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Introduction: Pathophysiology of diabetic kidney disease (DKD) is incompletely understood. We aim to

elucidate metabolic abnormalities associated with DKD in type 2 diabetes mellitus (T2DM) by targeted

plasma metabolomics.

Methods: A total of 126 T2DMparticipantswith early DKD (urinary albumin-to-creatinine ratio [ACR] 30�299

mg/g andeGFR$ 60ml/min/1.73m2), 154overt DKD (ACR$ 300mg/g or eGFR< 60ml/min/1.73m2), and 129

non-DKD T2DM controls (ACR< 30 mg/g and eGFR$ 60 ml/min/1.73 m2) were included in discovery study.

Findings were subsequently validated in 149 T2DM with macroalbuminuria (ACR $ 300 mg/g) and

149 matched non-DKD T2DM controls. Plasma amino acid, acylcarnitine, Krebs cycle organic acid, and

sphingolipids/ceramide levels were quantified by liquid chromatography�mass spectrometry and gas

chromatography�mass spectrometry.

Results: Of 123 metabolites included in the data analysis, 24 differed significantly between DKD and

controls in the same direction in both discovery and validation subpopulations. A number of short acyl-

carnitines including their dicarboxylic derivatives (C2�C6) were elevated in DKD, suggesting abnormalities

in fatty acids and amino acids metabolic pathways. Five phosphatidylcholines were lower whereas 4

metabolites in the sphingomyelin�ceramide subfamily were higher in DKD. Principal component

regression revealed that long-chain ceramides were independently associated with ACR but not eGFR.

Conversely, essential amino acids catabolism and short dicarboxylacylcarnitine accumulation were

associated with eGFR but not ACR.

Discussion: DKD is associated with altered fuel substrate use and remodeling of sphingolipid

metabolism in T2DM with DKD. Associations of albuminuria and impaired filtration function with

distinct metabolomic signatures suggest different pathophysiology underlying these 2 manifestations

of DKD.
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D
iabetic kidney disease (DKD), defined as a decline
in renal filtration function and/or albuminuria,

affects more than 50% of patients with diabetes.1

It is not only the leading cause of end stage renal
disease (ESRD) but also a major risk factor for
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cardiovascular disease and mortality in patients
with diabetes.2 Although the management of DKD
has improved, the number of patients with DKD is
still increasing, and the ESRD risk attributable to
diabetes has remained unabated in the past decade.3

These unmet clinical needs may stem from the
incomplete understanding in pathophysiology of
DKD.4

Unlike other omics technologies such as genomics
and epigenomics, metabolomics offers a window to
elucidate intermediate and end products of metabolic
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pathways. Therefore, it has emerged as a novel tool to
gain insights into disease pathophysiology.5 Encour-
agingly, a few large-scale metabolomics studies have
identified metabolic pathways associated with chronic
kidney disease (CKD) in the general population. For
instance, Yu et al. found that elevated plasma levels of
kynuerenine, the metabolite derived from tryptophan
catabolism, was associated with incident CKD in
African Americans, which was consistent with studies
performed in the Framingham Heart Study and the
KORA study.6 Given that the pathogenesis of DKD is
closely related to perturbed energy metabolism,
metabolomics may provide insights into pathophysio-
logical pathways associated with DKD and may help to
identify novel interventional targets.7,8 For instance.
Sharma et al. have reported a urinary metabolomic
signature that is suggestive of mitochondrial dysfunc-
tion in patients with DKD.9

Although recent metabolomics studies have
revealed potential pathways associated with DKD
development and its progression,10 several important
limitations are noteworthy: (i) The sample sizes of the
early studies are generally small, and patient profiles
are relatively heterogeneous; (ii) most of these studies
lack a robust validation by an independent popula-
tion10,11; (iii) the coverage of metabolites, especially
for targeted plasma metabolomics studies, is relatively
limited10; and (iv) most studies to date have focused
on urinary metabolomics in patients with DKD.9,12 To
the best of our knowledge, no large-scale metab-
olomics study has characterized plasma metabolites
systemically, especially in patients with type 2 dia-
betes mellitus (T2DM) and kidney disease. In the
present work, we profiled plasma acylcarnitines, Krebs
cycle intermediates, amino acids, and sphinogolipids/
phospholipids by targeted metabolomics in partici-
pants with T2DM. A priori knowledge and literature
review suggest that these metabolites/pathways may
be associated with DKD development or progres-
sion.9,11,13,14 We aim to systematically study metabolic
pathways associated with DKD in an Asian T2DM
population.

METHODS

Participant Recruitment

Participants were recruited consecutively in the dia-
betes center from a regional public hospital in
Singapore between 2003 and 2013. Diagnosis of T2DM
was based on American Diabetes Association criteria
as follows: (i) fasting plasma glucose $ 7 mmol/l;
(ii) random plasma glucose level $ 11.1 mmol/l, or
(iii) self-reported T2DM on hypoglycemic medication.
Exclusion criteria were age less than 21 years, preg-
nancy, manifest infectious diseases, active cancer, and
Kidney International Reports (2017) 2, 470–480
autoimmune diseases. Volunteers were excluded when
renal impairment was likely caused by other diseases
such as polycystic kidney disease, presence of overt
hematuria, or history of glomerulonephritis. Volunteers
with an estimated GFR (eGFR) # 15 ml/min/1.73 m2,
those undergoing dialysis, and those with renal trans-
plants were also excluded from the study. The study
was approved by the Singapore National Health Group
domain-specific ethnical committee, and written con-
sent was obtained from each participant.

Study Design

Participants with T2DM and a broad spectrum of
albuminuria and eGFR levels were included in the
discovery substudy (Table 1). We categorized partic-
ipants as follows: (i) early DKD (urinary albumin-to-
creatinine ratio [ACR] between 30 and 299 mg/g
and eGFR $ 60 ml/min/1.73 m2); (ii) overt DKD
(ACR $ 300 mg/g or eGFR < 60 ml/min/1.73 m2); and
(iii) non-DKD controls (T2DM with ACR < 30 mg/g
and eGFR $ 60 ml/min/1.73 m2). Cognizant of the
technical variability of metabolomics and that DKD is
a heterogeneous disease in which many nondiabetic
causes may have been involved in eGFR decline and
mild albuminuria,2 we subsequently validated find-
ings from a discovery substudy in an independent
subpopulation. A few lines of evidence suggest that
macroalbuminuria is highly correlated with typical
diabetic glomerulopathy on renal biopsy.15,16 There-
fore, we included 149 T2DM patients with macro-
albuminuria (ACR $ 300 mg/g) as cases in the
validation subpopulation and matched them 1-to-1 by
age, sex, ethnicity, and diabetes duration with
non-DKD controls to partially control for confound-
ing. We expected that metabolites would differ be-
tween DKD and non-DKD in both substudies and
might be more likely attributed to classical diabetic
glomerulopathy.

Biochemical Variables

Estimated glomerular filtration rate (eGFR) was calcu-
lated by the Modified Diet in Renal Disease (MDRD)
formula which has performed well in the diabetic
population.17 Urinary albumin was measured by solid-
phase competitive chemiluminescent enzymatic immu-
noassay with a lower detection limit of 2.5 mg/L
(Immulite, DPC, Gwynedd, UK). HbA1c was measured
using an immunoturbidimetric method (Cobas Integra
800 Chemistry Analyser, Roche, Basel, Switzerland).
Triacylglycerol, creatinine, high-density lipoprotein
(HDL) and low-density lipoprotein (LDL) cholesterol
levels were quantified by enzymatic methods (Roche/
Hitachi Cobas C System; Roche Diagnostic GmbH,
Mannheim, Germany).
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Table 1. Clinical and biochemical characteristics of T2DM participants in discovery study
T2DM control
(n [ 129)

Early DKD
(n [ 126)

Overt DKD
(n [ 154) P valuea

Age (yr) 51.6 � 10.9 55.4 � 11.6 64.1 � 10.2 <0.0001

Male sex (%) 63.6 63.5 48.7 0.013

Diabetes duration (yr) 8.3 � 7.2 11.4 � 7.3 14.1 � 9.0 <0.0001

Ethnicity (%) <0.0001

Chinese 68.2 62.7 64.3

Malay 7.0 18.3 31.2

South Asian 24.8 19.0 4.5

Current smoker (%) 11.3 13.4 10.7 0.796

BMI (kg/m2) 26.2 � 4.4 26.9 � 4.7 27.3 � 5.1 0.156

HbA1c (%) 8.0 � 1.3 8.8 � 2.2 8.0 � 1.8 <0.0001

HbA1c (mmol/mol) 64 � 11 73 � 18 64 � 17 <0.0001

Systolic BP (mm Hg) 128 � 15 135 � 18 142 � 22 <0.0001

Diastolic BP (mm Hg) 78 � 9 77 � 10 77 � 12 0.703

HDL cholesterol (mmol/l) 1.33 � 0.38 1.25 � 0.37 1.25 � 0.32 0.124

LDL cholesterol (mmol/l) 2.83 � 0.70 2.80 � 0.74 2.80 � 0.84 0.940

Triacylglycerol (mmol/l, IQR) 1.24 (0.98�1.96) 1.46 (1.16�2.09) 1.64 (1.25�2.32) 0.001

eGFR (ml/min/1.73 m2) 91 � 22 90 � 23 49 � 19 <0.0001

Urinary ACR (mg/g, IQR) 9 (5�17) 59 (38�127) 249 (55�633) <0.0001

Statin use (%) 66.4 72.2 72.7 0.454

RAS blocker use (%) 45.0 73.8 85.1 <0.0001

Insulin use (%) 20.2 37.3 44.8 <0.0001

ACR, albumin-to-creatinine ratio; BMI, body mass index; BP, blood pressure; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; IQR, interquartile range; LDL, low-
density lipoprotein; RAS, renin�angiotensin system; T2DM, type 2 diabetes mellitus.
aOne-way analysis of variance or c2 test where appropriate.
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Biosample Collection, Metabolite Extraction, and

Quantification by Liquid Chromatography�Mass

Spectrometry and Gas Chromatography�Mass

Spectrometry

Participants fasted overnight. Blood samples were
collected in ethylenediaminetetraacetic acid (EDTA)�
containing tubes by phlebotomy, and plasma was
separated by centrifugation. Spot urine samples were
collected in a sterile container. Biosamples were trans-
ferred to the laboratory within 30 minutes after
collection, aliquoted, and stored at �80 �C. Samples
used for this metabolomics study did not undergo
repeated freeze-and-thaw cycles. Early studies have
indicated that plasma acylcarnitines and amino acids
were stable when stored at �80 �C.11

Methods for metabolite extraction and metabolic
profiling for amino acids, acylcarnitines, and organic
acids have been described (see Supplementary
Methodology).18�20 Briefly, plasma acylcarnitines,
amino acids, and lipids were extracted by methanol and
derivatizedwith 3mol/l hydrochloric acid inmethanol or
butanol, respectively. Organic acid was extracted with
ethylacetate and derivatizedwithN,O-Bis(trimethylsilyl)
trifluoroacetamide with protection of the a-keto groups
using ethoxyamine. Urine samples were normalized to
4 mmol/l (45.24 mg/dl) of creatinine concentration by
deionized water before extraction. Amino acids, lipids,
and acylcarnitines were quantified by tandem mass
spectrometry (MS). Organic acids were measured by gas
chromatography�mass spectrometry (GC-MS).
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An aliquot of the same volume from each study
sample was pooled as a quality control (QC) sample.
The relative SD (RSD) of the QC samples may indicate
stability of response of individual metabolites. The QC
sample was injected after every eighth study sample.
The average relative SD of the QC was 9.5% for
acylcarnitines, 4.0% for organic acids, 9.5% for
amino acids, 21.0% for ceramides, 16.7% for sphin-
gomyelins and 21.6% for phosphatidylcholines. Due
to the high relative SD for lipid metabolites, all the
raw readings of ceramide, sphingomyelin, and phos-
phatidylcholine of the study samples were normalized
against their respective QC readings before data
analysis. To account for run-order effects, the samples
were coded and mixed randomly in each substudy.
The assay operators were blinded to the clinical
profiles.

Statistical Analysis

Continuous data are presented as mean � SD or as
median (interquartile range [IQR]) if skewed. Categor-
ical data are expressed as percentage. Urinary ACR was
natural logarithmically transformed. Differences in
means were compared by the Student t test or analysis
of variance, whereas categorical variables were
compared by c2 tests.

We quantified 169 plasma metabolites in total.
Among them, 2 of 12 sphingomyelins, 18 of 33
ceramides, 12 of 18 glucosylceramides, and 14 of 16
lactosylceramides have > 10% missing values (below
Kidney International Reports (2017) 2, 470–480



J-J Liu et al.: Targeted Metabolomics of Diabetic Kidney Disease TRANSLATIONAL RESEARCH
the lower detection limit). These metabolites with high
proportions of missing values usually have low plasma
concentrations with unknown pathophysiological
implications, based on literature search. Hence, we
excluded these 46 sphingomyelin/ceramide metabolites
from data analysis. For the remaining 123 metabolites,
17 amino acids, 45 acylcarnitines, 7 organic acids,
19 phosphatidylcholines, sphingosine, and sphinganine
have < 1% missing values, whereas the missing values
for the remaining 35 metabolites range between 2%
and 9%. For the metabolites included in final analysis,
missingness was replaced by the lowest detected value.
Metabolite concentrations were presented as median
(IQR) to visualize centrality and dispersion, as most of
them were right-skewed. Data were log2 transformed
before analysis for normalization of distribution and
to partially reduce the variation across orders of
magnitude.

We compared differences in metabolite concentra-
tions among early DKD patients, overt DKD patients,
and non-DKD controls by analysis of covariance after
adjustment for age, sex, and ethnicity. The false dis-
covery rate (FDR, q value) was calculated (Benjamini-
Hochberg approach) to account for type I errors
attributable to multiple comparisons. Differences with
both P value and q value < 0.05 were considered as
statistically significant and subjected to validation.
Differences in metabolite concentrations between DKD
and non-DKD controls in the validation substudy were
then compared by the Student t test, and the q value
threshold was set at the < 0.10 level. Furthermore,
Jonckheere�Terpstra tests were applied to examine
which metabolites exhibited a linear trend across the
non-DKD control, early DKD, and overt DKD groups in
the discovery substudy.

We used principal component analysis (PCA) to
aggregate the individual metabolites based on their
degree of correlation with each other under the
assumption that highly correlated metabolites may be
regulated by the same pathway. We focused PCA on the
discovery subpopulation because the profile of these
DKD individuals was closer to the clinical settings.
Principal component (PC) factors were extracted
(eigenvalue > 1) by orthogonal rotation procedure with
the varimax method. Metabolites with loading values
> 0.5 were considered as major loadings in each factor.
The associations of PC factor scores with clinical vari-
ables and renal function were further studied by
multivariable linear regression models. We first entered
the score of each factor as dependent variable, respec-
tively, and clinical variables as independent variables to
study the association of each PC factor with clinical
phenotype (5 models) (Table 2). Next, we studied which
PC factors were independently associated with renal
Kidney International Reports (2017) 2, 470–480
filtration function and albuminuria after adjustment for
clinical risk factors and other PC factors. Both ACR (log-
transformed) and eGFR were entered into the model as
dependent variables, respectively. Clinical variables and
scores of all 5 PC factors were entered as independent
variables (Table 3). Data analysis was performed
using SPSS 22.0 for Windows (IBM, Armonk, NY) and R
software version 3.2.3 (Comprehensive R Archive
Network, Wirtschaftsuniversität Wien, Austria).

RESULTS

Plasma Metabolites That Differed Significantly

Between DKD and Non-DKD Controls

Participants with DKD in the discovery subpopulation
were of older age and had higher HbA1c, systolic blood
pressure (SBP), and triacylglycerol levels as compared
with non-DKD controls. They were more likely on
insulin and renin-angiotensin system (RAS) blockers.
Consistent with the DKD prevalence in Singapore,21

Malays were overrepresented whereas South Asian
participants were underrepresented in DKD groups,
especially in the overt DKD group, as compared to their
proportions in the non-DKD control group (Table 1).
Similar clinical and biochemical profile could be
observed in the validation subpopulation (Table 4).
There were no significant differences in body mass
index (BMI), diastolic blood pressure, use of statin and
proportion of current smokers between DKD and non-
DKD controls in both subpopulations.

Of the 123 plasma metabolites included in data
analysis, 33 differed significantly between DKD and
non-DKD controls in discovery substudy (Table S1),
and 24 of these 33 metabolites differed significantly in
the same direction in the validation subpopulation
(Table S2). Of these 24 plasma metabolites, C2, C4,
C4-OH, C5-DC, Cer18:1/16:0, GlcCer18:1/18:0, and
5 phosphatidylcholine subspecies levels differed
significantly between early DKD and non-DKD controls
(Table S1); notably, 19 of them showed a linear trend
across the non-DKD, early DKD, and overt DKD groups
in the discovery subpopulation (Table S3). As shown in
Table 5 and Figure 1, most acylcarnitines with signif-
icant differences between DKD and non-DKD had short
and medium chains (2�8 carbons) and many of them
belonged to the short dicarboxylacylcarnitine sub-
family (C3-DC, C4-DC, C5-DC, and C6-DC).22 Four
sphingomyelin�ceramide metabolites (sphingomyelin
18:1/16:1, ceramide 18:1/16:0, glucosylceramide 18:1/
18:0, and sphingosine) were elevated in DKD patients
as compared to those in non-DKD controls.

Short plasma acylcarnitines can be filtered into
urine. Hence, we measured urinary short- and medium-
chain acylcarnitine concentrations to examine whether
plasma accumulation of these acylcarnitine subspecies
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Table 2. Association of metabolite principal component factor scores with clinical and biochemical variables in multivariable linear regression
analysis in discovery subpopulation (N ¼ 409)

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

% of Total variance 16.7 13.4 9.5 9.1 8.8

Main loading C2, C4-OH, C6,
C14:1-OH, C14-OH/
C12-DC, C18-OH/

C16-DC

PC32:2, PC34:3,
PC36:6, PC38:3;

PC40:5

C4-DC, C5-DC, C8-OH/
C6-DC

Cer18;1/16:0,
GlcCer18:1/18:0,
SM18:1/16:1

C3, C5, C5:1

Clinical variables b P value b P value b P value b P value b P value

Age (yr) 0.002 0.773 0.007 0.207 0.011 0.035 –0.005 0.299 0.008 0.144

Male sexa 0.084 0.428 –0.171 0.100 0.347 0.001 –0.115 0.254 0.168 0.106

Malay ethnicityb –0.243 0.079 –0.043 0.751 –0.131 0.325 0.409 0.002 –0.038 0.780

South Asian ethnicityb –0.004 0.976 0.336 0.020 0.263 0.064 0.020 0.886 –0.236 0.101

BMI (kg/m2) 0.014 0.222 0.007 0.740 –0.014 0.201 0.003 0.756 0.009 0.407

Diabetes duration (yr) 0.011 0.111 –0.012 0.072 –0.009 0.174 0.007 0.268 –0.008 0.229

HbA1c (%) –0.049 0.101 –0.057 0.053 0.045 0.124 0.037 0.195 0.062 0.038

HDL cholesterol (mmol/l) –0.063 0.706 0.286 0.081 0.062 0.699 0.407 0.011 0.164 0.316

LDL cholesterol (mmol/l) 0.000 0.997 –0.001 0.988 –0.056 0.424 0.221 0.001 0.035 0.615

LnTG 0.247 0.031 0.358 0.001 0.035 0.751 0.050 0.643 0.333 0.003

Systolic BP (mm Hg) 0.000 0.903 0.000 0.865 –0.002 0.456 0.001 0.607 –0.004 0.139

eGFR (ml/min/1.73 m2) –0.001 0.586 –0.003 0.104 –0.008 <0.0001 –0.002 0.309 –0.004 0.059

LnACR 0.008 0.808 –0.052 0.100 0.006 0.848 0.087 0.005 –0.010 0.745

RAS blocker use (yes) –0.029 0.799 –0.020 0.859 0.001 0.990 –0.071 0.518 0.167 0.139

Insulin use (yes) –0.101 0.389 –0.003 0.980 –0.018 0.873 –0.121 0.280 –0.180 0.117

The score of each factor was entered as a dependent variable. All clinical variables were entered as independent variables. BMI, body mass index; BP, blood pressure; HDL, high-
density lipoprotein; LDL, low-density lipoprotein; LnACR, natural logarithmically transformed albumin-to-creatinine ratio; LnTG, natural logarithmically transformed triacylglycerol; RAS,
renin-angiotensin system.
aFemale as reference.
bChinese ethnicity as reference.
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was due to their reduced renal filtration in participants
with DKD. The majority of urinary short and medium-
chain acylcarnitines did not differ significantly
between DKD patients and non-DKD controls
(Table S4). Spearman correlation analysis showed that
plasma and urine short- and medium-chain acylcarni-
tine levels were only modestly to moderately correlated
(Table S5). These data, together with the observation
that plasma acylcarnitine levels were elevated even in
those with preserved renal filtration function (early
DKD), suggest that accumulation of short and medium-
chain acylcarnitine subspecies in plasma may not be
attributed to their reduced renal excretion in DKD.

Cognizant of the difference in designs of discovery
and validation substudies, we performed a sensitivity
analysis to compare the metabolite levels between
non-DKD controls (n ¼ 129) and those with macro-
albuminuria (ACR > 300 mg/g regardless of eGFR,
n ¼ 67) in a discovery subpopulation after adjustment
for age, sex, ethnicity, and diabetes duration. The
clinical and biochemical profiles of cases and controls
included in the sensitivity analysis (Table S6) were
similar to those in the validation subpopulation
(Table 4). In agreement with the primary analysis,
essential amino acids and phosphatidylcholine levels
were lower, whereas short-chain acycarnitine and
sphingolipid levels were higher in macroalbuminuric
DKD patients. Among 24 metabolites that differed
significantly between DKD and controls in 2
474
subpopulations in the primary analysis, 16 of them
also showed statistically significant differences be-
tween case patients and controls in the sensitivity
analysis (P < 0.05 and q < 0.05), and another 3 me-
tabolites trended in the same direction (P < 0.1 and
q < 0.1) (Table S7). In another sensitivity analysis, we
compared plasma metabolite levels between case pa-
tients and controls after adjustment for multiple po-
tential confounders by analysis of covariance. As
shown in Table S8, differences in short acylcarnitines
and phosphatidylcholine levels between case patients
and controls remained statistically significant in both
substudies after adjustment for multiple covariates.
Interestingly, the differences in ceramide 18:1/16:0
and sphingomyelin 18:1/16:1 levels between controls
and macroalbuminuric DKD patients in a validation
subpopulation were attenuated after adjustment for
lipids profile (HDL cholesterol, LDL cholesterol, and
triacylglycerol) in the multivariable model (P ¼ 0.034
and P ¼ 0.025, respectively, without adjustment for
lipid profile).

PCA and Association of Metabolite Component

Factors With Clinical Variables

Seven PC factors derived from 24 metabolites by
PCA explained 70% of the total variances in the dis-
covery subpopulation. As shown in Table S9, major
loadings (loading value > 0.5) in factor 1 were even-
number acylcarnitines (C2, C4-OH, C6, C14:1-OH,
Kidney International Reports (2017) 2, 470–480



Table 3. Association of eGFR and urinary ACR with metabolite
component factor scores in discovery subpopulation (N ¼ 409)

Covariate

eGFR Urinary ACRa

b P value b P value

Age (yr) –0.836 <0.0001 0.020 0.015

Male sexb 2.127 0.411 –0.168 0.325

Malay ethnicityc –7.206 0.031 0.401 0.068

South Asian ethnicityc 5.728 0.015 –0.547 0.019

BMI (kg/m2) –0.466 0.086 0.002 0.909

Diabetes duration (yr) –0.369 0.027 0.023 0.034

HbA1c (%) 2.708 <0.0001 0.093 0.049

HDL cholesterol (mmol/l) 6.448 0.108 –0.557 0.035

LDL cholesterol (mmol/l) –1.836 0.289 0.009 0.940

Ln TG –2.805 0.318 0.114 0.537

SBP (mm Hg) –0.066 0.331 0.021 <0.0001

Insulin use (yes or no) –5.176 0.064 0.476 0.010

RAS blocker (yes or no) –5.786 0.033 0.682 <0.0001

Factor 1 (flux/oxidation imbalance and FAO) –0.918 0.448 0.021 0.795

Factor 2 (phosphatidylcholine) –1.819 0.138 –0.108 0.179

Factor 3 (short dicarboxylacylcarnitine) –5.228 <0.0001 0.071 0.378

Factor 4 (sphingomyelin–ceramide) –1.866 0.135 0.249 0.003

Factor 5 (amino acid catabolism) –2.619 0.033 0.010 0.906

Both eGFR and ACR were entered as dependent variables. All clinical variables and
scores of 5 principal component analysis factors were entered as independent vari-
ables. ACR, albumin-to-creatinine ratio; BMI, body mass index; eGFR, estimated
glomerular filtration rate; FAO, fatty acid oxidation; HDL, high-density lipoprotein; LDL,
low-density lipoprotein; LnTG, natural logarithmically transformed plasma tri-
acylglycerol; RAS, renin-angiotensin system.
aACR is natural logarithmically transformed.
bFemale as reference.
cChinese as reference.

Table 4. Clinical and biochemical characteristics of T2DM
participants in validation study

T2DM Control
(n [ 149)

Macroalbuminuric DKD
(n [ 149) P valuea

Age (yr) 57.0 � 10.2 57.0 � 10.3 NA

Male sex (%) 62.4 62.4 NA

Diabetes duration (yr) 10.8 � 7.1 10.9 � 6.9 NA

Ethnicity (%) NA

Chinese 71.1 71.1

Malay 16.1 16.1

South Asian 12.8 12.8

Current smoker (%) 11.9 17.2 0.241

BMI (kg/m2) 26.2 � 4.4 27.4 � 5.5 0.061

HbA1c (%) 8.1 � 1.8 8.8 � 2.2 0.004

HbA1c (mmol/mol) 65 � 14 73 � 18 0.004

Systolic BP (mm Hg) 131 � 17 144 � 21 <0.0001

Diastolic BP (mm Hg) 77 � 10 79 � 12 0.120

HDL cholesterol (mmol/l) 1.29 � 0.37 1.19 � 0.31 0.009

LDL cholesterol (mmol/l) 2.75 � 0.83 3.09 � 1.10 0.003

Triacylglycerol (mmol/l, IQR) 1.34 (0.98–1.93) 1.95 (1.28–2.95) <0.0001

eGFR (ml/min/1.73 m2) 94 � 21 62 � 32 <0.0001

Urinary ACR (mg/g, IQR) 9 (6–18) 861 (463–2098) <0.0001

Statin use (%) 73.3 78.9 0.312

RAS blocker use (%) 53.1 83.9 <0.0001

Insulin use (%) 24.5 35.6 0.038

ACR, albumin-to-creatinine ratio; BMI, body mass index; BP, blood pressure; eGFR,
estimated glomerular filtration rate; HDL, high-density lipoprotein; IQR, interquartile
range; LDL, low-density lipoprotein; NA, not applicable; RAS, renin-angiotensin system;
T2DM, type 2 diabetes mellitus.
aStudent t test or c2 test where appropriate.
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C14-OH/C12-DC, C18-OH, and C16-DC) that were indic-
ative of incomplete fatty acid oxidation (FAO), substrate
flux�oxidation imbalance or increased alternative FAO
pathway.23�27 Main loadings in factor 2 were phospha-
tidylcholines including PC 32:2, PC 34:3, PC 36:6, PC
38:3, and PC 40:5, whereas the main loadings in factor 4
were metabolites in sphingomyelin�ceramide meta-
bolism pathway, namely, sphingomyelin 18:1/16:1,
ceramide 18:1/16:0, and glucosylceramide 18:1/18:0. The
main loadings in factor 3 mainly consisted of short-chain
dicarboxylacylcarninies that were derived from either
u-FAO or amino acid catabolism (C4-DC, C5-DC, C8-OH/
C6-DC).22,28 In factor 5, the main loadings were C3, C5,
and C5:1, which were mainly derived from amino acid
catabolism.19,24,25 As factor 6 and 7 represented only a
small proportion of total variances, we focused our
further analysis on the first 5 factors.

Multiple linear regression models revealed that PC
factor suggestive of substrate flux�utilization imbal-
ance/incomplete FAO and factor for phosphatidylcho-
line reduction were independently associated with
plasma triacylglycerol levels. Notably, only the factor
for short dicarboxylacylcarnitine was independently
associated with eGFR after adjustment for multiple
clinical risk factors. The factor for sphingomye-
lin�ceramide metabolism was independently associ-
ated with urinary ACR as well as HDL and LDL
cholesterol levels. The factor indicative of amino acid
Kidney International Reports (2017) 2, 470–480
catabolism was independently associated with both
HbA1c and plasma triacylglycerol levels (Table 2).

Association of Renal Filtration Function and

Albuminuria Levels With Distinct Metabolite

Component Factors in Individuals With T2DM

Next, we examined the relationship of PC factor scores
with renal filtration function and albuminuria levels
in participants with T2DM. Interestingly, factors
indicative of short dicarboxylacylcarnitine accumula-
tion and amino acid catabolism were independently
associated with eGFR but not urinary ACR after
adjustment for multiple clinical and biochemical var-
iables and mutual adjustment for other component
factors. Conversely, the factor for sphingomye-
lin�ceramide metabolism was independently associ-
ated with urinary ACR but not eGFR (Table 3). In an
exploratory analysis in a matched case�control vali-
dation subpopulation in which participants with
“extreme phenotype” were included, metabolites
suggestive of short dicarboxylacylcarnitine accumu-
lation and amino acid catabolism (C3, C4, C5, C51:1,
C4-DC, C5DC, C5-OH/C3-DC, C6, and C8-OH/C6-DC)
were aggregated in the same PC factor (Table S10).
Multivariable linear regression showed that it was the
strongest variable that was independently associated
with eGFR. In agreement with findings in discovery
subpopulation, factors for ceramide metabolism
475



Table 5. Plasma metabolites that differed significantly in discovery and validation subpopulations in the same direction
Discovery substudy Validation substudy

T2DM Control
(n [ 129)

Early DKD
(n [ 126)

Overt DKD
(n [ 154) P value q Value

T2DM Control
(n [ 149)

Overt DKD
(n [ 149) P value q Value

Serine (mmol/l) 106 (91–123) 108 (91–123) 97 (85–114) 0.022 0.017 113 (101–132) 111 (89–128) 0.0018 0.00313

C2 (mmol/l) 3.2 (2.6–4.0) 3.7 (2.7–4.6) 3.8 (2.9–5.0) 0.001 0.007 2.8 (2.3–3.6) 3.5 (2.9–4.6) 4.57E-6 1.29E-5

C3 (nmol/l) 204 (144–243) 218 (165–276) 228 (175–279) 0.043 0.027 202 (157–253) 231 (183–289) 8.60E-4 1.58E-3

C4 (nmol/l) 100 (74–127) 122 (87–189) 143 (103–197) 0.001 0.007 106 (82–135) 142 (104–237) 1.62E-9 2.18E-8

C4-OH (nmol/l) 13 (9–18) 17 (12–25) 18 (12–24) 4.38E-4 0.007 12 (8–16) 16 (10–23) 2.07E-4 4.02E-4

C5 (nmol/l) 45 (33–54) 49 (37–60) 53 (42–69) 0.017 0.014 46 (34–54) 57 (45–75) 1.27E-09 6.99E-9

C4-DC (nmol/l) 14 (12–18) 16 (13–21) 20 (16–25) 1.03E-4 0.006 14 (11–16) 20 (15–28) 9.00E-18 1.49E-16

C5:1 (nmol/l) 10 (7.8–13) 10 (8.2–13) 13 (10–17) 0.001 0.007 9.3 (7.3–11.0) 11.4 (9.0–14.6) 2.32E-8 9.57E-8

C5-DC (nmol/l) 26 (21–30) 28 (22–33) 30 (24–37) 0.009 0.010 20 (17–24) 28 (22–39) 1.50E-15 1.65E-14

C5-OH/C3-DC (nmol/l) 18 (14–21) 20 (15–23) 22 (18–31) 0.001 0.007 13 (11–15) 20 (14–25) 1.50E-19 6.60E-18

C6 (nmol/l) 37 (31–48) 43 (32–57) 48 (38–65) 0.003 0.008 32 (25–39) 45 (31–60) 9.95E-11 6.57E-10

C8-OH/C6-DC (nmol/l) 24 (20–35) 30 (20–42) 36 (26–51) 0.001 0.007 23 (18–32) 38 (23–60) 1.01E-11 8.33E-11

C14:1-OH (nmol/l) 6.0 (5.0–7.7) 6.5 (5.1–8.9) 7.2 (5.4–9.4) 0.045 0.028 5.4 (4.2–7.1) 6.1 (4.6–7.8) 0.038 0.0522

C14-OH/C12-DC (nmol/l) 4.6 (3.5–5.3) 4.9 (3.9–6.7) 5.3 (3.9–6.7) 0.016 0.014 3.7 (2.8–4.8) 4.4 (3.2–5.6) 0.019 0.0285

C18-OH/C16-DC (nmol/l) 2.5 (1.9–2.9) 2.9 (2.1–3.6) 2.7 (2.0–3.5) 0.023 0.017 2.5 (1.9–3.4) 2.9 (2.2–3.8) 0.007 0.0116

Cer18:1/16:0 (nmol/l) 244 (198–297) 277 (229–330) 272 (224–334) 0.005 0.009 245 (202–288) 271 (233–342) 9.38E-5 2.06E-4

GlcCer18:1/18:0 (nmol/l) 61 (48–81) 80 (63–103) 75 (58–111) 1.48E-4 0.006 63 (47–79) 68 (51–103) 0.029 0.0416

SM 18:1/16:1 (mmol/l) 14 (12–16) 14 (12–17) 15 (13–18) 2.52E-4 0.006 9.2 (7.6–10.7) 9.8 (8.3–11.4) 1.02E-4 2.10E-4

Sphingosine (nmol/l) 23 (16–36) 26 (17–37) 26 (17–42) 0.041 0.026 27 (16–47) 28 (19–80) 0.009 0.0141

PC 32:2 (mmol/l) 2.5 (2.0–3.3) 2.2 (1.6–2.9) 2.2 (1.6–2.9) 0.005 0.009 1.0 (0.8–1.4) 0.8 (0.5–1.1) 7.58E-8 2.52E-7

PC 34:3 (mmol/l) 8.7 (7.0–10.5) 7.8 (6.1–9.8) 7.9 (6.2–10.3) 0.031 0.021 3.4 (2.4–4.7) 2.5 (2.0–3.4) 1.82E-6 5.46E-6

PC 36:6 (mmol/l) 0.5 (0.4–0.6) 0.4 (0.3–0.6) 0.5 (0.4–0.6) 0.007 0.010 0.4 (0.3–0.5) 0.3 (0.2–0.4) 3.82E-5 9.69E-5

PC 38:3 (mmol/l) 21 (16–27) 19 (13–24) 20 (16–26) 0.025 0.019 13 (10–17) 10 (7–13) 7.63E-8 2.52E-7

PC 40:5 (mmol/l) 5.0 (3.8–6.1) 4.4 (3.2–5.9) 4.8 (3.7–6.1) 0.040 0.024 3.9 (3.1–4.8) 3.3 (2.6–4.1) 8.27E-5 1.95E-4

P values in discovery study have been adjusted for age, sex, and ethnicity by analysis of covariance. GlcCer, glucosylceramide; SM, sphingomyelin; PC, phosphatidylcholine; T2DM, type
2 diabetes mellitus.
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(ceramide 18:1/16:0, glucosylceramide 18:1/18:0, and
sphingosine) were independently associated with
urinary ACR but not eGFR (Table S11). Similarly, in
the sensitivity analysis, component factors for short
dicarboxylacylcarnitines were independently associ-
ated with eGFR (P ¼ 0.001) but not ACR (P ¼ 0.847),
whereas component factors for sphingomye-
lin�ceramide metabolism were associated with ACR
(P ¼ 0.019) but not eGFR (P ¼ 0.202) after adjustment
for multiple clinical covariates and scores of other
component factors (data not shown).

DISCUSSION

There are several novel findings in this targeted plasma
metabolomics study. First, profiling of plasma acyl-
carnitines revealed evidence for incomplete FAO and
intriguingly, accelerated catabolism of amino acids in
individuals with T2DM and kidney disease. Second, a
reduction in plasma phosphatidylcholine levels and
elevation of long-chain sphingomyelin and ceramide
levels suggested remodeling of sphingolipids in T2DM
with DKD. Finally, we found that impaired renal
filtration function and albuminuria levels were associ-
ated with different metabolite signatures.

Targeted metabolomics provides an excellent survey
of energy-yield pathways and fuel substrate selection.5
476
In addition to incomplete FAO as indicated by an
elevation in b-oxidation�derived even-number acyl-
carnitines (Table 5 and Figure 1), our data point to an
accelerated catabolism of amino acids, especially
aromatic amino acids, in patients with DKD.23�25 This
is suggested by elevated levels of amino acid�derived
acylcarnitines (C3, C5, C3-DC, C4-DC, C5-DC, and
C6-DC) and lower plasma levels of tyrosine and
tryptophan in participants with DKD (P ¼ 0.002
and P ¼ 0.014 in an unadjusted model, borderline
significance after adjustment for age, sex, and
ethnicity) (Table S1). The depletion of aromatic amino
acids has been reported by other studies in both dia-
betic and non-diabetic populations with chronic kid-
ney diseases.6,11,29 It is worth noting that the flux of
amino acids and its oxidation in mitochondria occur
only under special circumstances such as aerobic
physical exercise.30,31 Therefore, the accelerated amino
acid catabolism in DKD is intriguing, and the sensory
signals that trigger amino acid flux and oxidation in
these patients remain largely unknown. On the other
hand, a large body of evidence has shown that excess
intracellular and circulating acylcarnitines may exac-
erbate metabolic disturbance and lead to cytotox-
icity.24,32,33 Hence, it is conceivable that accumulation
of FAO and amino acid�derived metabolic
Kidney International Reports (2017) 2, 470–480



Figure 1. Plasma metabolites that differed significantly between diabetic kidney disease (DKD) patients and non-DKD controls in the same
direction in both discovery and validation subpopulations (highlighted in red) and the potential metabolic pathways associcated with DKD. AC,
acylcarnitine; CPT-1, carnitine palmitoyltransferase I; ER, endoplasmic reticulum; FFA, free fatty acid; LCDA, long-chain dicarboxylic acid; NF-kB,
nuclear factor�kB; PDC, pyruvate dehydrogenase complex; SCDA, short-chain diacids; SM, sphingomyelin; TCA, tricarboxylic acid cycle.
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intermediates in plasma may play a role in the pro-
gression of DKD (Figure 1).

Another metabolic feature of DKD observed in the
current study is the elevation of a cluster of dicarboxyl
and hydroxyl acylcarnitines in plasma (Table 5
and Figure 1). Increased formation of dicarboxyl and
hydroxyl dicarboxylic acids via u- FAO and u-1 FAO
and their conversion to the corresponding acylcarni-
tines may be attributed to acyl-CoA accumulation in
DKD.34 u-Oxidation is a rescue pathway when mito-
chondrial fatty acid oxidation is impaired.27,34 A recent
study by Kraus et al. indicated that endoplasmic re-
ticulum stress might elevate short-chain diacid levels.22

Thus, accumulation of short- and long-chain dicar-
boxylacylcarnitines may indicate mitochondrial stress
and/or endoplasmic reticulum stress that may lead to
activation of alternative FAO pathways in DKD.

Accumulation of acetyl-CoA�derived C2 (ace-
tylcarnitine), as observed in our study, points to a
mismatch between energy substrate flux and its utili-
zation in DKD. However, due to the observational
nature of our study, we are unable to elucidate whether
the imbalance is due to accelerated flux or a reduced
downstream utilization, or both. A strong body of
evidence supports that mitochondrial function is
markedly impaired in patients with DKD. A decrease in
Kidney International Reports (2017) 2, 470–480
electronic transport chain activities accompanied by an
overall reduction in mitochondrial content and PGC-1a
expression has been found in diabetic kidney.9,35

Similar defects have been observed in diabetic islet,
heart, and skeletal muscle.36 Therefore, impaired
mitochondrial function may at least partially explain
the substrate flux/oxidation imbalance in DKD. On the
other hand, insulin resistance and other related meta-
bolic disturbance in DKD may impair mitochondria and
restrict its ability to select glucose as preferred sub-
strate for oxidation (metabolic inflexibility).35,37

Therefore, the increased flux of fatty acids and amino
acids into mitochondria may be a compensation for
impaired glucose utilization.38 Notably, fuel supply
and oxidation may not necessarily be reduced in the
presence of mitochondrial dysfunction. For instance,
frank mitochondrial dysfunction in humans (e.g., my-
opathies with impaired electron transport chain
activity) is accompanied by increased fuel flux and
oxidation to compensate for the impaired ATP syn-
thesis.39 Taken together, we postulate that both
impaired mitochondria function and energy substrate
oversupply in individuals with T2DM may be involved
in intramitochondrial metabolic intermediates accu-
mulation and their extracellular overflow to circula-
tion. A future in vivo tracing study by isotope-labeled
477
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substrates may provide insights into substrate flux,
selection, and oxidization in DKD.

We found that long-chain sphingomyelin and
ceramides are elevated in participants with DKD, sug-
gesting that the sphingomyelin�ceramide pathway
may play a part in renal complications. The underlying
pathological mechanisms may involve impairment of
mitochondria function, enhanced generation of reactive
oxygen species, activation of apoptotic pathway,
elevation of inflammation tone, and endoplasmic
reticulum stress.40 The latter may contribute to the
aforementioned overproduction of short-chain diacids
and long-chain dicarboxylacylcarnitines in DKD.22 The
observed pattern of reduction in phosphatidylcholine
and increment in sphingomyelin levels may suggest
sphingolipid remodeling in DKD, as sphingomyelin can
be synthesized from phosphatidylcholine by chol-
inephosphotransferase action.41

Another novel finding in our current study is
the association of renal filtration function and albu-
minuria levels with distinct metabolite signatures.
Early studies have found that both eGFR and ACR are
independent predictors of CKD progression.42 In
addition, genetic studies have found little overlap be-
tween loci of eGFR and ACR.43 Association of sphin-
gomyelin with albuminuria has been reported in
diabetic patients, and inhibiting conversion of sphin-
gomyelin to ceramide might protect kidney function
and reduce albumin excretion in animal models.14,44,45

Interestingly, we found that metabolite signature for
sphingomyelin�ceramide metabolism was indepen-
dently associated only with albuminuria but not with
renal filtration function in T2DM. These data echo
findings from an early study showing that poly-
morphism of ceramide synthase 2 (CerS2) was associ-
ated only with changes in albuminuria but not eGFR in
patients with diabetes.46 Our data reinforce the notion
that albuminuria and decline of filtration function may
represent complementary, if overlapping, manifesta-
tions of kidney damage.47

An inverse association of acylcarnitine levels with
eGFR has been reported in nondiabetic populations.13

Our current study extended the early findings by
showing that among many acylcarnitine subspecies
that differed significantly between DKD versus non-
DKD controls, only short-chain diacids and amino
acid�derived acylcarnitines were strongly and inde-
pendently associated with eGFR (Tables 2 and 3).
This finding is principally agreeable with findings from
an early, small study that reported that amino
acid�derived acylcarnitines predicted progression to
ESRD in T2DM.11

Our study has several strengths. Multiple uncon-
trolled factors may contribute to heterogeneity of
478
metabolomic profile.We included 2 subpopulations with
relatively large sample sizes to partially address the
inherent shortcoming of a metabolomics study. In addi-
tion, the coverage of metabolites in our study is broader
than that in early reports. These strengths have enabled
us to identify several novel pathophysiological features
associated with DKD. Nevertheless, several weaknesses
should be mentioned, as follows: (i) This is a cross-
sectional study in its design. Our data can show associ-
ation but not causality. (ii) Some important clinical
variables such as physical activities, diet, and comor-
bidities were not considered in our current study.
Although the inclusion of 2 independent subpopulations
may partially address this concern, validation of our
findings by other independent studies is warranted. (iii)
We measured urinary albumin level only once. It has
been known that the day-to-day variation of albuminuria
level is high.2 (iv) Due to technical limitations, we are not
able to separate the isomeric species including C8-OH/
C6-DC, C14-OH/C12-DC, and C18-OH/C16-DC. An early
study showed that the signals of these isomers come
mainly from branched-chain dicarboxylacylcarnitines.22

(v) Although targeted metabolomics provides accurate
metabolite identification and quantification, it can cover
only a subset of the human metabolome. Nontargeted
metabolomics is needed to complement our findings.
Finally, wewould highlight that participants included in
a validation substudy had “extreme phenotype” in terms
of DKD phenotype. Therefore, data obtained from this
subpopulation should be interpreted with caution. In
addition, clinical characteristics of participants and the
loadings of factors are different in discovery and vali-
dation subpopulations (Tables 1 and 4, Tables S9 and
S10). Hence, direct comparisons of factors derived from
these 2 subpopulations are not relevant.

In conclusion, our targeted plasma metabolomics
study implicates altered energy substrate selection,
imbalance of substrate flux and utilization, as well as
remodeling of sphingolipids in T2DM with DKD. The
association of distinct plasma metabolite signatures
with eGFR and albuminuria suggest different patho-
physiological processes underlying these 2 related
manifestations of DKD in individuals with T2DM.
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