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Abstract: Autophagy is a process of self-degradation that plays an important role in removing
damaged proteins, organelles or cellular fragments from the cell. Under stressful conditions such
as hypoxia, nutrient deficiency or chemotherapy, this process can also become the strategy for cell
survival. Autophagy can be nonselective or selective in removing specific organelles, ribosomes, and
protein aggregates, although the complete mechanisms that regulate aspects of selective autophagy
are not fully understood. This review summarizes the most recent research into understanding the
different types and mechanisms of autophagy. The relationship between apoptosis and autophagy
on the level of molecular regulation of the expression of selected proteins such as p53, Bcl-2/Beclin
1, p62, Atg proteins, and caspases was discussed. Intensive studies have revealed a whole range of
novel compounds with an anticancer activity that inhibit or activate regulatory pathways involved in
autophagy. We focused on the presentation of compounds strongly affecting the autophagy process,
with particular emphasis on those that are undergoing clinical and preclinical cancer research.
Moreover, the target points, adverse effects and therapeutic schemes of autophagy inhibitors and
activators are presented.
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1. Introduction

Autophagy, directly translated as ‘self-eating’, is an evolutionary conservative process,
found in all eukaryotic cells—from single-cell yeasts to much more complex multicellular
mammalian organisms [1]. The introduction of the term ‘autophagy’ was proposed in
February 1963 during the conference titled ‘Ciba Foundation Symposium on Lysosomes’
which took place in London [2]. This process participates in intracellular degradation of
damaged or redundant proteins with a long half-life as well as other unnecessary cytoplasm
components [3,4]. Autophagy provides an organism’s homeostasis and prevent it from
redundant components accumulation inside the cell [5].

Moreover, this process is involved in surfactant formation or red blood cells ripen-
ing [3]. Following the Nomenclature Committee on Cell Death, in 2018 the term ‘autophagy-
dependent cell death (ADCD)’ was introduced. ADCD is a type of regulated cell death in
which functional autophagic markers such as increased degradation of autophagosomal
substrates or LC3 (Light Chain protein 3) lipidization occurs [6]. Interestingly, unlike necro-
sis or apoptosis, autophagy-dependent cell death is not synonymous exclusively with cell
death. Under stressful condition such as hypoxia, nutrient deficiency or chemotherapy, this
process can become the strategy for cell survival [5]. ADCD occurs in all eukaryotic cells
performing important functions, for example, it is an adaptation mechanism to stressful
conditions, as it provides cells with a constant supply of nutrients essential for sustain-
ing key life processes. Additionally, through the elimination of redundant cytoplasm
components and the adjustment of the endoplasmic reticulum size, ADCD participates
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in maintaining the intracellular homeostasis. Furthermore, ADCD is involved in tissue-
specific processes, such as erythrocyte ripening or intracellular surfactant formation [3]
and also protects the organism from viruses or bacteria multiplication [7,8].

Autophagy-dependent cell death, through its selective and non-selective mechanisms
of degradation of pathogens, organelles and various biomolecules (nucleic acids, lipids,
carbohydrates and proteins) constitutes the main catabolic system of eukaryotic cells [9,10].
As one of the key elements in maintaining cell homeostasis and health, this process also
plays an important role in tumor suppression or genome integrity [11].

The first part of the following paper will provide a brief description of the different
types of autophagy. Thereafter, we will focus primarily on the classification and characteri-
zation of compounds whose molecular target is autophagy—those undergoing clinical and
preclinical trials. Moreover, the target points, adverse effects and therapeutic schemes of
autophagy inhibitors and activators are presented in tables.

2. Types of Autophagy

Based on the differences in the mechanism of delivery of redundant cytoplasm compo-
nents to lysosomes, four basic types of autophagy can be distinguished: macroautophagy,
selective autophagy, microautophagy and chaperone-mediated autophagy (CMA). The
term ‘autophagy’, commonly used in various papers, refers to macroautophagy—this will
apply to the following publication as well.

2.1. Macroautophagy

Macroautophagy is the most widespread type of autophagy which is controlled by
autophagy-related (ATG) genes. The first ATG genes were identified in yeast. Interestingly,
14 from 32 of described Atg yeast proteins are homologous to those proteins found in
mammals [12,13]. This process is regulated by several pathways sensitive to the presence
or deficiency of nutrients. Substances such as insulin, amino acids or AMPK (5′ adenosine
monophosphate-activated protein kinase) act through the protein serine-threonine kinase
mTOR (mammalian target of rapamycin). When the natural cellular environment is rich
in essential nutrients, the regulatory mTOR pathway is activated, which in turn leads to
the inhibition of autophagy and stimulates cells to proliferation [14]. ATG genes are re-
sponsible for the regulation of the autophagosomes production [15]. During the autophagy
process (Figure 1), the cytoplasm fragment is surrounded by a forming C-shaped double
membrane. Both ends of the membrane (known as phagophore) extend and close inside
the fragment of cytoplasm with whole organelles or proteins with a long half-life. This
results in the formation of 300–900 nm bubble (autophagosome), which then undergoes
a maturation process. During the maturation autophagosomes and lysosomes merge to
form autolysosomes (autophagolysosomes). Inside the autolysosomes, using hydrolytic
lysosomal enzymes, the degradation of the macromolecular substrates to fatty acids and
amino acids occurs [16,17].

Macroautophagy may play a dual role in tumorigenesis. Depending on the tumor
type, its genetic background, developmental stage or tumor microenvironment, it can
inhibit or stimulate tumor cell growth. Elimination of damaged organelles, aggregated
or unformed proteins and oncogenic proteins prevent tumor initiation and therefore con-
stitutes a tumor suppressor effect of autophagy. On the other hand, autophagy may also
promote tumorigenesis through, for example, cytoprotective effects in response to used
chemotherapeutics or metabolite recycling that promotes tumorigenesis, proliferation,
or tumor metastasis [18]. With the identification of Beclin 1, a key gene involved in the
autophagy process, it became possible to discover the connection between autophagy and
various human cancers. Monoallelic deletion of Beclin 1, a tumor suppressor, is observed in
hepatocellular carcinoma, ovarian and breast cancer [19–22]. Reduced expression of Beclin 1
in tumor tissues was observed in 44 patients with hepatocellular carcinoma. Based on these
observations, it was concluded that autophagy may lead to inhibition of tumorigenesis [22].
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Mentioned proteins are a kind of link between the core autophagic machinery and 
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Figure 1. Macroautophagy. The C-shaped expansion of the double membrane results in the formation of an autophagosome.
This small ‘vesicle’ contains redundant or damaged organelles, cellular fragments or proteins. In the next step, the formed
autophagosome fuses with the lysosome and an autolysosome is formed. Inside the created structure, all components are
degraded by hydrolytic enzymes.

2.2. Selective Autophagy

As mentioned in the introduction, we can distinguish between the selective and
non-selective form of autophagy. The mechanism of selective autophagy is based on
the degradation of specific organelles, such as endoplasmic reticulum (ER), mitochon-
dria, proteasomes, ribosomes, peroxisomes, lipid droplets (LDs), lysosomes and nuclei.
Selective autophagy’s mechanism of action is related to the binding of cargoes by au-
tophagy receptors and thereafter its degradation in lysosomes/vacuoles. A distinguishing
feature of autophagy receptors is the presence of AIM (Atg8-Interacting Motif) or LIR (LC3-
Interacting Region) on their surface. Both of these fragments allow binding of receptors and
proteins from Atg8/LC3/GABARAP family selectively [23–26]. Mentioned proteins are a
kind of link between the core autophagic machinery and transported cargo. This enables
the selective and efficient recognition of the cargo and its subsequent sequestration in au-
tophagosomes [27]. Based on the types of removed organelles, we distinguish the following
subtypes of selective autophagy: ER-phagy (endoplasmic reticulum), mitophagy (mito-
chondria), proteaphagy (proteasomes), ribophagy (ribosomes), pexophagy (peroxisomes),
lipophagy (LDs), lysophagy (lysosomes) and nucleophagy (nuclei) (Figure 2).

The selective autophagy’s ability to remove organelles makes this process a key
element in cellular homeostasis maintenance [28]. Disruption of the selective autophagy
functions may lead to the occurrence of various disorders, such as cancer [29,30], heart
failure [31], metabolic abnormalities [32] and inflammatory [33] or neurodegenerative
diseases [34,35].
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Figure 2. Selective forms of autophagy. Depending on the degraded organelle we can distinguish: mitophagy, ER-phagy,
proteaphagy, ribophagy, pexophagy, lipophagy, lysophagy and nucleophagy.

2.2.1. ER-Phagy

Post-translationally or co-translationally introduced into the endoplasmic reticulum,
plasma membrane proteins and secretory proteins inside the ER adopt the native struc-
ture. During this process, the newly synthesized polypeptides are often misfolded [36].
Moreover, when mutations occur in the protein-coding sequence, the frequency of this
phenomenon increases. To prevent the accumulation of misfolded polypeptides in the
ER, they can be transported back to the cytosol and then degraded using the ubiquitin-
proteasome system [37,38]. However, proteins may be the only substrates of the mentioned
degradation process. In contrast, the autophagy-lysosome system can degrade both protein
aggregates and ER membrane lipids. This process is referred to as ER-phagy. There are
two basic pathways of ER-phagy: micro-ER-phagy and macro-ER-phagy. In the process
of micro-ER-phagy, lysosomal membranes involute and part of the reticulum is “cut off”
from the lysosome lumen [39,40].

In contrast, in the macro-ER-phagy process, ER fragments are surrounded by au-
tophagosomes, followed by the fusion of autophagosomes and lysosomes, which results in
the formation of autolysosomes where material previously transported by autophagosomes
is degraded [41]. Mutations that occurred in SEC62 and FAM134B genes are involved in
cancer progression and development, i.e., FAM134B mutations in esophageal squamous
cell carcinoma promotes tumor development while in colon cancer, it leads to tumor
suppression [42,43].

2.2.2. Mitophagy

Mitophagy is the second subtype of selective autophagy. Autophagy machinery rec-
ognizes the dysfunctional, obsolete or damaged mitochondria, ultimately leading to the
degradation of redundant organelles in lysosomes [44]. Those redundant mitochondria
are incapable of efficient oxidative phosphorylation due to their transmembrane potential
dissipation. The consequence of this is the reactive oxygen species accumulation and the
subsequent increase in oxidative stress level throughout the cell. Specific mitophagy recep-
tors recognize isolated damaged organelles, combine with the core autophagy machinery
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and leads to the mitochondria-induced ADCD [44,45]. It has been observed that in cancer
patients, many proteins involved in mitophagy such as BNIP3, NIX, MFN1 and MFN2 or
PINK1 and PINK2 are dysregulated. However, how these proteins interact with cells to
act as a tumor promoter (i.e., BNIP3 receptor in pancreatic cancer, melanoma or renal cell
carcinoma) or suppressor (i.e., BNIP3 receptor in breast cancer) appears to depend largely
on the context and subtype of cancer present in the patient [46].

2.2.3. Proteaphagy

The eukaryotic proteasome, composed of two subunits, regulatory (RP) and core (CP),
has an important function in proteostasis maintenance, and by removing e.g., signaling
molecules, significantly influences various cellular processes [47]. The role of the RP
subunit is to recognize and degrade substrate molecules. The goal of this action is to deliver
a target protein to the CP subunit to be degraded [48]. Proteasomes are among the highly
mobile complexes, allowing them to move between the cell nucleus and the cytoplasm
depending on the phase of the cell cycle, stress conditions or cellular growth [48,49]. In
1995, proteasomes were first observed within lysosomes and autophagic vesicles located
in liver cells of starved rats [50]. Twenty years later, in 2015, the term ‘proteaphagy’ was
introduced confirming the existence of a proteasome-selective autophagy process [51]. In
mammalian cells, the proteasome undergoes amino acid starvation-induced ubiquitination.
p62, the autophagy receptor, recognizes these proteasomes, and through the receptor’s
concomitant interaction with LC3, they are delivered to the phagophore. In the expanding
phagophore, ultimate degradation of the organelles occurs [52]. Despite extensive research,
the biological consequences of proteaphagy remain largely unknown. Continued research
is needed to determine what role proteaphagy plays in maintaining a population of healthy
proteasomes in cells [53].

2.2.4. Ribophagy

Ribosomes represent 10% of the mass of all proteins located in a cell. Their degradation
by autophagy is called ‘ribophagy’. In cells in the basal state, the activity of this process is
very low, whereas mTOR 1 inhibition or starvation causes an enhancement of ribophagy. In-
hibition of mTOR 1 causes transport of NUFIP 1 (Nuclear FMR1 Interacting Protein 1), from
the cell nucleus to lysosomes and autophagosomes. Subsequently, NUFIP1 is bound by
ribosomes. The degradation of these organelles is initiated by autophagy. Following the in-
teraction between NUFIP1 and ribosomes, LC3 recruits autophagosomes [54,55]. By direct
interaction of autophagosomes with LC3, ribosomes are transported to autophagosomes
for degradation. To date, little is known about the effects of ribophagy on tumorigenesis.
However, the high levels of nucleotides and amino acids in ribosomes suggest that they
may provide some sort of nutrient store in the tumor environment [56].

2.2.5. Pexophagy

Peroxisomes are small organelles that degrade lipids in the cytoplasm. Because the
estimated half-life of these structures is approximately 2 days, both biogenesis and degra-
dation of peroxisomes are probably dynamic processes [57]. Degradation of peroxisomes
by autophagy called ‘pexophagy’, requires the participation of specific autophagy recep-
tors. In the case of pexophagy, these are NBR1 (a gene adjacent to the BRCA 1 gene) and
sequestosome 1 (SQSTM1 or p62). Overexpression of the above factors induces cluster-
ing and subsequent degradation of peroxisomes in mammalian cells [58,59]. As a result
of overexpression of ubiquitin molecule-linked PMPs (Peroxisomal Membrane Proteins),
such as PEX3 or PMP34, SQSTM1-dependent induction of pexophagy in mammalian cells
occurs [60]. Unfortunately, an appropriate answer to the following question remains un-
known: “If a PMP is ubiquitinated under pexophagy-inducing conditions and whether
subsequent interaction with NBR1 and/or SQSTM1 links ubiquitinated peroxisomes to the
autophagic machinery?” [61].
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2.2.6. Lipophagy

Lipophagy is the degradation of lipid molecules by autophagy. At the surface of the
autophagosome, the interaction of MAP1LC3 (Microtubule-Associated Protein 1 Light
Chain 3) with the autophagosomal membrane results in cargo recognition [62]. Lipophagy
initiation is usually enabled by the presence of one or more autophagy receptors, e.g.,
NBR1 or p62, linking the membrane of organelles and LC3 [63]. Depending on the size
of the degraded LDs, we distinguish between fragmented microautophagy and macroau-
tophagy. In fragmentary microautophagy, only part of a large lipid droplet is sequestered
by autophagosomes. The droplet is then detached as a double-membrane vesicle enriched
with LC3 and the contained material is gradually degraded by lysosomes. In contrast,
macroautophagy results in the entrapment of the entire lipid droplet inside the autophago-
some. After fusion with the lysosome, complete degradation of the droplet occurs in the
autolysosome [62,64]. Conducted studies have shown that lipophagy can contribute to
both inhibition and stimulation of cancer cell growth. The anti-tumor effect of lipophagy
depends on the level of LAL (Lysosomal Acid Lipase), which is a tumor suppressor. Zhao
et al. demonstrated that abnormal levels of LAL, specifically a deficiency of this enzyme,
enables the growth and metastasis of cancer cells [65]. On the other hand, the carcino-
genic effect of lipophagy is related to the possibility of using stored LDs as specific energy
resources in the tumorigenesis process, which may contribute to cancer development [66].

2.2.7. Lysophagy

Lysosomes are small, acidic organelles that break down redundant intracellular mate-
rials. They contain a large number of hydrolytic enzymes and various membrane proteins.
Destabilization of the lysosome leads to the release of significant amounts of hydrolases
from its interior into the cytosol, a detrimental phenomenon for the cell [67,68]. Fur-
thermore, lysosome rupture results in the release of calcium ions and protons from the
lysosomal compartment into the cytosol, leading to impairment of cellular function [69].
Damaged lysosomes can be degraded by selective autophagy, termed ‘lysophagy’. Follow-
ing the damage of lysosomal membrane induced by various factors e.g., viral or bacterial
toxins, β-amyloid, mineral crystals or lysosomotropic factors the induction of lysophagy
occurs [70]. Galectins localized in the cytosol receive signals about the damage that has
occurred and induce the ubiquitination of proteins located in the lysosomal membrane.
Protein ubiquitination leads to the recruitment of additional adaptors such as SQSTM1.
This triggers the core autophagy machinery, engulfment of the damaged organelle by
the phagophore, and downstream fusion of normal lysosomes with autophagosomes to
degrade damaged lysosomes [71].

2.2.8. Nucleophagy

The last subtype of selective autophagy is degradation of nuclear components, such
as RNA, DNA, nuclear proteins or nucleolus, called ‘nucleophagy’. We can distinguish
between two types of nucleophagy: macronucleophagy (in mammals) and micronucle-
ophagy (in yeast). Macronucleophagy is based on the degradation of redundant nuclear
components via engulfing the material by autophagosomes. Next, autophagosomes merge
with lysosomes, where degradation of the redundant material occurs [72,73]. Nucleophagy
has a dual function in tumorigenesis—it can both induce and inhibit cancer cells. The
carcinogenic effect of nucleophagy, observed in the later stages of tumor growth, is based
on the providing of nutrients that allow tumor cells to survive and metastasize in a nutrient-
poor environment. In contrast, the anti-cancer effect of this process is based on the removal
of damaged DNA or nuclear structures. As a result, it is possible to preserve the normal
integrity of nuclear structures and consequently prevent the development of cancer [74].

2.3. Microautophagy

The term ‘microautophagy’ was introduced by lysosome discoverer—Christian de
Duve. One of the hypotheses put forward by a Belgian scientist, regarding the process of
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multivesicular lysosomes formation, was “internalization by ‘microautophagy’ of small
cytoplasmic buds in shrinking lysosomes” [75]. Microautophagy, a process of non-invasive
engulfment of cytoplasmic material through membrane invaginations, occurring directly
in lysosomes. Although more than 50 years have passed since the Christian de Duve’s
discovery, we still know relatively little about the molecular mechanism of microautophagy
as well as how this process is regulated [76].

Mammals’ inability to distinguish between lysosomes and late endosomes results
from the complexity of the endocytic system. Furthermore, these structures have the same
diameter (about 500 nm) and are significantly smaller compared to autophagosomes found
in macroautophagy [77]. All of these aspects make the size of the microautophagic load
limited and also the process itself more difficult to detect than macroautophagy [78].

Sahu and co-authors found that in mammalian organisms microautophagy occurs
on late endosomes (Figure 3). The substrates of this process are randomly or selectively
collected and transported to endosomes in vesicles. Similar to the CMA described above,
endosomal microphagy (eMI) substrates have a KFERQ-like motif and are delivered to
endosomes by Hsc70 (Heat shock cognate protein 70). However, in contrast to the CMA,
eMI process do not require either substrates unfolding or LAMP2A (Lysosome-Associated
Membrane Protein type 2A) involvement [79]. Due to the fact that eMI does not require
the involvement of LAMP2A, which is found only in avian and mammalian genomes,
this mechanism may also occur in other organisms carrying proteins with the KFERQ-like
motif [80]. In the eMI process, endosomal membrane invagination occurs with the help of
the ESCRT (Endosomal Sorting Complex Required for Transport) machinery [79,81]. Fur-
thermore, another structure which is partially involved in that process is Hsc70, which may
cause membrane deformation when bound to phosphatidylserine [79,82]. eMI substrates,
integrated into intraluminal vesicles may be degraded in lysosomes/endosomes or can be
secreted outside the cell [83].
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the formed vesicle to the late endosome by Hsc70. Subsequently, endosomal membrane invagination occurs with the
involvement of ESCRT (Endosomal Sorting Complex Required for Transport). The final stage of microautophagy process is
the degradation of substrates inside the endosome.

Mejlvang et al. conducted a study investigating the effect of amino acid starvation on
the induction of autophagy. The results showed that starvation leads to immediate activa-
tion of autophagic response based on macroautophagy and subsequent eMI. Degradation
of autophagy receptors via eMI ensures rapid decomposition of supplied substrates. This
enables the maintenance of the initiated anabolic processes and, subsequently, the introduc-
tion of appropriate adaptive mechanisms allowing cells to survive a period of prolonged
starvation. This phenomenon may be important in the survival and development of cancer
cells [84]. To date, endosomal microautophagy is the least studied and described type of
autophagy. Its exact role in tumorigenesis remains unclear and requires further studies.
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2.4. Chaperone-Mediated Autophagy

The last of described type of autophagy is chaperone-mediated autophagy (CMA). It
is one of the intracellular proteins degradation pathways occurring in lysosomes (Figure 4).
Unlike microautophagy, which requires the presence of multilamellar vesicle bodies that
capture redundant fragments of cellular organelles [85], in the case of CMA, substrate
proteins are identified individually by a cytosolic chaperone, Hsc70. Moreover, the mi-
croautophagy process does not require the presence of LAMP2A during cargo transport
to the late endosome [85]. CMA selectivity is based on a specific sequence (KFERQ-like
motifs) found in all proteins constituting the substrate of that process [86]. Furthermore,
in certain cases where the specific motif is incomplete, it is possible to obtain recogniz-
able sequence thanks to post-translational acetylation or phosphorylation [87]. Only the
recognized proteins are further transported to the lysosome surface by Hsc70 and its
co-chaperones. This mechanism is completely different from that which occurs in microau-
tophagy and macroautophagy processes, where substrates are transported to lysosomes
inside the vesicles [11,88]. In the next step, proteins delivered on lysosome surface bind to
lysosome-associated membrane protein type 2A. The formation of the protein-lysosomal
receptor complex (mass 700 kDa) allows further transport of substrate proteins into the
lumen of the lysosome, where hydrolytic enzymes subsequently degrade them [86].
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CMA selectivity allows to control the level of many specific proteins in the cell, in-
cluding proto-oncogenic proteins [11]. The occurrence of CMA dysfunction could lead to
the adverse phenomenon of oncogenic protein accumulation inside the cell. One of the
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important transcription factors is MYC, which level is indirectly regulated by CMA [89].
In CMA-deficient cells, higher levels of MYC are observed. This leads to tumor-beneficial
metabolic changes and an increase in the intensity of cell proliferation. Therefore, a normal
CMA pathway prevents the malignant transformation of normal cells [89]. Unfortunately,
in cancer cells, the anticancer properties of CMA promote tumorigenesis. After transfor-
mation, an increase in CMA activity is observed to enable the maintenance of important
pro-oncogenic functions [90]. A perfect example of this action is the effect of CMA on
hexokinase II, which is a glycolytic enzyme essential for tumorigenesis [91]. As a result
of phosphorylation of the enzyme at the Thr473 position, the degradation process of hex-
okinase II by CMA does not occur, thereby increasing the protein stability. This leads to
enhanced glycolysis and stimulates cell growth of HEK293T, MCF-7, MDA-MB-231, and
SW480 (breast cancer) lines in vitro and in vivo [92].

3. Autophagy and Programmed Cell Death—Double-Edged Sword Relationship

Autophagy and apoptosis are regulated in the cell by different mechanisms. However,
it happens that both processes overlap. Under the influence of stress, sequential or simul-
taneous activation of the apoptotic and autophagy pathways can occur in a cell. There
are potential pathways of the relationship between apoptosis and autophagy: activation
of autophagy and subsequent inhibition of apoptosis, activation of autophagy leading to
activation of the apoptotic pathway, autophagy suppression and induction of apoptosis or
activation of autophagy and apoptosis simultaneously, leading to cell death on apoptotic
and autophagy-dependent pathway (Figure 5) [93–95]. In the former case, the cell activates
autophagy in response to a stress signal. As a defense mechanism, autophagy leads to the
removal of damaged fragments, preventing the activation of the apoptotic pathway. The
second possibility is a situation in which the cell is no longer able to defend itself against
the resulting damage, and the activated autophagy subsequently leads to activation of
apoptosis and cell death. In the last case, a stress signal triggers both processes, resulting in
cell death via two pathways [93]. Key factors connecting apoptosis and autophagy include,
for example: p53, Bcl-2/Beclin 1, Atg proteins, p62 or caspases.

3.1. p53 in Apoptosis and Autophagy

p53, a protein which binds specific DNA sequences, is involved in many cellular
processes including repair of damaged DNA and induction of apoptosis. Due to its ability to
regulate the cell cycle, p53 is called the guardian of the genome [96]. Activation of this factor
can occur, for example, as a result of DNA damage, hypoxia, or nutritional stress [97–99].
p53 can affect both the extrinsic and intrinsic pathway of apoptosis. DNA damage causes
mitochondrial translocation of p53. The protein promotes cytoplasmically localized Fas
and TRAIL receptors, leading to induction of the extrinsic apoptotic pathway [100,101].
However, in the cell nucleus, p53 promotes many proapoptotic proteins, such as Bid,
PUMA or Bax. In addition, it leads to inhibition of Bcl-2 expression, and both of these
actions trigger the intrinsic apoptosis pathway [101].

The p53 protein is also involved in the regulation of autophagy. Based on their study,
Crighton and co-authors found that genotoxic stress results in transcriptional activation
of DRAM (Damage-Regulated Autophagy Modulator), a direct target gene of p53, which
causes induction of autophagy. The DRAM signaling cascade promotes the fusion of
autophagosomes and lysosomes, resulting in the formation of autolysosomes. This p53
target gene is an essential factor in the proper functioning of the apoptosis regulatory
network and p53-dependent autophagy [102]. Furthermore, Tasdemir et al. demonstrated
that cytoplasmically localized p53 through inactivation of AMPK and subsequent activation
of the mTOR signaling pathway leads to inhibition of autophagy in the cell [103].

Scherz-Shouval and co-authors detected a relationship between autophagy and apop-
tosis processes. They revealed that under starvation conditions, p53 post-translationally
inhibits the regulation of LC3 level, which leads to its accumulation in cells and decreases
the rate of the autophagy process. The consequence is cell death by apoptosis [104].
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3.2. Bcl-2/Beclin 1 in Apoptosis and Autophagy

Bcl-2, members of the B-cell lymphoma family of proteins, inhibits the release of
cytochrome c from the mitochondrial interior, thereby playing a key role in the intrinsic
apoptotic pathway [105]. Beclin 1 is a key element involved in autophagosome formation
and is also an important component of the PI3K/Vps34 class III complex [106]. Bcl-2
binding to Beclin 1 leads to dissociation of Beclin 1 from PI3K class III, which results in
inhibition of autophagy [107]. However, the occurrence of mutation in the BH3 recep-
tor domain of Bcl-2 or Beclin 1 domain leads to dysfunction of Bcl-2/Beclin 1 complex,
intensification of autophagy and promotion of cell survival [108,109].

Under nutrient-deficient conditions, autophagy is an essential element for cell sur-
vival. Activation of JNK1 (C-Jun N-terminal protein Kinase 1) and phosphorylation of
residues involved in the Bcl-2′s regulatory loop lead to the destruction of the Bcl-2/Beclin
1 complex and consequently to initiation of autophagy [110]. Under standard conditions
the phosphorylated Bcl-2 molecule binds to Bax, leading to inhibition of apoptosis. Due
to the normal phosphorylation of Bcl-2, it is possible to maintain the integrity of the mi-
tochondrial membrane, which in turn protects cells from death by the intrinsic apoptotic
pathway. Sustaining the integrity of the mitochondrial membrane prevents the release of
proapoptotic proteins from within the organelle into the cytoplasm [111]. However, in
the situation of long-term nutrient deficiency, autophagy is not able to alleviate cellular
damages. Intensification of Bcl-2 phosphorylation (hyperphosphorylation) promoted by
JNK1 occurs [112]. This results in dissociation of the Bcl-2 molecule from Bax and apoptotic
cell death. When the cell receives adequate amounts of nutrients, Bax/Bak and Beclin 1
bind to Bcl-XL or Bcl-2, leading to the inhibition of activation of both processes, apoptosis
and autophagy [109,113].
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3.3. Atg Proteins in Apoptosis and Autophagy

The level of autophagy-related proteins in a cell is regulated by the availability of
growth factors and nutrients essential for proper cell functioning. Among Atg proteins
we can distinguish the Atg12–Atg5 complex, which is important in both autophagy and
apoptosis [114].

The Atg12–Atg5 complex, essential for autophagosome formation, also participates
in the apoptotic pathway in an unconjugated form. Atg12 binding through a BH3-like
motif to Bcl-2 and Mcl-1 (Myeloid Cell Leukemia 1) increases the intensity of the intrinsic
apoptotic pathway. Interestingly, the anti-apoptotic properties of Mcl-1 can be inhibited in
the cell as a result of abnormal Atg12 expression. Moreover, silencing Atg12 in an apoptotic
cell will result in the inhibition of Bax induction and the arrest of cytochrome c release from
the mitochondrion [115]. Cleaved by cell stress-activated cysteine proteases (caplains),
Atg5 plays a significant role in the initiation of the intrinsic apoptosis pathway. As a
consequence of cleavage, translocation of the N-terminal part of the Atg5 protein into the
mitochondrion occurs. Inside the organelle, this fragment interacts with Bcl-XL allowing
Atg-5 to be involved in the release of cytochrome c from the mitochondrion and indirectly
participating in apoptosis promotion [116]. Taken together, Atg5 and Atg12 proteins may
be involved in both autophagy and apoptosis, depending on the cellular conditions.

3.4. p62 in Apoptosis and Autophagy

p62, also known as SQSTM1, is a multi-domain adaptor protein that controls cell via-
bility by regulating both autophagy and apoptosis [117]. By polymerizing with other p62
molecules, this protein has the ability to accumulate ubiquitin-tagged proteins. Aggregates
of p62 (called p62 speckles), through their storage properties and ability to bind to the
LC3 molecule, recognize, gather, and most importantly transport cargo to the autophago-
somes [96]. p62, through its ability to activate caspase-8 on the autophagosome membrane
also plays an important role in the induction of apoptosis. The autophagy-dependent
mechanism of caspase-8 activation involves simultaneous induction of autophagy and
activation of caspase-8. The autophagosomal membrane provides some kind of platform
on which the caspase cascade leading to cell death by apoptosis is initiated. Depletion of
Atg3 or Atg5 leads to the suppression of autophagosome formation, which in turn results
in the inhibition of caspase-8 activation and subsequent suppression of apoptosis [118].

3.5. Caspases in Apoptosis and Autophagy

Caspases, enzymes belonging to the group of cysteine proteases, have been known to
science for a long time. Their participation and the exact mechanism of action in the process
of apoptosis have been widely studied and described in many scientific articles [119–121].
These enzymes are involved in both intrinsic and extrinsic pathways of apoptosis, acting
as initiators (caspases-2, -8, -9 and -10) or effectors (3, -6 and -7) [122]. Caspases under
standard conditions occurring in the form of inactive zymogenic precursors can be acti-
vated under the influence of various external or internal stimuli that initiate apoptosis.
Activated enzymes may participate in the apoptotic pathway [123]. Despite the significant
differences between the autophagy and apoptosis processes, the conducted studies indicate
that caspases also affect the autophagy process. Oral and co-authors have shown that
overexpression of caspase-8 leads to degradation of Atg3 protein and thus prevents its pro-
autophagic activity [124]. Furthermore, Wirawan et al. showed that two key components
of the autophagy-inducing complex (class III PI3K and Beclin 1) are direct substrates of
caspases. It was observed that in response to different signals inducing the two apoptotic
pathways, these enzymes cause cleavage of the complex components. Thus, the researchers
confirmed that class III PI3K and Beclin 1 are substrates of caspases [125]. In contrast, Han
and co-authors showed that caspase-9, by promoting Atg7-dependent LC3-II transforma-
tion, facilitates autophagosome formation. Moreover, the authors showed that depending
on the cellular conditions, Atg7 can also form a complex with caspase-9 and directly inhibit
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the proapoptotic activity of the enzyme [126]. All of these studies indicate there is a mutual
correlation between autophagy and apoptosis processes.

4. Autophagy Inhibitors and Activators

In a cancer therapy context, autophagy is a dichotomous process—it may inhibit
or induce tumor growth (Figure 6) [127]. As a mechanism that promotes cancer cells
development, autophagy protects cells from the negative impact of various forms of
cellular stress. In anti-cancer therapy, that process is referred to as ‘adaptive autophagy’.
It sustains cancer cells growth, increasing chances of tumor survival despite the use of
toxic chemotherapeutics or ionizing radiation. However, intentional inhibition of adaptive
autophagy leads to reversal of this phenomenon, causing cells re-sensitization to ionizing
radiation or used chemotherapeutic agents [128,129]. On the other hand, autophagy can
promote genomic stability and inhibits inflammation at the early stage of carcinogenesis
process. Interestingly, in animals disruption of ATG genes results in accelerated cancer
development [128].
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4.1. Autophagy Inhibitors Undergoing Clinical Trials
4.1.1. Chloroquine

Chloroquine (CQ) is a compound known for many years. This aminoquinolone
derivative was first approved by the U.S. Food and Drug Administration (FDA) in October
1949 as an antimalarial agent [130]. Although more than 70 years have passed since
the CQ was discovered, the detailed mechanism of the antimalarial effect of this agent
remains unknown. Presumably, CQ as a weak base, acting as a lysosomotropic compound,
inhibits lysosome activity [131]. Chloroquine is protonated after entering the lysosome,
due to low pH inside the organelle. Protonated CQ accumulation inside the lysosome
leads to inhibition of autophagic cargo degradation and consequently blocked autophagic
flux [132]. Inhibition of charge degradation located inside the lysosome stops the last
autophagy stage. As a consequence, the ability to provide energy to the cell through the
autophagy process is blocked. CQ’s ability to inhibit autophagy is being used by scientists
e.g., in the investigation of new cancer therapy methods.
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Erkisa et al. [35] published an article describing the combination therapy of metastatic
prostate cancer using the palladium(II) barbiturate complex and CQ. The author’s study
showed increased efficacy of combined therapy: CQ and palladium(II) barbiturate complex
compared to single-agent (CQ or palladium(II) barbiturate complex alone) treatment. The
use of CQ resulted in inhibition of prosurvival autophagy function and consequently
increased the sensitivity of tumor cells to the tested complex [133]. A paper recently pub-
lished by Lopiccolo and co-authors describes in vitro and in vivo studies using chloroquine
and nelfinavir as a combination therapy in non-small cell lung cancer (NSCLC) treat-
ment. The obtained results indicate that both in vitro and in vivo, combination therapy
was effective in NSCLC treatment. The combined administration of CQ and nelfinavir
resulted in increased inhibition of NSCLC cell growth while enhancing apoptosis and ER
stress induction [134]. Next interesting, this year’s paper is an article published by Wei
et al. describing the use of cyanidin-3-O-glucoside (C3G) combined with CQ in Drosophila
malignant RafGOFscrib−/− model to determine the antitumor activity of C3G. Results
presented in the paper revealed that CQ and C3G combined therapy is more effective
against Drosophila malignant RafGOFscrib−/− model that CQ or C3G used alone [135]. All
papers and results mentioned above suggest that the combination of CQ with the different
compound may be more effective than single-agent therapy.

4.1.2. Hydroxychloroquine

Hydroxychloroquine (HCQ), belonging to the 4-aminochinoline class, is a CQ ana-
logue. The original CQ molecule has been enriched with a hydroxyl group, thus forming
HCQ, which compared to the parent compound is three times less toxic [136]. In 1955,
HCQ was approved by the FDA and, like CQ, registered as an antimalarial agent [137].
Hydroxychloroquine as an inhibitor of autophagy process blocks autolysosomes formation
by preventing lysosomes and autophagosomes fusion [138,139]. Both HCQ and described
above CQ have been used as standard autophagy inhibitors in many clinical and preclinical
studies. Only right now (May 2021) there are at least a dozen active clinical trials on the use
of HCQ in the treatment of various cancers (ClinicalTrials.gov, accesses on 27 May 2021).
The Emory University is actively recruiting patients for a trial investigating the use of HCQ
in combined therapy (HCQ + paricalcitol with standard chemotherapeutics: gemcitabine +
nab-paclitaxel) of metastatic or advanced pancreatic cancer (NCT04524702). As another
example, M.D. Anderson Cancer Center is investigating the use of HCQ with letrozole
and palbociclib in patients with estrogen receptor-positive, HER2 negative breast cancer
before they undergo surgery. This study aims to enhance the efficacy of the provided
treatment (NCT03774472). Finally, it is also worth mentioning that there are many ongoing
clinical trials on the use of CQ and HCQ in the treatment of patients with COVID-19
(ClinicalTrials.gov).

4.1.3. Verteporfin

Verteporfin is benzoporphyrin derivative consisting of two regioisomers (I and II). This
compound was approved by the FDA in 2002 for photodynamic therapy of patients with
age-related macular degeneration [140,141]. To find new autophagosomes accumulation
inhibitors, scientists decided to screen the databases of off-patents agents and libraries of
compounds with known pharmacological activity. Among ≈3500 of screened compounds,
only verteporfin (VP) was selected for further investigation. Donohue et al. examined the
ability of verteporfin to inhibit autophagy process by pre-treating MCF-7 cells with CQ.
Autophagosomes accumulation induced by CQ was subsequently inhibited by verteporfin.
Furthermore, inhibition of accumulation of autophagosomes occurred in the dark. Based
on this, the authors concluded that the ability of verteporfin autophagy inhibition is not
associated with its photodynamic properties [141]. Researchers are investigating the use
of verteporfin in the treatment of various cancers. The increased efficacy of gemcitabine
in combination with verteporfin in the treatment of pancreatic ductal adenocarcinoma
model, the improved effectiveness of sorafenib therapy with VP against hepatocellular

ClinicalTrials.gov
ClinicalTrials.gov


Int. J. Mol. Sci. 2021, 22, 5804 14 of 35

carcinoma or the increased sensitivity of osteosarcoma cells to treatment caused by the
use of VP have been demonstrated [142–144]. In addition, currently ongoing clinical
trials are investigating the use of VP, e.g., for the treatment of recurrent prostate cancer
(NCT03067051) or pancreatic cancer therapy (NCT03033225).

4.1.4. Clarithromycin

Clarithromycin (CAM) is well-known medicine, belonging to the class of macrolide
antibiotics. Approved in 2000 by the FDA [145], CAM is commonly used in therapy of
various bacterial infections, treatment of Helicobacter pylori-induced gastric infections or
Lyme disease therapy. Data collected from the extensive clinical and preclinical studies
on CAM indicate that the drug, combined with conventional therapeutics, could be used
to treat various cancers. CAM’s anticancer properties are based on its ability to anti-
angiogenesis, pro-inflammatory cytokines reduction and autophagy inhibition [146]. After
the fusion of autophagosomes and lysosomes, autophagy is blocked by inhibition of
lysosomes function [147]. Ongoing clinical trials are investigating the CAM’s application
in the treatment of: multiple myeloma (NCT04302324, NCT04063189, NCT02542657),
mucosa-associated lymphoid tissue lymphoma (NCT03031483) and previously untreated,
advanced-stage indolent lymphoma (NCT00461084).

Information regarding the compounds undergoing clinical trials is collected in Table 1.
Target points, adverse effects and selected therapeutic schemes of described autophagy
inhibitors are presented in Table 2.

Table 1. Selected autophagy inhibitors under clinical investigation.

Autophagy Inhibitor Chemical Structure Study Type References

Chloroquine
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4.2. Autophagy Inhibiotors Undergoing Preclinical Trials
4.2.1. 3-Methyladenine

3-Methyladenine (3-MA) was discovered in 1982 by Seglen & Gordon. The scientists
through screening of a large number of N6-methylated adenosine derivatives selected
the most promising compound, which appeared to be 3-MA [150]. Nowadays, 3-MA is
one of the most commonly used autophagy inhibitor [151]. This compound affects two
molecular targets involved in the autophagy process: phosphoinositide 3-kinase (PI3K)
and Vps34. The duality of the compound’s action means that it affects autophagy with
increased potency [152,153]. Wu et al. in their work described the duality of 3-MA action.
Based on the obtained results scientists concluded that the compound, when administered
over a prolonged period, in nutrient-rich conditions, promotes autophagic flux. However,
under nutrient-deficiency conditions, it inhibits autophagy [154].

Scientists around the world are conducting research on the use of 3-MA combined
with different drugs in the therapy of various cancers. Wang et al. showed in their in vitro
studies that resveratrol used alone against human ovarian serous papillary cystadeno-
carcinoma cell line SK-OV-3 can inhibit apoptosis by inducing autophagy. Furthermore,
results obtained from combined therapy (resveratrol with 3-MA) revealed that simulta-
neous application of autophagy inhibitor and chemotherapeutic drug in SK-OV-3 tumor
could improve the drug efficiency and also protect normal cells from tumorigenesis [155].
In a recently published paper, Zhao et al. investigated the effect of 3-MA on the treatment
of hepatocellular carcinoma cells (HepG2 cell line). They showed that 3-MA (used in
combined therapy with sorafenib), by inhibiting the autophagosome formation, leads to a
reduction of acquired sorafenib resistance of HepG2 cells [156].

4.2.2. SAR405

SAR405, Vps34 and Vps18 inhibitor with low molecular mass, was first described
in 2014 by Ronan et al. [157]. Research published a year after by Pasquier revealed that
inhibition of Vps34 by SAR405 leads to the impairment of lysosome function and inhibition
of autophagy process [158]. In 2020, Janji et al. published an article describing the usage of
Vps34 inhibitors (SAR405 and SB02024) in the therapy of colorectal and melanoma tumor
cells. Based on the obtained results, scientists concluded that the use of these compounds
enhances the therapeutic effect of the applied anti-PD-1/PD-L1 immunotherapy [159].

4.2.3. Lys05

Lys05 is a water-soluble bisaminoquinoline inhibitor of autophagy. The enhanced
autophagy inhibition by Lys05 compared to CQ and HCQ is attributed to the presence
of C-7 chlorine, triamine linker and two aminoquinolone rings in the Lys05 structure. A
study conducted by McAfee and co-workers compared the efficacy of HCQ and Lys05
in treatment of C8161, PC-9, LN-229 cell lines and 1205Lu xenograft model. Obtained
in vivo results revealed 34-fold higher Lys05 concentration in tumor cells compared to
HCQ. Moreover, a Lys05 application-related double accumulation of autophagy vesicles
compared with HCQ therapy in a used xenograft model was observed [160].

DeVorkin et al. published an article in which they showed that the administration of
Lys05 together with sunitinib (receptor tyrosine kinase inhibitor) improve the therapeutic
effect of this drug. In used clear cell ovarian carcinoma xenograft models, inhibition of
autophagy process by Lys05 resulted in enhancing the anti-cancer activity of sunitinib
compared with single-agent treatment (sunitinib or Lys05 alone) [161]. In an article titled,
“Targeting quiescent leukemic stem cells using second generation autophagy inhibitors,”
Baquero et al. investigated the potential application of Lys05 with tyrosine kinase in-
hibitors in the treatment of chronic myeloid leukemia (CML). The obtained results showed
that Lys05-mediated inhibition of autophagy process affects tumor cells via reduction of
quiescence of leukemic stem cells and increasing the expansion of myeloid cells [162].
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4.2.4. ROC-325

ROC-325 is a compound developed by applying a logical medicinal chemistry ap-
proach to drug design. To create a more effective, well-tolerated and more potent autophagy
inhibitor, scientists generated new dimeric compounds based on the modified CQ, HCQ
and lucanthone (antischistosomal drug) elements. Carew et al., based on the obtained
results, concluded that ROC-325 (with lucanthone and HCQ motifs) exhibited significantly
greater anti-cancer activity against various types of cancer than the parent compounds.
Moreover, they found that ROC-325 used at much lower doses inhibited autophagy more
effectively than HCQ.

Based on in vitro studies using renal cell carcinoma models, it was possible to de-
termine the ROC-325 effect on the autophagy process ROC-325 was shown to inhibit
autophagic flux as well as lead to the autophagosomes accumulation and lysosomes deacid-
ification. Under in vivo conditions, the compound administered orally to mice at low
doses inhibited tumor growth more effectively than HCQ administered at high doses.
Furthermore, by analyzing of tumor samples from ROC-325 treated mice, autophagy was
inhibited and apoptosis and proliferation of tumor cells were reduced [163]. In 2019,
Nawrocki et al. conducted preclinical in vitro and in vivo studies on the use of ROC-325
in acute myeloid leukemia (AML). The in vitro studies examined the efficacy of ROC-325
(single-agent treatment or in combination with azacitidine) against four tumor cell lines:
MV4-11, MOLM-13, KG-1 and HL-60. During in vivo studies, mice were treated with
azacitidine (AZA), ROC-325 or AZA + ROC-325 combination. The results obtained in vitro
as well as in vivo indicated that combination therapy is more effective and significantly
extended the overall survival time. In addition to this, the combined agents were well
tolerated [164].

4.2.5. Spautin-1

Spautin-1 was originally identified as a selective and strong phosphodiesterase type 5
inhibitor [165,166]. During preclinical studies, the researchers discovered that spautin-1 is
also an autophagy inhibitor. The obtained results revealed that by promoting the degra-
dation of Vps34 complexes, spautin-1 inhibits two ubiquitin-specific peptidases (USP10
and USP13), which consequently leads to inhibition of the autophagy process [167]. The
collected data suggest that spautin-1 could be used in the treatment of ovarian cancers [168],
CML [169] or prostate cancer [170].

4.2.6. MM124 and MM137

MM124 and MM137 are compounds belonging to a group of 7-methyl-5-phenyl-
pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine sulfonamide derivatives. In a study conducted
by Gornowicz et al., the anticancer effects of new derivatives on colorectal cancer cells
were investigated. The obtained results showed that MM124 and MM137 decrease the
concentration of LC3A, LC3B and Beclin 1 in the tested cell lines (DLD-1 and HT-29). Based
on this, the researchers concluded that MM124 and MM137 could inhibit the autophagy
process at the autophagosome formation level. Nevertheless, further in vivo studies are
required to confirm the autophagy-inhibiting effect of the novel derivatives [171].

Table 3 summarizes information about autophagy inhibitors undergoing preclinical
investigation.
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Table 3. Selected autophagy inhibitor under preclinical investigation.
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4.3. Autophagy Activators Undergoing Clinical Trials
4.3.1. Rapamycin

Rapamycin (RAPA, Sirolimus) is a 31-membered macrocyclic antifungal antibiotic
produced by Streptomyces hygroscopicus [182]. This naturally occurring mTOR inhibitor was
first approved by the FDA in 1999 as Sirolimus [183]. RAPA is the compound with a broad
spectrum of pharmacological and biological activity. In addition to its antifungal activity,
this compound exhibits e.g., neuroprotective [184], antitumor [185], anti-ageing [186] and
immunosuppressive properties [187]. mTOR signaling plays a crucial role in autophagy
occurring in cancer cells by increasing their growth and enhancing proliferation. Inhibition
of mTOR activity induced by RAPA may cause an increase in autophagy flux in tumor
cells and consequently contribute to a reduction in tumor growth. Furthermore, conducted
studies revealed that RAPA induces autophagosomes formation and, at the later stage,
lysosomes and autophagosomes fusion [188–190]. Ongoing clinical trials, concerning
the application of RAPA in the treatment of, e.g., kaposiform hemangioendothelioma in
children (NCT04077515), bladder cancer (NCT02753309, NCT04375813), HER2+ metastatic
breast cancer (NCT04736589) and refractory solid tumors (NCT02688881). There are also
ongoing studies investigating the use of sirolimus in combination with durvalumab for
the treatment of NSCLC (NCT04348292) and sirolimus with metronomic therapy for the
treatment of pediatric relapsed or refractory tumors (NCT02574728).

4.3.2. Temsirolimus

Temsirolimus (CCI-779, TEM, Torisel®) is a known analogue of RAPA. This water-
soluble RAPA’s prodrug was first developed by Wyeth Pharmaceuticals and it was ap-
proved by the FDA in the treatment of advanced renal cell carcinoma (RCC) [191] in 2007.
TEM is produced via RAPA and 2,2-dihydroxymethylpropionic acid esterification [192].
However, due to the ease of the degradation of orally administered esters, this drug must
be administered intravenously [193]. Studies on the potential use of TEM in the therapy of
colorectal cancer [194], prostate cancer [195], human papillomavirus-related oropharyngeal
squamous cell carcinoma [196] or advanced solid tumors [197] have been conducted. Fur-
thermore, there are at least several dozen ongoing clinical trials on the use of temsirolimus
for the treatment of advanced or metastatic malignancies (NCT01552434), advanced gy-
necological malignancies (NCT01065662), advanced rare tumors (NCT01396408), diffuse
intrinsic pontine glioma (NCT02420613) or solid tumors in adults (NCT01375829) are under
investigations.

4.3.3. Everolimus

Everolimus (RAD001) is a next RAPA water-soluble analogue, developed by Novartis.
The drug is produced via the esterification (ethylene glycol plus RAPA) process. Com-
pounds esterification results in the formation of a new derivative (RAD001) with improved
solubility in water and stability [93]. Everolimus was first approved by the FDA in 2009
as a therapeutic agent in the treatment of advanced renal carcinoma [198]. Since then, the
new therapeutic applications of the drug in the treatment of various cancers have been
continuously developed. In the past year alone, the possibility of using RAD001 in various
cancer therapies has been investigated, e.g., in combination therapy (everolimus plus
bevacizumab) for advanced papillary variant renal cell carcinoma [199], in the treatment of
triple-negative breast cancer (everolimus in combination with gefitinib) [200] or in the treat-
ment of advanced solid tumors (everolimus plus vatalanib) [201]. Moreover, there are cur-
rent, ongoing clinical trials concerning the application of RAD001 on the treatment of, e.g.,
recurrent or progressive ependymoma in children (NCT02155920), Hodgkin lymphoma
(NCT03697408), metastatic transitional cell carcinoma of the urothelium (NCT00805129),
advanced gynecologic malignancies and breast cancers (NCT03154281) or recurrent low
grade gliomas in young adults and pediatric patients (NCT04485559).
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4.3.4. Metformin

Metformin was discovered in 1922 as a by-product of the synthesis of N,N-dimethy
lguanidine [202]. As a result of numerous studies, the hypoglycemic effect of metformin
was discovered, and it was first used in the treatment of diabetes in 1957 [203]. Nowadays,
this compound, approved by the FDA in 1998, is the most commonly prescribed antidiabetic
drug and is used in the treatment of type 2 diabetes, especially in obese diabetics [204–206].
Based on the conducted studies, Tomic et al. were found that metformin significantly affects
melanoma cells proliferation by inhibiting tumor growth. Moreover, based on the tumor
samples analysis the drug was found to increase the level of apoptosis markers in cancer
cells and induce the autophagy process [207]. In 2014, Takahashi and co-authors obtained
similar results during a study with endometrial cancer cells [208]. Recently, intensive
studies exploring new properties of this compound were conducted. The potential use
of metformin, for example in the treatment of PCOS [209,210], in cancer therapy [211],
as a cardiovascular protector [212] or as an inhibitor of the ageing process [213,214], has
been investigated. There are many ongoing studies on the use of metformin in cancer
treatment. Currently, clinical studies are being conducted on the use of the compound in
the treatment of, for example, breast cancer (NCT04559308, NCT04387630, NCT01980823,
NCT04741204), colon cancer (NCT03359681), thoracic neoplasm (NCT03477162) or prostate
cancer (NCT02176161, NCT02339168).

Described autophagy activators undergoing clinical trials and their target points,
adverse effects or selected therapeutic schemes are listed in Tables 4 and 5.

4.4. Autophagy Activators Undergoing Preclinical Trials
4.4.1. Miconazole

Miconazole (MCZ), an imidazole derivative, is a known antifungal drug originally
approved by the FDA for the treatment of vaginal candidiasis in 1974 [215]. Moreover,
this drug is used also in the treatment of athlete’s foot [216] or tinea versicolor [217].
Interestingly, in recent decades MCZ has attracted scientist as a potential drug with anti-
cancer properties. Conducted studies have shown, that MCZ inhibits the growth of various
human tumors, e.g., breast cancer and glioma [218,219] or osteosarcoma [220]. Jung et al.
have been investigated the effect of MCZ on the autophagy process. Conducted studies
revealed that MCZ induces autophagy in glioblastoma cells. The authors presumed, that
MCZ-induced autophagy-mediated cell death might be activated via reactive oxygen
species-mediated endoplasmic reticulum stress [221]. In published recently paper, Ho et al.
have shown that MCZ induces autophagy process in bladder cancer cells. The authors
demonstrated that miconazole increases the autophagic flux and promotes the expression
of LC3 in the tested cancer cells. They revealed that combination therapy (MCZ with
autophagy inhibitor) enhanced the anticancer properties of miconazole [222].

4.4.2. CRO15

CRO15 is a new compound derived from metformin, recently identified by Jaune and
co-authors. The research aimed to develop a new molecule with a better pharmacological
profile, enhanced potency and improved effect in patients compared to its parent drug,
metformin. The initial screening and structure-activity relationship studies revealed a
new potential drug—CRO15. Extensive in vitro, in vivo studies and studies in melanoma
xenograft models have shown that CRO15 reduces tumor cell viability. The molecular mech-
anism of action of the compound is based on effects on two main processes—autophagy
and apoptosis. The results obtained, both in vitro and in vivo, showed that CRO15 induces
autophagy by accumulating LC3 in melanoma cancer cells. Moreover, the performed
in vivo studies did not show strong toxicity of the tested compound in mice. All of this
data suggests that CRO15 should be further evaluated as a potential anticancer drug [223].
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Table 4. Selected autophagy activators under clinical investigation.

Autophagy Activator Chemical Structure Study Type References
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Table 5. Target points, adverse effects and selected therapeutic schemes of autophagy activators.

Autophagy
Activator Target Point Adverse Effects

Therapeutic
Combination or

Single-Agent
Treatment

Tumor Type References

Rapamycin mTOR

blood and
lymphatic system

disorders e.g.,
anemia or

leukopenia,
nausea, fatigue,
mucositis, rash

rapamycin +
trastuzumab

HER2 receptor
positive metastatic

breast cancer
NCT00411788

after treatment
with high-dose
RAPA (6 mg):
neutropenia,

diarrhea, fever,
stomatitis

rapamycin + radical
prostatectomy

advanced localized
prostate cancer NCT00311623

Temsirolimus mTOR

anemia, abdominal
pain, diarrhea,
nausea, fever,

non-cardiac chest
pain, dyspnea,

headache, cough,
metabolism and

nutrition disorders

temsirolimus + sorafenib thyroid cancer NCT01025453

blood and
lymphatic system

disorders,
gastrointestinal
disorders, back

pain, dizziness, dry
skin, pruritus, rash

temsirolimus +
bevacizumab prostate cancer NCT01083368

Temsirolimus mTOR

mucositis oral,
fatigue,

dehydration,
dyspnea

temsirolimus +
cixutumumab breast cancer NCT00699491

Everolimus mTOR

no adverse effects
observed

everolimus and
pasireotide thyroid cancer NCT01270321

anemia, vomiting,
lower respiratory

tract infection,
hypercalcemia,

confusional state

everolimus +
exemestane

estrogen receptor
positive advanced

breast cancer
NCT01743560

anemia, abdominal
pain, diarrhea,
mucositis oral,

nausea, vomiting,
fatigue, rash

everolimus + pazopanib solid tumor,
kidney cancer NCT01184326

Metformin Beclin 1/mTOR

xerostomia,
dysphagia, fatigue,

dysgeusia

external beam radiation
therapy

+ metformin

head and neck
cancer NCT03109873

anemia, tinnitus,
diarrhea, vomiting,

nausea, white
blood cell
decreased

metformin + cisplatin
and

radiation therapy

locally advanced
head and neck
squamous cell

carcinoma

NCT02325401
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4.4.3. α-Hederin

α-Hederin (α-HN) is a molecule belonging to the wide group of monodesmosidic
triterpenoid saponins. This compound is the main component isolated from Hedera he-
lix L. leaves. It is also found in Nigella sativa, Kalopanax pictus and Chenopodium quinoa
plants [224]. Studies conducted by Li et al. revealed that α-HN may act through increasing
the ROS concentration, consequently leading to the activation of the intrinsic apoptotic
pathway [225]. This finding prompted Li and co-workers to investigate the influence of
α-HN on the autophagy process in colorectal cancer cells. Obtained results have shown
that α-HN induces autophagy-mediated cell death through the activation of the ROS-
dependent AMPK/mTOR signaling pathway. Nevertheless, the potential use of α-HN as
an anticancer agent requires further investigation due to its toxicity, hemolytic effect and
protein absorption [226].

4.4.4. MJ-33

MJ-33 is a novel quinazolinone derivative synthesized by Ha and co-authors. A
recently published paper revealed the anti-cancer properties of this compound in 5-
fluorouracil-resistant (5FUR) colon cancer cells (HT-29/5FUR). Furthermore, the molecular
mechanism of MJ-33 activity was also investigated. Based on the obtained results, MJ-33
was found to induce the autophagy process in HT-29/5FUR cells through inhibition of
mTOR phosphorylation and subsequent upregulation of ATG proteins expression. Addi-
tionally, combined therapy with MJ-33 and known autophagy inhibitor, 3-MA, has shown
significant enhancement in effector caspases (caspase-3 and caspase-7) activity compared
with single-agent therapy with MJ-33. Obtained results suggest that the autophagy process
plays a cytoprotective role in tested HT-29/5FUR cells [227]. Nowadays, scientists around
the world investigate the effect of combined therapies, autophagy inhibitors together with
autophagy activators, as a novel strategy in cancers treatment [228]. The authors of the
aforementioned paper suggest that further studies on new quinazolinone derivative should
examine the effect of combined therapy with MJ-33 and autophagy inhibitors [227].

Table 6 summarizes information about all described autophagy activators undergoing
preclinical investigation.
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5. Conclusions

Neoplastic transformation requires significant changes in biological processes as part
of increased demand and consumption of energy under stressful conditions. It leads
to intracellular adaptation that ensures survival in conditions with a limited amount of
nutrients and oxygen. There is a change in metabolism, protein and organelle turnover,
and bioenergy functions. These neoplastic signaling pathways cross with autophagy
at many levels. Autophagy is a dichotomous process—it may inhibit or induce tumor
growth. These observations suggest that autophagy plays a dynamic and complex role
play in cancer, which may, in fact, explain the duplicity of autophagy in carcinogenesis.
While targeting autophagy pathways appears to be a promising tool in developing new
anti-cancer therapies, recent findings suggest that the underlying molecular mechanisms
and specific targets of autophagy in cancer need to be well defined before it can be used
effectively in pharmaceutical and medical research.
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Despite the fact that the most well-known inhibitors (such as chloroquine, hydroxy-
chloroquine, clarithromycin or verteporfin) and activators (rapamycin, metformin, tem-
sirolimus or everolimus) of autophagy are recognized in the scientific and medical world
for years, they have not been used in medicinal practice. As presented in this paper, a
number of clinical and preclinical studies are conducted, the aim of which is to discover
new possibilities in oncological therapy, including the use of autophagy modulators in
combination with anticancer drugs. Recent studies have identified new classes of inhibitors
and activators of autophagy that are currently in preclinical research. Among them, the
most promising are 3-Methyladenine, SAR405, Lys05, 7-methyl-5-phenylpyrazolo[4,3-
e]tetrazolo[4,5-b][1,2,4]triazine sulfonamide derivatives, miconazole, CRO15 or α –Hederin.
These compounds have different target points in the autophagy process and further de-
tailed studies are needed to determine their potential use in the practical treatment of
cancer.
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Abbreviations

3-MA 3-Methyladenine
5FUR 5-fluorouracil-resistant
ADCD autophagy-dependent cell death
AML acute myeloid leukemia
AMPK 5′ adenosine monophosphate-activated protein kinase
ATG autophagy-related
AZA azacitidine
C3G cyaniding-3-O-glucoside
CAM clarithromycin
CMA chaperone-mediated autophagy
CML chronic myeloid leukemia
CQ chloroquine
DRAM damage-regulated autophagy modulator
eMI endosomal microphagy
ER endoplasmic reticulum
ESCRT endosomal sorting complex required for transport
FDA Food and Drug Administration
HCQ hydroxychloroquine
Hsc70 heat shock cognate protein 70
JNK-1 C-Jun N-terminal protein kinase 1
LAL lysosomal acid lipase
LAMP2A lysosome associated membrane protein type 2A
LC3 light chain protein 3
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LDs lipid droplets
Mcl-1 myeloid cell leukemia 1
MCZ miconazole
mTOR mammalian target of rapamycin
NSCLC non-small cell lung cancer
NUFIP 1 nuclear FMR1 interacting protein 1
PIK3K phosphoinositide 3-kinase
PMPs peroxisomal membrane proteins
RAD001 everolimus
RAPA rapamycin
SQSTM1 sequestosome 1
TEM temsirolimus
VP verteporfin
α-HN α-Hederin
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