shown within the olfactory fibers traversing the cribriform plate and 
entering the bulb. X 200. 
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(Johnson: Pathogenesis of herpes virus encephalitis. I) 



PLATE 40 

FIG. 5. Sagittal section of olfactory bulb of same mouse. Fluorescent cells are in 
the glomerular and mitral layers of neurons. × 200. 

FIG. 6. Longitudinal section of trigeminal nerve proximal to the gasserian ganglion 
5 days after intranasal inoculation. Fluorescence is shown in many endoneural cells; 
this appearance extended from the submucosal fibers to the brainstem. × 560. 
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(Johnson: Pathogenesis of herpes virus encephalitis. I) 
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(Johnson: Pathogenesis of herpes virus encephalitis. I) 
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PLATE 41 

FIG. 7. Cross-section of branch of trigeminal nerve distal to the gasserian ganglion 4 days after intranasal 
inoculation with herpes virus. Many fluorescent endoneural cells are shown. × 800. 

PLATE 42 

FIG. 8. Drawing from superimposition of facing photomicrograph with phase contrast photomicrograph 
of the same field. Myelin sheaths are shown by solid lines and areas of bright fluorescence by stippling. 
Fluorescence is shown to be outside of myelin sheaths but often partially encircling sheaths in the location 
of Schwann cells. Clear areas within fluorescent patches were identified by phase contrast as cell nuclei. 
Fluorescence can be seen to extend into perineurium along left side of field. 


