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Abstract

In this study, we introduce an interpretable graph-based deep learning prediction model, AttentionSiteDTI, which utilizes protein
binding sites along with a self-attention mechanism to address the problem of drug–target interaction prediction. Our proposed model
is inspired by sentence classification models in the field of Natural Language Processing, where the drug–target complex is treated
as a sentence with relational meaning between its biochemical entities a.k.a. protein pockets and drug molecule. AttentionSiteDTI
enables interpretability by identifying the protein binding sites that contribute the most toward the drug–target interaction. Results
on three benchmark datasets show improved performance compared with the current state-of-the-art models. More significantly,
unlike previous studies, our model shows superior performance, when tested on new proteins (i.e. high generalizability). Through
multidisciplinary collaboration, we further experimentally evaluate the practical potential of our proposed approach. To achieve
this, we first computationally predict the binding interactions between some candidate compounds and a target protein, then
experimentally validate the binding interactions for these pairs in the laboratory. The high agreement between the computationally
predicted and experimentally observed (measured) drug–target interactions illustrates the potential of our method as an effective
pre-screening tool in drug repurposing applications.

Keywords: Deep learning, Self-Attention, Binding Sites, Machine learning, drug–target interaction, SARS-CoV-2, DTI software, DTI
database.

Introduction
Drug–target interaction (DTI) characterizes the binding
between a drug and its target, critical to the discov-
ery of novel drugs and repurposing of existing drugs.
High-throughput screening remains the most reliable
approach to examining the affinity of a drug toward its

targets. However, the experimental characterization of
every possible compound–protein pair quickly becomes
impractical due to the immense space of chemical com-
pounds, targets and mixtures. This motivates the use of
computational approaches for DTI prediction. Molecular
simulation and molecular docking are among the earlier
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computational approaches, which typically require 3D
structures of the target proteins to assess the DTI. The
application of these structure-based methods is limited,
as there are many proteins with unknown 3D structures,
and they involve an expensive process. Machine Learn-
ing (ML) algorithms have emerged to overcome some
of these challenges in the process of drug design and
discovery. Traditional shallow ML-based models, such as
KronRLS [1] and SimBoost [2], require hand-crafted fea-
tures, which highly affect the performance of the models.
Deep Learning has advanced these traditional models
due to their ability to automatically capture useful latent
features, leading to highly flexible models with extensive
power in identifying, processing and extrapolating com-
plex patterns in molecular data. Deep Learning models
for DTI can be mainly categorized into two classes. One
class is designed to work with sequence-based input
data representation. Examples of this type include con-
volutional neural networks (CNNs) and recurrent neural
networks (RNNs). These models are incapable of captur-
ing structural information of the molecules, leading to
the degraded predictive power. This limitation motivates
the use of a more natural representation of molecules
and the introduction of a second class of Deep Learning
models, namely graph neural networks (GNNs). GNNs
use graph descriptions of molecules, where atoms and
chemical bonds correspond to nodes and edges, respec-
tively. Graph convolutional neural network (GCNN) and
graph attention network (GAT) [3] are the two widely
used GNN-based models in computer-aided drug design,
and discovery [4–6]. All these graph-based models use
amino acid sequence representations for proteins, which
cannot capture the 3D structural features that are key
factors in the prediction of DTIs. Obtaining the high-
resolution 3D structure of the proteins is a challenging
task, besides the fact that proteins contain a large num-
ber of atoms requiring a large-scale 3D (sparse) matrix
to capture the whole structure. To alleviate this issue,
an alternative strategy has been adopted wherein the
proteins are represented by a 2D contact (or distance)
map that shows the interaction of proteins’ residue pairs
in the form of a matrix [7, 8]. It is worth mentioning
that a contact (or distance) map is typically the output of
protein structure prediction, which is based on heuristics
and provides only an approximation abstraction of the
real structure of the protein; generally, different from
the one determined experimentally via X-ray crystallog-
raphy or by nucleic magnetic resonance spectroscopy
(NMR) [9]. Taken all together, and considering the fact
that the binding of a protein to many molecules occurs
at different binding pockets rather than the whole pro-
tein, in this paper, we propose AttentionSiteDTI, a graph-
based deep learning model that incorporates structural
features of small molecules and proteins’ binding sites
in the form of graphs into the pipeline of DTI predic-
tion task. The structural features of small molecules
and proteins, which are automatically learned by the
model, will be more conducive to downstream tasks. Our

approach is inspired by models developed for sentence
classification in the field of Natural Language Process-
ing (NLP) and is motivated by the fact that the struc-
ture of the drug–target complex can be very similar to
the structure of a natural language sentence in that
the structural and relational information of the entities
is key to understanding the most important informa-
tion of the sentence. In this regard, each protein pocket
or drug is analogous to a word, and each drug–target
pair is analogous to a sentence. Our AttentionSiteDTI,
which utilizes a self-attention bidirectional Long Short-
Term Memory (LSTM) mechanism, is highly explainable
due to its self-attention. In essence, self-attention pro-
vides an understanding of which parts of the protein are
most probable to bind with a given drug. Visualization
of the proposed framework can be found in Figure 1.
As the computational results show, our model outper-
forms many state-of-the-art models in terms of multiple
evaluation metrics. The results of our ablation study
show that the attention mechanism is very effective
in capturing important factors governing DTI. Also, our
in-lab experimental validation shows high agreement
between computationally predicted and experimentally
observed binding interaction between seven candidate
compounds and spike (or ACE2) protein.

Contribution
The main contributions of our study are summarized as
follows.

• We propose a novel formulation of DTI prediction
problem inspired by recent developments in NLP
that achieves state-of-the-art performance while
exhibiting high generalizability and interpretability.
Our approach is analogous to the sentence classifica-
tion problem in NLP, where the drug–target complex
is treated as a sentence with relational meaning
between its biochemical entities a.k.a. protein
pockets and drug molecule. We solve our sentence
classification problem using an end-to-end GCNN-
based model, which enables simultaneous learning
of (1) context-sensitive embeddings from the graphs
of molecules and protein pockets (that is, the embed-
dings are not fixed, but they change according to the
context (i.e. sentence) in which they appear), and (2) a
prediction model to capture the most important con-
textual semantic or relational information in a bio-
chemical sequence (drug–target complex) for relation
classification similar to sentence classification in
NLP. Details of our GCNN-based model can be found
in subsection Graph Attention Embedding Module.

• Our proposed model is highly generalizable due to
our target protein input representation that uses pro-
tein pockets encoded as graphs. This helps the model
concentrate on learning generic topological features
from protein pockets, which can be generalized to
new proteins that are not similar to the ones in
the training data. Generalizability of our model is
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Figure 1. Our proposed framework includes five main modules: (1) Preprocessing module that consists of finding the binding sites of proteins; (2)
AttentionSiteDTI deep learning module, where we construct graph representations of ligands’ SMILE and proteins’ binding sites, and we create a graph
convolutional neural network armed with an attention pooling mechanism to extract learnable embeddings from graphs, as well as a self-attention
mechanism to learn relationship between ligands and proteins’ binding sites; (3) Prediction module to predict unknown interaction in a drug–target
pair, which can address both classification and regression tasks; (4) Interpretation module to provide a deeper understanding of which binding sites
of a target protein are more probable to bind with a given ligand. (5) In-lab validations, where we compare our computationally predicted results with
experimentally observed (measured) drug–target interactions in the laboratory to test and validate the practical potential of our proposed model.

specifically showcased by its superior performance
on unseen proteins in BindingDB dataset (Figure 4).
Data Preparation and Graph Construction subsec-
tions discuss the details on how we prepare and use
protein inputs for our model.

• Our proposed model is the first to be interpretable
using the language of protein binding sites. This is
important because it will help drug designers identify
critical protein sites along with their functional
properties. This is achieved by devising a self-
attention mechanism, which makes the model
learn which parts of the protein interact with the
ligand, while achieving state-of-the-art prediction
performance. Self-Attention subsection explains how
the mechanism works by selectively focusing on the
most relevant parts of the inputs.

• Finally, we validate the practical potential of our
model in the prediction of binding interactions in
real-world applications. We conduct in-lab experi-
ments to measure the binding interaction between
several compounds and Spike (or ACE2) protein,
and compare the computationally predicted results
against the ones experimentally observed in the
laboratory. In-Lab Validation section provides the
details of our in-lab experiments.

Related work
Deep learning-based approaches have been successfully
deployed to address the problem of DTI prediction. The
main difference between deep learning approaches is in
their architecture as well as the representation of the

input data. As previously mentioned, small molecules
of the drugs can be easily and effectively represented
in one-dimensional space, but proteins are much bigger
molecules with complex interactions, and 1D represen-
tations can be insufficient. Although the datasets con-
taining the 3D structure of the protein are limited, some
recent deep learning-based literature has used them in
their study. For example, AtomNet [10], is the first study
that used the 3D structure of the protein as input to
a 3D CNN to predict the binding of drug–target pairs
using a binary classifier. Ragoza et al. [11] proposed a
CNN scoring function that took the 3D representation
of the protein–ligand complex and learned the features
critical in binding prediction. This model outperformed
the AutoDock Vina score in terms of discriminating and
ranking the binding poses. Pafnucy[12] is a 3D CNNs
that predicted the binding affinity values for the drug–
target pairs. This study represented the input with a 3D
grid and considered both proteins and ligands atoms
similar. Using a regularization technique, their designed
network focused on capturing the general properties of
interactions between proteins and ligands.

There are limitations associated with all these studies.
For example, it is a highly challenging task to experimen-
tally obtain a high-quality 3D structure of proteins, which
explains why the number of datasets with 3D structure
information is very limited [8]. Most studies that use 3D
structural information utilize CNNs, which are sensitive
to different orientations of the 3D structure, besides
the fact that these approaches are computationally
expensive. To overcome these limitations, recent studies
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such as done in [13–15] have proposed graph convolu-
tional network approaches, which take 3D structure of
proteins as input for DTI prediction task. There are other
studies that applied GCNN to the 3D structure of the
protein–ligand complex. Among these studies, GraphBAR
[6] is the first 3D graph CNN that used a regression
approach to predicts drug–target binding affinities. They
used graphs to represent the complex of protein–ligand
instead of 3D voxelized grid cube. These graphs were in
the form of multiple adjacency matrices in which the
entries were calculated based on distance and feature
matrices of molecular properties of the atoms. Also,
they used a docking simulation method to augment
additional data to their model. Lim et al. [5] proposed
a graph convolutional network model along with a
distance-aware graph attention mechanism to extract
features of the interactions binding pose directly from
the 3D structure of drug–target complexes from docking
software. Their model improved over docking and several
deep learning-based models in terms of virtual screening
and pose prediction tasks. However, their approach
had limitations such as less explainability as well as
additional docking errors added to the deep learning
model. Pocket Feature is an unsupervised autoencoder
model, which was proposed by Torng et al. [4], to learn
representations from binding sites of the target proteins.
The model used 3D graph representations for protein
pockets along with 2D graph representations for drugs.
They trained a GCNN model to extract features from the
graphs of protein pockets and drugs’ SMILEs. Their model
outperformed 3DCNN, as was done in [11] and docking
simulation models such as AutoDock Vina [16], RF-Score
[17] and NNScore [17]. Zheng et al. [8] pointed out the
low efficiency of using direct input of three-dimensional
structure and utilized a 2D distance map to represent
the proteins. They further converted the problem of DTI
prediction into a classical visual question and answering
(VQA) problem, wherein, given a distance map of a
protein, the question was whether or not a given drug
interacts with the target protein. Although their model
outperformed several state-of-the-art models, their VQA
system is able to solve a classification task only, where
it predicts if there is an interaction between drug–target
pairs.

Materials and Methods
Overview
We introduce an end-to-end graph-based deep learning
framework, AttentionSiteDTI, to address the problem
of DTI prediction. We consider the DTI prediction task
as a binary classification problem. The aim is to learn
a predictive function γ (.), with graph inputs of drugs
and proteins, to output binary predictions suggesting the
occurrence or absence of interactions. The overall archi-
tecture of AttentionSiteDTI is shown in Figure 1. It con-
sists of four modules: data preparation, graph embedding
learning module, prediction module and interpretation

module. In the data preparation, we find the binding
sites of the proteins using the algorithm proposed in
[18]. In the next step, the graphs of protein pockets and
ligands are constructed and fed into a graph CNN to learn
the embeddings from the corresponding graphs. Feature
vectors of drug and protein are then integrated to obtain
drug–target complex representation that incorporates
their structural features. The concatenated representa-
tions are then fed into a binary classifier for predicting
DTIs. The self-attention mechanism in the network uses
concatenated embeddings of drug–target pairs as input
to compute the attention output, which enables inter-
pretability by making the model learn which parts of the
protein interact with the ligand in a given drug–target
pair.

Data Preparation
We use the 3D structure of the proteins that are extracted
from Protein Data Bank (PDB) files of proteins. PDB data
are collections of submitted experimental values (e.g.
from NMR, x-ray diffraction, cryo-electron microscopy)
for proteins. In order to find the binding sites of the
proteins, we use the algorithm proposed by Saberi Fathi
et al. [18], which is one of the simplest methods to extract
the binding sites of a protein from its 3D structure.
This method is a simulation-based model, and it can
be utilized prior to feeding the data into an end-to-end
architecture, which helps reduce the model’s complexity.
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Figure 2. Depiction of COVID spike protein and ACE2 complex with PDB-
ID of 6M0J; Color of the surface represents the binding sites computed
through Saberi Fathi et al. algorithm. These binding sites are used to
create the input to our graph embedding learning module. All protein
visualization was produced with UCSF Chimera software [19].

As shown in [18], despite the simplicity of this model,
its performance is comparable to other simulation-based
methods with higher complexity.

This algorithm computes bounding box coordinates
for each binding site of a protein. These coordinates
are then used to reduce the complete protein structure
into a subset of peptide fragments. Figure 2 provides a
visualization of a protein’s binding sites extracted using
the algorithm in [18].

Graph Construction
Protein

Following the extraction of a protein’s binding sites, we
then represent them as individual graphs wherein each
atom is a node, and the connections between atoms are
the edges in the graph. One-hot encoding of the atom
type, atom degree, the total number of hydrogen atoms
(attached) as well as the implicit valence of the atom are
used to compute the feature vector of each atom. This
approach yields a vector with a size of 1 × 31 for each
node. These features are summarized in Table 1. Having
multiple graphs, representing different binding pockets
of a given protein, leads to the generation of multiple
embeddings for that particular protein.

Ligand

A bidirectional graph is constructed for each ligand,
which is represented in Simplified molecular-input line-
entry system (SMILE) format in DTI datasets. Note
that in this study, hydrogen atoms are not explicitly
represented as the nodes in the graph. Similarly, a vector
is constructed to represent the atom’s features in the

Table 1. Encoding atom features in each extracted fragments

Type Encoding

Atom type C, N, O, S, F, P, Cl, Br, B, H (onehot
encoding)

Degree of atom 0, 1, 2, 3, 4, 5, 6, 7, 8 (onehot encoding)
Number of hydrogen attached 0, 1, 2, 3, 4 (onehot encoding)
Implicit valence electrons 0, 1, 2, 3, 4, 5 (onehot encoding)
Is aromatic 0, 1 (onehot encoding)

graph of ligand. More specifically, the one-hot encoding
of the atom type, the atom degree, the formal charge
of the atom, number of radical electrons of the atom,
the atom’s hybridization, atom’s aromaticity and the
number of total hydrogens of the atom are used to
construct the features of the atoms in a ligand. This
approach yields a vector with a size of 1 × 74 for each
node. Generated graphs for proteins and ligands are then
fed into a GCNN to learn the corresponding embeddings.

Graph Attention Embedding Module
Topology Adaptive Graph Convolutional Networks

We use a Topology Adaptive Graph CNN (TAGCN) [20],
which is a variant of graph convolutional network [21],
and it works by simultaneously sliding a set of fixed-
size learnable filters on the input graph to produces a
weighted sum of the filter’s outputs, representing both
the strength correlation between graph vertices and the
vertex features, themselves [20]. In other words, the out-
put of a convolutional layer is the weighted sum of the
feature maps resulting from filters with varying size k,
for k = 1, . . . , K. The graph convolutional layer for TAGCN
is defined as

Hk =
K∑

k=1

(
(D−1/2AD−1/2)kX�k + bk

)
, (1)

where A denotes the adjacency matrix, Dii = ∑
j=0 Aij is

its corresponding diagonal degree matrix, X is the input
feature matrix of the nodes, �k is the vector of linear
weights aggregating the results from all the adjacent
vertices within a k-hop distance of a given node. Also, bi is
the learnable bias, which is used in the summation after
every hop.

Pooling Mechanism

Once the graphs of proteins and drugs are fed into a
series of graph convolutional layers, we then extract
embeddings from the corresponding graphs using the
method proposed by Yujia Li et al. [22]. For the graph-level
representation, they define a vector as

hG = tanh
(∑

ν∈V
σ
(
i(H(T)

ν , xν)
) � tanh

(
j(H(T)

ν , xν)
))

, (2)

where, � is element-wise multiplication, i and j are linear
neural network layers, which are trainable to learn the
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best representation of the graph for classification. Also,
concatenation of H(T)

ν over the nodes is the output of the
graph convolutional layer, and xν is the feature vector
of node ν. Note that the input and output are real-
valued vectors, and σ(i(H(T)

ν , xν)) is a soft attention mech-
anism, which determines which node should contribute
more toward the final graph embeddings, which allows
learning a better representation of the graph [22]. This
method is selected over the alternatives, i.e. max pooling
and average pooling, as it enables learning higher order
relations in the graphs by adding more parameters to the
architecture.

Self-Attention Module
Sequence Handling

Following the extraction of embeddings, we then treat
the problem as a text classification problem. We use the
method proposed by Zhou et al. [23] to learn a classifier
γ : X → C, where X is the space of embeddings for
protein pockets and ligands, and C = {0, 1} is a set of
classification labels, with 0 for non-active and 1 for active
interactions in a drug–target pair. Given the protein–
ligand complex d ∈ X with lable c ∈ C, we define 〈d, c〉 ∈
X × C as

〈d, c〉 = 〈sequence(protein pockets embeddings,

ligand embedding), c〉. (3)

Self-Attention

Self-Attention mechanism is a method for selectively
concentrating on the most relevant parts of the input
vector. It accomplishes this task by mapping a query and
a set of key-value pairs to a weighted sum of the values,
computed by the relationship of the query and the corre-
sponding key [24]. Vaswani et.al. [24] describe particular
attention called ‘Scaled Dot-Product Attention’, where
the input is composed of Queries (Q), Keys (K) and Values
(V). They use a linear layer to project the input sequence
to Q, K and V. Then, as described in [24], the matrix of
the query vectors is multiplied by the transpose of the
matrix of key vectors. Each element is then normalized
by a factor of the square root of the keys’ dimension.
Here, we further apply a mask to prevent binding sites
of a protein from paying attention to one another. In
other words, we construct the mask in a way that each
binding site only pays attention to itself and the inter-
acting ligand. This can be achieved by creating a matrix
with the same dimension as K and Q, where its diagonal
elements are all set to one. Also, the last column of the
matrix, corresponding to the ligand, is set to one. All
other values in that matrix are all set to the small value
of 9 × 10−15 to prevent attention of the biding sites to
one another. This mask will then be multiplied by the
scaled results. Then row-wise Softmax will be applied
to compute the attention map from the key K and the
query Q. Finally, the computed matrix will be multiplied

Figure 3. Self-Attention scaled dot product.

by the Values (V) to yield the final result. The sequence
of these operations is illustrated in Figure 3, for better
clarification.

Attention(Q, K, V) = Softmax

(
QKT√

dk

)
V. (4)

This self-attention mechanism uses a sequence of
embeddings as input to extract Q, K and V. The attention
output is then computed using Eq. 4.

Bi-LSTM

Long Short Term Memory (LSTM) is a variation of RNNs
with memory cells, capable of learning long-term depen-
dencies through the use of ‘additional gates’ incorpo-
rated in its architecture. Conventional LSTM only pre-
serves information of the past, as the network receives
the sequence inputs only in the original forward direc-
tion. Bidirectional LSTM networks add a second layer
to LSTM networks to preserve the future and the past
information by letting the sequence inputs flow in both
forward and backward directions [23]. This feature of Bi-
LSTM is especially useful in our particular application,
as there is no meaningful order in which the protein
binding sites and the ligand should interact. Thus, the
future context in the sequence is as important as the
past context. We use an element-wise sum to combine
the outputs of the forward and backward passes.
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Table 2. Description and statistics of the three benchmark datasets: DUD-E dataset, Human dataset and BindingDB dataset

Datasets Drugs Proteins DT pairs Active Inactive

DUD-E 22 886 102 1429 790 22 645 1407 145
Human 2726 2001 6728 3364 3364
Bindingdb 989 383 8536 2286 319 39 747 31 218

Prediction Module
Classifier

The features previously computed are concatenated to
a 1D vector I, which is then passed to the classification
layers. In this study, two fully connected layers are used
to map the extracted features into a final classification
output. We use multilayer perceptron with Relu activa-
tion function. Also, dropout is used before each linear
layer for better generalizability.

We use Logistic Sigmoid function in the final layer to
predict the output in the form of a probability. Moreover,
the average binary cross-entropy loss (Equation 5) is used
to train the model by back-propagating the error to the
network to update all parameters of the model in an end-
to-end manner.

L(y, ŷ) = − 1
N

N∑
i=1

[yilog(ŷi) + (1 − yi)log(1 − ŷi)]. (5)

Experiments
Datasets
We demonstrate the merit of the proposed model via
a series of comparative experiments. We compare our
AttentionSiteDTI with several state-of-the-art methods
using three benchmark datasets, which provide 3D
structure information of target proteins, required by
our model. These datasets include the DUD-E dataset,
the Human dataset and the customized BindingDB
dataset. Table 2 summarizes the statistical information
of these datasets. We use a simple docking-based model,
proposed in [18], to find the binding sites of the target
proteins. It it worth mentioning that we expect a boost
in the performance of our model with the use of a more
advanced prediction/computation approach that is more
accurate in finding binding sites of the proteins.
DUD-E This dataset [25] consists of 102 targets from
eight protein families. Each target has around 224 active
compounds and more than 10 000 decoys, which were
computationally generated in a way that their physical
attributes are similar to active compounds but they are
topologically dissimilar. Following the prior works by
Ragoza et al. [11] and Zheng et al. [8], and in order to make
a head-to-head comparison with the benchmark models,
we performed 3-fold cross-validation in this dataset, and
we reported the average performance on the evaluation
metrics. Each fold was split based on the target in that
similar targets were kept in the same fold. We used

random undersampling on the decoys to make the train-
ing set balanced, and we used unbalanced test sets for
evaluations.
Human This dataset was built by combining a set of
highly credible and reliable negative drug–protein sam-
ples via a systematic in silico screening method with the
known positive samples [26]. The dataset consists of 5423
interactions. For a head-to-head comparison, we used the
same train, validation and test splits (80%,10%,10%) as
were used in DrugVQA [8].
BindingDB This dataset [27] contains experimentally
based assays of the interactions between small molecules
and proteins. Following the work in DrugVQA [8], we used
a small subset of the dataset, which consists of 39 747
positive and 31 218 negative samples. Further, in order to
validate the generalization ability of our proposed model,
the testing set was split into two groups of the proteins:
those that are seen during the time of training versus
those that are not being seen by the model.

Implementation and evaluation strategy
Experimentation strategies. We used Pytorch 1.8.2 (long-
time support version) for our implementations. We
trained the models with a batch size of 100 for 30
epochs, and we used Adam optimizer for training the
network with a learning rate of 0.001. Also, for better
generalization, a dropout with a probability of 0.3 was
used before each fully connected layer. The GPU that we
used for the experimentation was Nvidia RTX 3090 with
24 GB of memory. We used four as the number of hops
in TAGCN for proteins and two for ligands. The size of
the hidden state for the BiLSTM layer in our model was
set to 31, which was the output of the graph convolution
layer (TAGCN). We used padding of zero to reshape each
matrix to the maximum number of binding pockets in
the datasets. All hyperparameters were tuned to yield
the best result for each dataset, which can be seen in
Table 3. This hyperparameter tuning was performed by
a simple grid search over a range of values, shown in
Table 4

Evaluation metrics. We evaluated our models in terms of
several metrics, including the Area Under the receiver
operating characteristic Curve (AUC). We additionally
reported precision and recall for the human dataset,
accuracy for the BindingDB dataset and ROC enrichment
metric (RE) for the DUD-E dataset, defined as

RE = TPR
FPR

at a given FPR threshold. (6)
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Table 3. Dataset’s Training Hyperparameters (FC is representing
number of fully connected layers, L-GCN and P-GCN are number
of Graph convolutional layers for extracting ligands and protein
binding sites embedding, respectively)

Datasets FC L-GCN P-GCN

DUD-E 2 18 16
Human 6 4 3
Bindingdb 6 4 3

Table 4. Grid search considered values for hyperparameter
tuning

TAGCN
Hops

FC L-GCN P-GCN LR Dropout batch size

[1 − 8] [1 − 8] [4 − 20] [4 − 20]
[
10−2, 10−3,
10−4, 10−5] [0.1 − 0.6] [40, 60, 80,

100, 120]

The choice of different performance metrics as well
as different benchmark models for different datasets is
mainly for the head-to-head comparison with the results
reported in the literature. Nevertheless, the reported
metrics are the most widely used evaluation metrics
in classification-based models in DTI literature [28].
Also, for comparison, we include a suit of different
computational models including (a) traditional ML-
based methods such as K-Nearest Neighbors (KNN),
L2-logistic (L2), NN-score [29] and Random Forest-
score (RF-score) [30]; (b) open-source molecular docking
programs including AutoDock Vina [16] and Smina [31];
(c) string representation-based deep learning models
such as AtomNet [10] and 3D-CNN [11]; and (d) graph
representation-based deep learning models such as
Graph CNNs(GCNs) [21], CPI-GNN [32], DrugVQA [8],
TransformerCPI [33], PocketGCN [4], GNN [34] and
GraphDTA [15] that have been developed to address the
problem of DTI prediction.
Ablation study The ablation study illustrates the
effectiveness of several text classification techniques in
our proposed AttentionSiteDTI framework. We report the
AUC and the ROC of all experiments, which is widely used
in the literature. The results of this study can be found
in Table 5, indicating that the attention mechanism is
the most effective method in text classification, and
it is particularly advantageous due to its power in
explainability. The Bi-LSTM architecture cannot focus
solely on interactions between ligand and binding sites;
therefore, it has inferior results compared with other
proposed architectures.

As the results show, the self-attention shows superior
performance compared with Bi-LSTM+self-attention,
except on the DUD-E dataset. This can be explained by
the fact that DUD-E, in nature, is a more challenging
dataset in the sense that DUD-E decoys (ligands with
negative interactions) are matched to the physical
chemistry of ligands with positive interactions (in terms
of molecular weight, predicted logP, number of rotatable

bonds and hydrogen bond donors and acceptors).
Decoys should not truly bind to fulfill their duty as
negative controls. Hence DUD-E employed 2D similarity
fingerprints to reduce the topological similarity between
decoys and ligands. In brief, DUD-E decoys were selected
to physically mimic ligands with positive interactions
(and hence to be difficult to dock), while they are also
being topologically distinct to reduce the possibility
of actual binding [25]. These decoys’ similarities are
particularly challenging for approaches that utilizes
ligands’ physical structure such as graph-based neural
networks. To this end, a single attention module struggles
to create features that are discriminating enough for
the classifier head. Therefore, the additional use of a
Bi-LSTM layer helps create richer features, which leads
to the improved performance of the model on this
challenging dataset. To be more specific, we achieved
higher accuracy on the DUD-E dataset using an Bi-LSTM
layer to capture the short-range relationships, followed
by the self-attention mechanism to further improve the
quality of the features. Since the other two datasets
(Human and BindingDB) are not as challenging as the
DUD-E dataset, adding a Bi-LSTM layer not only does not
seem to be advantageous but it may also cause the model
to overfit.
Comparison on the DUD-E dataset On DUD-E dataset,
we compared our proposed model with several state-
of-the-art models that can be divided into four cate-
gories: (1) ML-based methods such as NN-score [29],
and Random Forest-score (RF-score) [30]; (2) open-source
molecular docking programs including AutoDock Vina
[16] and Smina [31]; (3) deep learning-based models such
as AtomNet [10], 3D-CNN [11], which use neural net-
works to extract features from 3D structural information;
and (4) graph-based models such as PocketGCN [4], GNN
[34], DrugVQA [8], which are all based on graph rep-
resentations. PocketGCN utilizes two Graph-CNNs that
automatically extract features from the graph of protein
pockets and ligands to capture protein–ligand binding
interactions. CPI-GNN [32] is a prediction model that
combines a graph neural network for ligands and a CNN
for targets. DrugVQA utilizes a 2D distance map to rep-
resent proteins in a Visual Question Answering system,
where the images are the distance maps of the pro-
teins, the questions are the SMILES of the drugs and the
answers are whether the drug–target pair will interact.
Note that the scores of these models are collected from
the work in [8]. Also, we employed the F1 score and
ROC enrichment (RE) at thresholds 0.5%, 1%, 2% and 5%.
As the results in Table 6 indicate, our model achieves
state-of-the-art performance in DTI prediction on all
metrics with significant improvement at 0.5% RE. Also,
we hypothesize that the poor performance of AtomNet
and 3D-CNN may be due to the sparsity of 3D space, as
they use the whole 3D structure of the proteins.

Comparison on the human dataset On the Human
dataset, we compared our model against several tradi-
tional ML models such as K-Nearest Neighbors (KNN),
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Table 5. Ablation Study Results

Ablation tests BindingDB Human DUD-E

AUC ROC AUC ROC AUC ROC

Bi-LSTM 0.863 0.889 0.976 0.979 0.954 0.562
Self-Attention 0.940 0.981 0.991 0.990 0.961 0.602
Bi-LSTM + Self-Attention 0.925 0.973 0.984 0.982 0.971 0.623

Table 6. DUD-E Dataset Comparison

AUC 0.5% RE 1.0% RE 2.0% RE 5.0% RE

NN Score 0.584 4.166 2.980 2.460 1.891
RF-score 0.622 5.628 4.274 3.499 2.678
Vina 0.716 9.139 7.321 5.811 4.444
Smina 0.696 - - - -
3D-CNN 0.868 42.559 26.655 19.363 10.710
AtomNet 0.895 - - - -
PocketGCN 0.886 44.406 29.748 19.408 10.735
GNN 0.940 - - - -
DrugVQA 0.972 88.17 58.71 35.06 17.39
AttentionSiteDTI 0.971 101.74 59.92 35.07 16.74

Random Forest (RF), L2-logistic (L2) (these results were
gathered from [17]); and some recently developed graph-
based approaches including Graph CNNs(GCNs) [21], CPI-
GNN [32], DrugVQA [8], TransformerCPI [33] as well as
GraphDTA [15]. GraphDTA was originally designed for
regression task, and later was tailored to binary clas-
sification task by [35]. For a head-to-head comparison
with other models, we followed the same experimental
setting as in [34, 36]. Also, we repeated our experiments
with three different random seeds, similar to DrugVQA
[8]. The performances of the aforementioned models
were obtained from [35], as summarized in Table 7. It
can be observed that the prediction performance of our
proposed model is superior to all ML- and GNN-based
models, and it achieves competitive performance with
DrugVQA in terms of precision and recall. The relatively
low performance of ML-based models is indeed in line
with our expectations and is due to their use of low-
quality features, unable of capturing complex nonlinear
relationships in DTI. The deep learning models, on the
other hand, are very powerful in extracting important
features governing the complex interactions in a drug–
target pair. On this basis, our model further improves
on the accuracy, indicating that the quality of learned
information in DTIs is guaranteed by the back propaga-
tion of the end-to-end learning of our AttentionSiteDTI.
Comparison on the BindingDB dataset On BindingDB
dataset, we further compared our model against Tiresias
[37], DBN [38], CPI-GNN [32], E2E [39], DrugVQA [8] and
Bridge-DPI [35] as baselines. Tiresias uses similarity
measures of drug and target pairs. DBN uses stacked
restricted Boltzmann machines with inputs in the form
of extended connectivity fingerprints. As mentioned
earlier, CPI-GNN combines a graph neural network for

Table 7. Human Dataset Comparison

AUC Precision Recall F1 Score

K-NN 0.86 0.798 0.927 0.858
RF 0.940 0.861 0.897 0.879
L2 0.911 0.861 0.913 0.902
SVM 0.910 0.966 0.950 0.958
GraphDTA 0.960 0.882 0.912 0.897
GCN 0.956 0.862 0.928 0.894
CPI-GNN 0.970 0.923 0.918 0.920
E2E/GO 0.970 0.893 0.914 0.903
DrugVQA 0.979 0.954 0.961 0.957
BridgeDPI 0.990 0.963 0.949 0.956
AttentionSiteDTI 0.991 0.951 0.975 0.963

compounds and a CNN for targets to capture DTIs. E2E
is a GNN-based model that uses LSTM to learn drug–
target pair information with Gene Ontology annotations.
DrugVQA, as previously mentioned, is a Visual Question
Answering system, where the images are the distance
maps of the proteins, the questions are the SMILES
of the drugs and the answers are whether the drug–
target pair will interact. Finally, BridgeDPI uses CNNs
to obtain embeddings for drugs and proteins, as well as
a GNN to learn the associations between proteins/drugs
using some hyper-nodes that are connections between
proteins/drugs.

Note that the scores for all these models were derived
from [35]. Also, following suggestions from previous
works, we report the prediction results in terms of AUC
and Accuracy (ACC) on the test set, which is divided into a
set of unseen proteins (the proteins that are not observed
in the training set) and a set of seen protein (the proteins
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Figure 4. Comparison of AttentionSiteDTI with six baselines: (left) shows Area Under the Curve (AUC) for seen proteins and unseen proteins in the
test; (right) shows Accuracy for seen proteins and unseen proteins in the test. Note that the accuracy scores of Tiresias do not show in unseen case
because it is lower than the lower bound of the y-axis (0.5). Note that for a head-to-head comparison with all models, including ours, we implemented
the BridgeDPI model with our experimental setting. Our model outperforms all other methods in unseen proteins, which means our model is better in
generalization than other models. In the seen protein scenario, our model is comparable to other models, and high AUC and accuracy in seen scenario
indicate over-fitting of the model.

that are observed in the training set). This, indeed, makes
the customized BindingDB dataset suitable to assess
models’ generalization ability to unknown proteins,
which should be the focus in prediction problems (i.e.
cold-start problem), as there are a large number of
unknown proteins in nature.

As experimental results indicate in Figure 4, all models
generally perform well on seen proteins with AUC above
0.9 and ACC exceeding 0.85. However, these models show
different and much worse performance on unseen pro-
teins, which reflects the complexity of this more realistic
learning scenario. Tiresias is a similarity-based model
that uses a set of expert-designed similarity measures
as the features for proteins and drugs. The poor per-
formance of Tiresias on the unseen proteins is perhaps
due to the fact that these handcrafted features are not
sufficient in capturing interactions between drug–target
pairs, thus resulting in the accuracy of even less than
0.5 on unseen proteins. On the other hand, the good
performance of deep learning-based models, including
DBN, CPI-GNN, E2E, DrugVQA, BridgeDPI, as well as our
AttentionSiteDTI, shows the effectiveness of these mod-
els in capturing relevant features that are critical in
DTI prediction problem. As the results show, our model
achieves the best performance with an AUC of 0.97 and
0.94 on seen and unseen proteins, respectively. Also, in
terms of accuracy, our AttentionSiteDTI outperforms all
other models, with accuracy reaching 0.89 in unseen
proteins. This is an indication that our attention-based
bidirectional LSTM network is, indeed, effective in rela-
tion classification of drug–target (protein pocket) pairs by
learning the deeper interaction rules governing the rela-
tionship between proteins’ binding sites (pockets) and
drugs. Also, the seemingly good performance of baselines
on seen proteins can be an indication of over-fitting.

Discussion
We believe that the improved performance of our
proposed model can be explained by several factors,
including (1) the input representations, which, as argued
in [40], significantly affect the prediction performance
of the model. The use of more advanced input feature
representations such as structured graphs can help
capture the structural information of the molecules, (2)
the prediction technique. For example, traditional ML-
based techniques such as NNScore and FRscore often
depend on the quality of hand-crafted features, which
most often fail to learn complex nonlinear relationships
in DTI [35]. In contrast, self-attention provides a powerful
and automatic feature extraction mechanism to learn
higher order nonlinear relationships. Also, deep learning
approaches that use string representations as the input
to their models are unable to capture the structural
information of drugs and/or proteins [41]. On the other
hand, graph-based neural networks (that use graph
representations of drugs and proteins) can effectively
capture topological relationships of drug molecules
and target proteins, which enables further performance
improvement [41], and most importantly (3) our context-
sensitive embedding approach to drug–target complexes.
In our approach, a drug–target complex is treated as a
sentence with relational meaning between its biochem-
ical entities a.k.a. protein pockets and drug molecule;
This enables capturing the most important contextual
semantic and relational information in a biochemical
sequence (i.e. sentence) for relation classification similar
to sentence classification in NLP.

In addition to improved performance, our model
enables interpretability by exploring which binding
sites of the protein interact with a given ligand. This is
especially crucial in the design and development of new



AttentionSiteDTI | 11

Figure 5. (Left) shows Heatmap and line plot of self-attention mechanism weights for each binding site in the proposed method with the input of
Darunavir as ligand and complex of COVID spike protein and ACE2 as protein, which translates to the probability of each calculated binding site of the
protein being active for that specific ligand. (Right) shows projected heatmap of self-attention weights on the complex of COVID spike protein and ACE2.
This figure shows the interpretability of our model, which can give us the binding site that has the most probability of binding to the ligand.

pharmaceutically active molecules, where it is critical
to know which parts of a molecule are important for its
biological properties.

Interpretation Module
Ligands bind to certain parts (active sites) of proteins,
either blocking the binding of other ligands or inducing
a change in the protein structure, which produces a
therapeutic effect. Binding at other sites that provide
no therapeutic value is ‘non-active’, and generally does
not cause a direct biological effect. Ligands binding to
active sites and inducing a change in protein structure
(conformation) are less likely in our system of study
and are probably not as helpful for building models
(usually, these ligands/therapeutic agents are employed/-
considered when a patient has an ailment, which causes
natural biochemicals to be produced in insufficient
quantities).

In this work, the attention mechanism enables the
model to predict which protein binding sites are more
probable to bind with a given ligand. These probabili-
ties are contained in the attention matrix, computed by
the model. The attention visualization can be found in
Figure 5 as the heat map of the protein for the com-
plex of SARS-CoV2 Spike protein and human, host cell-
expressing ACE2 in the interaction with the drug named
Darunavir. The projection of the heat map on the protein
is depicted in this figure, as well.

In-Lab Validation
SARS-CoV-2 Case study

To further evaluate the practical potential of our
proposed model, we experimentally tested and validated
the binding interactions between spike (or ACE2) protein
and seven candidate compounds (N-acetyl-neuraminic
acid, 3α,6α-Mannopentaose, N-glycolylneuraminic acid,
2-Keto3-deoxyoctonate, N-acetyllactosamine, cytidine5-
monophospho-N-acetylneuraminic acid sodium salt and
Darunavir). Evaluation was performed using a binding
inhibition assay kit. Here, candidate molecules were used
as inhibitor compounds toward formation of the spike
protein-ACE2 complex. Greater performance, of a given
candidate molecule, in these assays translates directly
to therapeutic value as formation of this complex has
been identified as the first step toward host cell infection
by the SARS-CoV2 virus. Interaction between these two
proteins is facilitated by a glycans on the host cell. These
glycan modifications of surface proteins are unique in
composition, surface density and in linkage (i.e. ‘O’ and
‘N’ type); as well as often being cell type and tissue-
specific [42]. The glycan modifications on ACE2 are
common for cells of the respiratory system (oral cavity,
lung epithelial cells), allowing recognition by certain
upper respiratory tract infecting viruses (e.g. SARS-CoV2,
porcine epidemic diarrhea virus and alphacoronavirus
transmissible gastroenteritis virus) [43, 44]. It has been
shown that SARS-CoV2 binds specifically to neuraminic
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Table 8. In-lab Validation of AttentionSiteDTI in the case study
of Covid-19

Compound AttentionSiteDTI Lab Results

2-keto-3-deoxynononic acid Noninteracting Interacting
N-Glycolylneuraminic acid Noninteracting Interacting
Cytidine-5-monophospho-N-
acetylneuraminic acid sodium
salt

Interacting Interacting

Darunavir Interacting Interacting
N-acetyl-neuraminic acid Noninteracting Noninteracting
N-Acetyllactosamine Noninteracting Noninteracting
3,6-Mannopentaose Noninteracting Noninteracting

acid modifications on the ACE2 host cell surface.
Therefore, we have chosen N-acetyl-neuraminic acid as
a model/standard inhibitor molecule in our study (i.e.
free/soluble N-acetylneuraminic acid can bind the spike
protein and preclude complex formation). To assess the
sensitivity of our model, our set of candidate molecules
was chosen to be reflective of small chemical/structural
changes to the standard N-acetylneuraminic acid
reference. N-acetylneuraminic acid is also known as
sialic acid and marks the simplest composition for
a set of similar chemicals grouped as sialic acids.
Several of our chosen candidate molecules were chosen
from this chemical family. Cytidine5-monophospho-
N-acetylneuraminic acid possess a simple nucleotide
modification, which has a similar binding character
as neuraminic acid (via complementarity) to common
binding partner molecules. N-glycolylneuraminic acid is
highly similar to N-acetylneuraminic acid in structure
and composition, differing only in an oxidation of the
acetyl group to a carboxylic. 2-Keto3-deoxyoctonate is
a sialic acid which does not possess the nitrogen-acetyl
substituent found for N-acetylneuraminic acid: altering
the molecules hydrophilicity. In many cases, glycans are
formed as oligosaccharides. Therefore, a disaccharide
N-acetyllactosamine molecule was included, as well as
the polycyclic 3,6-mannopentaose saccharide. Lastly, the
potential for generalized identification of therapeutics
toward SARS-CoV2 was assessed by inclusion of the
small drug molecule darunavir in the evaluation set. As
the results show in Table 8, we observe high agreement
(five out of seven matched results) between the predicted
and experimentally measured DTIs, which illustrates
the potential of our AttentionSiteDTI as an effective
complementary pre-screening tool to accelerate the
exploration, and recommendation of lead compounds
with desired interaction properties toward their targets.
In our experiment, we set the activity threshold to 15
nM to only capture highly active compounds, thereby
limiting the influence of interactions at neighboring
sites and weak interactions with poor coordination to
the binding site center.

Conclusion
In this work, we proposed an end-to-end GCNN-based
model, built on a self-attention mechanism, to capture

any relationship between binding sites of a given protein
and the drug in a sequence analogous to a sentence
with relational meaning between its biochemical enti-
ties a.k.a. protein pockets and drug molecule. Our pro-
posed framework enables learning which binding sites
of a protein interact with a given ligand, thus allowing
interpretability and better generalizability, while outper-
forming state-of-the-art methods in the prediction of
DTI. We experimentally validated the predicted binding
interactions between seven candidate compounds and
the Spike (or ACE2) protein. The results of our in-lab
validation showed high agreement between the compu-
tationally predicted and experimentally observed bind-
ing interactions. Our model exhibits state-of-the-art per-
formance, is highly generalizable, provides interpretable
outputs and performs well when validated against in-lab
experiments. As a result, we expect it to be an effective
virtual screening tool in drug discovery applications.

Key Points

• We proposed a new formulation of DTI prediction prob-
lem similar to sentence classification in NLP. In this new
formulation, we treated a biochemical sequence (drug–
target complex) as a natural language sentence. This
enables capturing contextual and relational information
contained in the sentence.

• A graph-based deep learning model was developed to
solve the DTI prediction problem in an end-to-end man-
ner, where both the graph embeddings and the DTI pre-
diction model were learned simultaneously. This enables
more efficient and effective training of the network as a
whole with minimizing over one loss function.

• We proposed using graph representations of both drug
and target as the inputs to the network. More specifically,
we used graph representations of protein pockets as
inputs for the target protein, which helps with better
generalizability of the model.

• We devised self-attention mechanism that enables inter-
pretability through identification of most probable bind-
ing sites of a protein with a given ligand.

• Our proposed model showed improved performance
compared with many state-of-the-art models in terms
of several performance metrics on three benchmark
datasets.

• We validated the practical potential of our computation
model through in-lab validation, where we measured
the binding interaction between several compounds and
Spike (ACE2) protein, and compared the results with
computational predictions.

• We observed high agreement between computationally
predicted and experimentally observed binding interac-
tions, which illustrates the potential of our model in
virtual screening tasks.

Data and Code availability
All datasets are publicly available. DUD-E dataset is
available at http://dude.docking.org, Human dataset is
available at https://github.com/IBMInterpretableDTIP
and finally the customized BindingDB-IBM dataset

http://dude.docking.org
https://github.com/IBMInterpretableDTIP
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can be found at https://github.com/masashitsubaki/
CPI_prediction/tree/master/. We used 3D structures of
proteins in the Human dataset from https://github.com/
prokia/drugVQA. Also, all instructions and codes for
our experiments are available at https://github.com/
yazdanimehdi/AttentionSiteDTI.
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