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MicroRNA (miRNA) is a class of non-coding small RNAs, which post-transcriptionally regulate a large number of
genes and are now known to be important regulators in a wide variety of biological processes including meta-
bolism. Thus, for better understanding these complex biological networks, and to derive their significance and
inter-dependency, a systems biology approach enables us to explore and draw vital insights into these molecular
network architectures. In this study, we aimed to understand the significance of synergistic miRNA-miRNA in-
teractions in rice by constructing and analysing metabolic networks. The construction of the network involves
target gene prediction of experimentally verified miRNAs of rice and then appending associated metabolic
pathways to the network. A genome-scale miRNA-miRNA co-functional network (MFSN) is constructed based on
co-regulatory interactions among the miRNAs and common target genes by applying transformational procedures.
The analysis of the extracted MFSN modules identifies co-regulated target genes that are associated with corre-
sponding interconnected metabolic pathways such as VALDEG-PWY (L-valine degradation I pathway was found to
be targeted by multiple miRNA families, such as osa-miR812, osa-miR818, osa-miR821, and osa-miR5799 fam-
ilies while another pathway that was found to be associated with multiple miRNA families was PWY-6952
(glycerophosphodiester degradation pathway), PWY-6952 was found to be targeted by osa-miR812, osa-
miR11344 and osa-miR5801 families. Such extensive study will help in systematically elucidating the regulatory
networks in metabolism of rice, which in turn can be utilised to devise strategies for crop improvement and novel
cultivar development.
1. Introduction

Rice (Oryza sativa L.) is among the most important species of grass
and a staple food for almost half of the global population [1]. Our
ever-increasing population and worsening climate have compounded
over the years causing an overall decline in the amount of available
cultivable land per person. This calls for the development of agricultural
methods in addition to biotechnological intervention to be able to grow
at least the essential crops, in indoor micro-environments using hydro-
ponic technology [2]. At the same time, equal care must be taken to make
sure the nutritional value of the crops is not adversely affected. To do
this, a thorough understanding of physiological characteristics is
required at a cellular level. This includes identification of target gene
function, their regulation at the transcriptional and post-transcriptional
level. Understanding and identifying metabolic pathways, their associ-
ated enzymatic activities, and the involvement of corresponding
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biomolecular interactions are a few key aspects in crop improvement and
novel cultivar development which requires more research.

MicroRNAs (miRNAs) are a class of non-coding small RNAs, which
are ~22 nucleotides in length [3] known to play important roles in
regulating mRNA expression. The first microRNA (miRNA), lin-4, was
discovered in 1993 by the Ambros and Ruvkun groups in Caenorhabditis
elegans [4, 5] and has since revolutionized the field of molecular biology.

New miRNAs are continuously being discovered [6] and their roles in
gene regulation are well recognized. MiRNAs play a critical role in
normal animal development and are also involved in a variety of bio-
logical processes [7]. They have also been studied in several plants [8, 9].
Fundamental miRNA biology has been well-reviewed previously [10, 11,
12, 13]. Even though recent studies indicate that miRNAs play an
important role in human metabolism [14], the same in plants is only
moderately studied [15] and is mostly focused on stress responses [16].
Computational biology approaches in combination with bench research
have been able to establish that miRNAs participate in metabolism
ber 2020
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functions in animals as well as in plants. Recent advancements in the field
of molecular biology have shown that microRNAs (miRNAs) regulate
vital metabolic processes in plants, typically at the post-transcriptional
level [17, 18]. There are existing studies that elucidate conditional
(stress) or pathway-specific regulatory involvement of miRNAs in plants
but extensive metabolic network-based studies at genome-scale have not
been done in rice – to the best of our knowledge. Systems biology
approach and mathematical modelling of biological networks have
shown much promise in understanding regulation of gene in complex
biological processes when integrated with experimental techniques [19].

Owing to the recent increase in the availability of rice genome data
derived from high-throughput experiments and algorithms, we have
been able to explore the complex pairwise or synergistic relationships
between miRNAs. In their study, Wu et al. found that 28 miRNAs can
substantially inhibit p21Cip1/Waf1 expression [20]. This necessitates
similar studies to be done on plants, especially in rice, due to its com-
mercial importance. We focus on network analysis more compared to
studying individual connections between miRNAs and their predicted
targets, in this approach. Thus, studying pairwise or synergistic miRNA
interaction is an important step towards determining miRNA functions at
a genome-wide level.

Our understanding of synergistic interactions and its importance in
domains ranging from biology to social sciences has increased over the
years, and different methods have been developed to understand syner-
gistic interactions that occur in biological networks [21, 22, 23, 24]. A
randomization-based test devised by Balaji et al. [21] was used to iden-
tify pairs of transcription factors, in their study, that showed combina-
torial regulation of target genes. Xu et al. [22] used network
transformation to quantify synergistic associations between miRNA pairs
with regards to their corresponding set of predicted targets, while Zhou
et al. [23] established a miRNA-miRNA synergistic network by
computing the pathway enrichment in the common set of genes for each
miRNA pair. An et al. [24] used signal-to-noise ratio to identify regu-
lating miRNAs for every gene and described a procedure to identify
highly probable co-regulating miRNAs and their corresponding
co-regulated sets of genes, which also involved several statistical tests.
Figure 1. Overall workflow of creation of M

2

These studies, as mentioned, have clearly shown the significance of
synergism in biological networks and have also indicated that integrating
predicted targets with functional information could help in determining
co-regulatory miRNA pairs and simultaneously reveal their underlying
functional roles in the given networks.

Based on these observations, in our present analysis, we have devised
a computational method to identify pairs of miRNAs that show synergism
derived via functional modules that they co-regulate by integrating
predicted miRNA targets and their corresponding metabolic pathway
information and transcriptional regulation by integrating corresponding
data of transcription factors. Next, these miRNA pairs are further used for
the construction of a miRNA-miRNA functional synergistic network
(MFSN). Here, we defined amiRNA pair to be synergistic when it satisfies
the following conditions: (i) co-regulated 3 or more target genes, (ii) had
a co-regulatory coefficient of more than 1 (Figure 1 depicts the overall
workflow of the analysis performed for this study).

Further, we examined the features of the MFSN organization derived
at the end of our analysis using graph-theoretical methods and found it to
be scale-free, modular, and a small-world network. This meant that the
extracted network was distinct from the random networks and had the
potential to be used to help understand miRNA synergism at a genome-
wide level.

For validation of the predicted synergistic associations between the
miRNA pairs, we used miRNA-mRNA expression profiles that were
characterized by stress conditions. We also validated the synergistic
features of the predicted miRNA pairs derived in the MFSN by studying
literature on module pathways being interdependent or sometimes
related, like both the pathways in module 22 are involved in ROS
detoxification specific metabolism. We chose to base our work on pre-
dicted miRNA-target data, but we expect that more experimentally
verified data will strengthen our approach in future. However, to mini-
mize the counter effects of using predicted data, we made sure the pre-
diction parameters were tuned so as to reduce false predictions as much
as possible. Further, we integrated conditional expression profiles under
cadmium stress with our results which also validated the findings of our
study.
FSN rice network and module analysis.
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2. Materials and methods

2.1. Data retrieval

Metabolic data including pathways, reactions, enzymes, and genes
were downloaded from the Plant Metabolic Network v14 [25] (https:
//www.plantcyc.org/) database. Sequences of mature miRNAs were
obtained from the publicly available miRbase v22 (http://mirbase.org/)
[26, 27]. Rice genome data was collected from Oryza sativa MSU Rice
Genome Annotation Project v7 [28]. MSU LOC ID converted to RAP-DB
ID for all the rice genes wherever applicable, and for the conversion of
IDs, the latest mapping file was downloaded from the Rice Annotation
Project Database (https://rapdb.dna.affrc.go.jp/download/arch
ive/RAP-MSU_2020-06-03.txt.gz). Transcription factors for Oryza sat-
iva were downloaded from the upgraded TF-centred database in Plan-
tRegMap analysis platform (http://plantregmap.cbi.pku.edu.cn/) [29]
and plnTFDB 3.0 (http://plntfdb.bio.uni-potsdam.de/) [30]. While the
PRIN dataset was downloaded for the protein-protein interactions in rice
(http://bis.zju.edu.cn/prin/) [31].

2.2. Software and tools

The plant-small RNA Target analysis server, psRNATarget [32]
(http://plantgrn.noble.org/psRNATarget/) was used for the prediction
of miRNA targets. Python 3 (https://www.python.org/) was used in this
project for data processing. Cytoscape v3.8.0 [33] was used for visual-
izing all the networks. MCODE [34], a Cytoscape plugin, was used for
module extraction. The rest of the network generation, extraction, and
analysis were performed using Perl 5 (https://www.perl.org/).
3

2.3. Target analysis

The plant small RNA target analysis server (psRNATarget), an online
tool, was used to predict miRNA targets. The 738 miRNA sequences
downloaded from miRBase v22 were used as input for target prediction.
The prediction was performed using the following settings taken from
parameters as used by Nigam et al. for target prediction in rice [35] and
by Lian et al. for target prediction in rice [36]: maximum expectation:
3.0; length for complementarity scoring (HSP): 20 bp; target accessi-
bility: 25; flanking length around target site for target accessibility: 17 bp
in upstream/13 bp in downstream and range of central mismatch leading
to translational inhibition: 9–11 nt. Usually, target prediction algorithms
have a tendency of generating false positives, and for the best possible
representation, we have also cross-referenced our parameter settings
with the constraints defined by Axtell et. al. for a reduction in false
positives while using psRNATarget and found them to be in accordance
[37]. All miRNAs, their converted IDs and corresponding predicted tar-
gets are provided in Supplementary File 1.

2.4. Network construction

2.4.1. Construction of miRNA-target gene network (mgNet)
We start with the construction of the miRNA-target gene network

(mgNet), where the miRNAs and their corresponding target genes are
considered to be the nodes and each miRNA-target interaction is denoted
via an edge. No restrictions or filters were applied for the construction of
this genome-scale network of miRNA and target gene for rice. Figure 2(a)
shows the network construction procedure and Figure 2(b) shows the
initial coregulatory miRNA interaction network).
Figure 2. The procedure to determine a co-
regulatory network starting from a miRNA-
target interaction network. (a) Red circles
represent target genes, blue squares repre-
sent miRNAs. Regulatory interactions are
shown as black edges connecting target
genes and the miRNAs in the network. The
first step involves creating a network of
miRNAs alone, where we have drawn lines
between two miRNAs (black lines) if they
target a common gene. (b) shows the initial
co-regulatory miRNA-miRNA pairwise
network formed as a result of the workflow
depicted in (a), here too, blue squares depict
miRNAs.
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2.4.2. Construction of preliminary miRNA-miRNA co-regulatory interaction
network (mmNet)

For the construction of mmNet, we followed the methods prescribed
by Balaji et al. [21], and an edge was initially established between a pair
of miRNAs if they shared at least one common target gene between them.
The number of miRNAs was reduced to 650 unique miRNAs because the
other 88 miRNAs had no common target genes with the other miRNAs,
and 3577 pairwise edges were identified among the 650 unique miRNAs.
The number of common target genes was assigned to be the edge-weight
for each of the miRNA-miRNA pairwise interaction edges. Next, we
calculated the co-regulatory coefficient (CC) value for each pair of con-
nected miRNAs by computing the ratio of the number of co-targeted
genes by a miRNA pair in the original network to the average number
of co-targeted genes by each miRNA pair for 50000 randomly generated
miRNA-miRNA networks while maintaining the degree distribution for
the number of shared targets by each miRNA pair. Finally, the updated
CC values were assigned to the edges as edge-weights for each miRNA
pair.

2.4.3. Construction of miRNA-miRNA functional synergistic network
(MFSN)

The miRNA pairs in mmNet which had a CC value less than 1 (i.e.
observed co-functionality was lesser than the average CC value for
randomly generated networks) were removed and only the pairs with
values of greater than one were retained for further analysis. Next, Gmin�
3 (minimum number of shared or common targeted genes per pair) filter
was applied to the network to obtain the final mmNet for the genome-
scale analysis of rice metabolism. The value for Gmin was chosen to be
greater than or equal to 3 because on examination it was found that 3 was
the median number of co-targeted genes by miRNA pairs in the mmNet,
meaning, that at least half of the miRNAs were targeted by at least 3 or
more target genes. The final mmNet was a sparse network with 660 edges
and 195 nodes (miRNAs) which was derived after applying the following
filters: (i) CC > 1; (ii) Gmin � 3. This network transformation method has
been taken from Balaji et. al [21]. where they have also used the same CC
value filter of greater than 1. The only deviation from the original
method was that we carried out 50000 iterations of network randomi-
zation instead of 10000, to increase the stringency. The co-targeted set of
gene(s) (m1\m2) were extracted for each miRNA pair (m1 & m2)
identified from the previously obtained miRNA-target gene network
(mgNet). Only those miRNA pairs were used further which shared at least
3 common genes (Gmin � 3) [21], and also had CC value >1. The
probability (P) for the given m1 \ m2 was calculated as per the given
equation:

P¼ 1�FðnjT ; G;LÞ¼ 1�
Xn

t¼0

�
T
t

��
S � T
L � t

�
�
S
L

�

where T is the total number of target genes, G is the number of genes that
are associated with their respective metabolic pathway and targeted by
miRNAs, L is the size of m1 \ m2 (i.e. the number of co-targeted target
genes by the given miRNA pair) and n is the number of targeted genes in
m1\m2 which is also annotated for the metabolic pathways. For FDR
correction a cut-off value <0.05 was used with the Benjamini and
Hochberg method. If a pair of miRNAs were involved in at least one path,
they were considered co-regulatory, co-functional or synergistic. All the
miRNA pairs identified as synergistic in this section were then assembled
to construct a miRNA-miRNA functional synergistic network (MFSN). In
this network, a single node represented a miRNA, and two nodes were
joined if the corresponding pair of miRNAs had a synergistic relationship,
otherwise, no edge was considered to exist between them.
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2.4.4. Identification of significant modules from MFSN using MCODE
The Cytoscape plugin MCODE has been used to extract dense clusters

from the MFSN network. The results obtained after running the MCODE
algorithm on Cytoscape with the module specific miRNAs is provided in
Supplementary File 2. MCODE defines a cluster as densely connected
subgraphs in a given network based on topology [34]. Modules from the
MFSN, in this study, have been defined as k-cliques, highly dense sub-
graphs with ‘k’ number of miRNAs where all miRNAs exhibit a syner-
gistic association with the other miRNAs in the same subgraph. The
MCODE plugin was run with the following default parameters: degree
cut-off: 2; k-core value: 2; node score cut-off: 0.2; max depth: 100. Each
extracted module (Figure 3 shows all the clusters obtained using
MCODE) had a unique combination of miRNAs and none of the miRNA
pairs were found to be present in more than onemodule. 142miRNAs out
of filtered 195 miRNAs were found to be in the twenty-five modules
extracted using MCODE, i.e. 142 miRNAs were found to be significantly
synergistic. And the remaining 53 miRNAs were not found to have any
synergistic associations with the corresponding gene sets linked to
metabolic pathways used in the present study.

3. Result and discussion

3.1. Network properties

3.1.1. Network characteristics of the miRNA-target gene network (mgNet)
Considering the miRNAs and their corresponding target genes as

nodes, and their interactions as edges, a post-transcriptional network
(mgNet) of rice was constructed as described in section 2.4.1. This
network had 5999 nodes (731 miRNAs and 5268 target genes) and 9780
edges. Each miRNA was found to target 13 target genes on an average
(median ¼ 9), while each gene was targeted by an average of ~2
(¼1.856) miRNAs. The frequency distribution of miRNAs and their target
genes showed that a large percentage of miRNAs (72%) target a
comparatively lesser number of target genes (i.e. 1 to 15) in contrast to
fewer miRNAs (28%) targeting 15 to 100þ target genes. Among all
miRNAs in the network, the most connected was osmir347 (osa-
miR2919), with 128 targeted genes while the most targeted gene was
Os03g0743900 with 25 miRNAs.

3.1.2. Network characteristics of the miRNA-miRNA co-targeting interaction
network (mmNet)

For understanding the co-regulatory associations, a network trans-
formation method was used allowing us to construct a co-regulation
network (mmNet; Figure 2(b)) from the mgNet. As described in section
2.4.2, filtering out miRNAs that did not co-target even one gene with
another miRNA were all removed, reducing the number of miRNAs in
mmNet. With 650 nodes in this network, the expected number of possible
co-regulatory associations between a pair of miRNAs was expected to be
650C2 (210,925) (NCk ¼ N!/[k!�(N–k)!). But on analyzing the network
only 3577 (~2%) of the possible pair-wise co-regulatory associations
were observed. This suggests that other combinations need to be
explored to fully understand the co-regulatory association in rice miRNA
network architecture. In this network, we also found that each node
(miRNA) had an average of approximately 12 neighboring nodes
(miRNA) and a global network clustering coefficient of 0.525. Accord-
ingly, the rest of the focus was on studying the pair-wise co-regulatory
associations.
3.2. General properties of the MFSN

As described in section 2.4.3 and 2.4.4, we constructed the MFSN
based on miRNA pairs regulating a set of genes enriched in a particular
metabolic pathway. The MFSN contained a total of 195 nodes (miRNAs)



Figure 3. This shows the miRNA-miRNA functional synergistic network (MFSN); the miRNAs in this network are considered to be nodes (blue squares are miRNAs
and dark pink squares are miRNAs that belong to modules extracted from MFSN via MCODE), and edges are drawn between a pair of miRNAs if there are at least 3
common target genes between them, and they have a CC value greater than one. The construction of MFSN is defined in section 2.4.3 and module extraction using
MCODE is defined in 2.4.4. The clusters highlighted in dark pink are part of modules extracted using MCODE.
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and out of a possible combination of 18,915 pairwise edges that can exist
between 195 nodes only 660 edges (~3.5%) were found in the network.
This makes the MFSN an objective representation of all synergistic as-
sociations between miRNAs. As for the network structure and organiza-
tion, we observed that only a few miRNAs interact with a relatively large
number of miRNA partners, whereas many miRNAs have lesser miRNA
partners. On further examination it was found that the degree distribu-
tion of the MFSN is that of a power law distribution, showing that the
MFSN is scale-free and extending the result of Reut Shalgi et al. [38], who
identified miRNA co-operation among 64 miRNAs. Additionally, we also
observed that the MFSN topology exhibited dense local neighborhoods
even though not all the miRNAs were connected, forming sparse local
clusters. Even then the MFSN had an average clustering coefficient of
0.849 which is much higher than for random networks (0.0563 �
0.00471). We stipulated that this is because the immediate neighbors of
the miRNA, its functional synergistic partners, tend to be synergistic. The
dense neighborhood feature of small-world networks is particularly
interesting because it can be exploited to predict synergism, as previously
shown for protein-protein interactions [39].

3.2.1. Characteristic features of the MFSN and features of the extracted
modules

After analyzing the modular structure and community properties of
the MFSN we defined modules in the MFSN to be k-cliques, i.e. highly
dense subgraphs with k number of miRNAs where all miRNAs having a
co-functional association with other miRNAs in the subgraph. Modules
are identified using the MCODE plugin on Cytoscape as described in
section 2.4.4. And as mentioned earlier, each module had a unique
composition with a pair of miRNAs occurring only once in the network.
The 142 unique miRNAs contained in all the 25 modules extracted via
MCODE belonged to 32 different miRNA families. In total, out of 136
miRNA families in the initial data, only 32 families (23.5%) were present
in modules extracted from the MFSN. We construed that miRNAs tend to
5

perform certain regulatory functions in small clusters compared to acting
individually or in bigger clusters. MiRNAs from the same family being
involved in similar functions are obvious and, in this study, the majority
of the modules (21 out of 25) had miRNAs from only one family and the
remaining 4 modules had miRNAs from more than 1 miRNA family. We
also found that out of the 32 families identified in the extracted modules,
61% of the 27 families containing 2 or more miRNAs were almost
entirely part of at least one module. Therefore, we confirmed that miR-
NAs from the same family tend to be functional.

606 plant metabolic pathways were retrieved from PMN14 as
described in section 2.1. This data was integrated with the MFSN
network and after performing a pathway enrichment analysis, 91 (15%)
out of 606 metabolic pathways were found to be in the 25 modules
extracted from the MFSN using MCODE as described in section 2.4.4
(Figure 3 shows all the extracted modules using MCODE). These modules
were composed of 142 miRNAs, 194 genes, and 91 pathways. Figure 4
shows the pathway class distribution in the MFSN. The largest module
had 230 (22 uniquemiRNAs) pairwise associations whereas several other
smaller modules were mostly composed of 3–9 (3–4 miRNAs) pairwise
miRNA connections. On average, each module had 5 to 6 (5.68) miRNAs,
~9 (9.32) genes, and 4 pathways. On grouping all the miRNAs, we found
them to be from 32 different families, and out of 25 modules, 4 were
made up of miRNAs from more than one miRNA family. The significant
miRNA pairs, their targeted metabolic pathways, and respective co-
regulated genes are presented in Supplementary File 3. Certain over-
laps in genes and pathways were identified between different modules.
As for over-represented pathways, the L-valine degradation I pathway
(VALDEG-PWY) was present in 3 different modules 2, 6, and 23. The
overlapping modules in terms of gene and metabolic pathways have been
provided in Supplementary File 4. Most modules were found to be
associated with multiple pathways (e.g. module 10 in 17 pathways which
were mostly secondary metabolite biosynthesis pathways like (PWY1F-
FLAVSYN) flavonoid biosynthesis, (PWY-5466) matairesinol



Figure 4. Pie-chart depicting distribution of different classes of metabolic pathways across all modules extracted from the MFSN. This diagram shows that the
Secondary Metabolite Biosynthesis, Fatty Acid and Lipid Biosynthesis and Degradation/Utilization/Assimilation pathways are three major metabolic classes that are
targeted by pairwise or synergistic miRNA pairs extracted from the MFSN module.
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biosynthesis, (PWY-6275) β-caryophyllene biosynthesis, (PWY-6787)
flavonoid biosynthesis, (PWY-7186) super pathway of scopolin and
esculin biosynthesis, etc.), while other modules were involved in lesser
pathways (e.g. module 13 was only involved in one pathway; (PWY-
5129) sphingolipid biosynthesis).

3.2.2. Role of transcription factors in MFSN
Next, we analyzed the transcription factors which are distributed with

the targets of miRNA co-functional modules. Rice transcription factors
(TFs) were downloaded from PlantRegMap (PlantTFDB 5) and plnTFDB
3.0 as described in section 2.1, and only the 1726 common transcription
factors taken from both the datasets were used next. After integrating the
TF data with the MFSN modules, there was no overlap found, meaning
that the target genes associated with MFSN modules are not regulated by
transcription factors. We found certain target genes from the mgNet that
were present in the TF associated target list. Thus, we identified the
miRNAs (296) of all the non-module TFs (338) and 86 miRNAs in the
MFSNmodules out of 142 miRNAs targeted some of the non-module TFs.
252 unique miRNA pairs made of these 86 miRNAs were found in the
MFSN modules. On further analysis, we found that only 18 out of 25
modules were a part of this subnetwork of miRNAs that also targeted TFs
that were not directly a part of the MFSN modules. For example, mem-
bers of TF family MYB and MYB-related were co-targeted by modules 3,
15, and 20 by miRNA families 169, 159, 1858, and 2919. Wu et. al. had
previously shown that osa-miRNA159 targeted mRNAs coding for MYB
and other proteins that were involved in leaf senescence via phytohor-
mone signaling pathways [40]. While members of TF family bZIP were
co-targeted by the modules 11 and 12 by miRNA families 172 and 444.
Zhou et. al. had experimentally found that miR172 and miR444 targeted
genes encoding heat shock proteins that were associated with bZIP
transcription factor while studying resistance to cold stress in Populus
simonii � P. nigra [41].

However, in our study, these transcription factors have non-module
target genes and do not show functional associations within the MFSN
modules. Since the majority of MFSN modules are composed of miRNAs
from a single-family, establishing a direct role of transcription factors in
metabolic pathway regulation in rice did not seem feasible. Hence, we
hypothesize that metabolic pathways in rice are perhaps regulated
indirectly by TFs via the interaction between the synergistic miRNA pairs
and the genes in the module and that TFs do not directly participate in
metabolic pathway regulation. TF-network study by Gaudinier et. al. also
showed that TF plays a central role in plant metabolism by regulating the
expression of pathway-related enzymes [42].
6

3.2.3. Role of identified miRNAs as principal module regulators in the rice
metabolic pathway network

Often densely connected subgraphs in biological network analyses
provide useful information, e.g. a dense protein interaction subnetwork
may correspond to a protein complex [43, 44], and a dense co-expression
network may represent a tight co-expression cluster [45]. Here, a similar
approach was adopted to find miRNA hubs that could regulate and thus
target a substantial number of target genes that were associated with
several metabolic pathways. To achieve this, we used another Cytoscape
plugin, called cytoHubba to identify hub miRNAs from the preliminary
miRNA-Target gene network (mgNet). We used the MCC algorithm from
cytoHubba, based on previous evidence of the MCC algorithm proving to
be the most robust method in hub detection as shown by Chin et. al [46].
The only drawback is that MCC cannot find low-degree essential miRNAs.
Given that there were 731 miRNAs in mgNet, we selected the MCC al-
gorithm under Hubba nodes and chose the top 10% (73) miRNAs as hubs.
This resulted in the identification of all the hub miRNAs and their list is
provided in Supplementary File 5. On analyzing the extended subgraph
containing all the identified hub miRNA, it was found that all the 73
miRNAs had 25þ score or outgoing connections. A sample t-test was
performed (with α < 0.0001), which validated that the >25 connection
to target genes was significantly greater than the rest of the miRNAs.
Another statistic that was derived from this analysis was around 36% of
the edges belonged to these top 10% of the miRNAs in the mgNet. Then,
to make sure we were not automatically promoting the selection of
miRNAs with maximum target genes, we also used EPC, a global-based
algorithm on cytoHubba. Then we combined EPC predicted top 73
miRNAs and MCC predicted the top 73 miRNAs to identify 18 common
miRNAs that were also present in the final MFSN network. A few of these
miRNAs targeting 70þ target genes were: osa-miR11339-3p (osmir543),
osa-miR1858b (osmir483), miR1858a (osmir13) and osa-miR11336-3p
(osmir683). Hence, these hub miRNAs may have the potential to act as
principal module regulators.

3.3. MFSN modules made up of multiple miRNA families

A few modules in the MFSN contained multiple miRNA families, as
discussed in section 3.2.1. We picked these modules to study the targeted
pathways under them to understand the interplay of two or more miRNA
families behind the regulation of metabolic pathways due to pairwise
interaction between miRNAs from more than one family. These 4 mod-
ules were mod:6, mod:10, mod:15, and mod:22 composed of miRNAs
from 2, 3, 2, and 3 families respectively.
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Module 10 was composed of 5 miRNAs from 3 miRNA families, 44
genes, and 17 pathways. 10 out of 17 were secondary metabolite
biosynthesis pathways, for example, (PWY-5466) matairesinol biosyn-
thesis, (PWY-6040) chlorogenic acid biosynthesis II, (PWY1F-FLAVSYN)
flavonoid biosynthesis, (PWY-3101) flavonol biosynthesis, (PWY-6275)
β-caryophyllene biosynthesis, etc. While pathways like (PWY-6030) se-
rotonin and melatonin biosynthesis and (PWY-1822) indole-3-acetate
activation I were hormone-related pathways. Similarly, for module 22,
it was made up of 3 miRNAs, 3 genes, and 2 pathways. These pathways
were (PWY-6502) 8-oxo-(d)GTP detoxification I and (PWY-102)
gibberellin inactivation I (2β-hydroxylation). We found experimental
evidence suggesting a relationship between these two pathways, because
in a 2015 study done by Cheng et. al. suggested that the expression of
genes in pathways associated with scavenging and detoxification of
reactive oxygen species (ROS) were found to be substantially affected
after gibberellin treatment [47]. While 8-oxo-(d)GTP detoxification I is a
pathway involved in the elimination of potentially mutagenic nucleo-
tides before they can be used for DNA replication or mRNA transcription
[48] and is spontaneously induced when a hydroxyl radical attacks the
C8 position of the purine base guanine [49]. Next, module 15 was
composed of 2 miRNAs, 5 genes, and 5 pathways; (PWY-4861)
UDP-α-D-galacturonate biosynthesis I, (HOMOSER-THRESYN-PWY)
L-threonine biosynthesis, (PWY-5137) fatty acid β-oxidation III,
(PWY-8011) L-serine biosynthesis II, (PWY-7861) N-hydrox-
y-L-pipecolate biosynthesis. Two of these are amino acid biosynthesis
pathways for serine and threonine, and we found evidence in the liter-
ature that both these amino acids are directly involved in fatty acid
oxidation pathways as suggested by the presence of PWY-5137 in module
15. Sim et. al. hypothesized that L-serine caused activation of Silent in-
formation regulator 1 (SIRT1) and as a result affected an increase in fatty
acid oxidation [50]. Further, Ma et al. also observed a decrease in free
fatty acid concentration followed by threonine supplementation even in a
mouse model [51].

Based on these observations that pathways in a single module were
always closely related or interdependent as suggested by experimental
studies, we considered these experimental observations as evidence to
suggest that the miRNAs for each module also acted in synergy or formed
synergistic pairs due to their corresponding co-targeted pathways being
related.
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3.4. Distribution of differentially expressed miRNA under cadmium stress
in MFSN modules

To further understand the implications of the results that we got, we
used condition-based experimental data available for miRNA and mRNA
expression profiles of rice. This allowed us to support our previous
findings of miRNAs acting in synergy in the regulation of metabolic
pathways, against publicly available experimental data.

In an integrated miRNA and mRNA expression profile analysis, Tang
et. al [52]. identified 163 miRNAs that were differentially expressed
under Cadmium (Cd) stress. They examined global genome expression
changes caused due to Cd stress and its subsequent regulation done by
miRNAs. Between these 163 differentially expressedmiRNAs (DEMs) and
the 142 miRNAs that were in the MFSN modules, we found 47 common
miRNAs. Next, we calculated all possible pairs of these 47 miRNAs and
matched them against all the synergistic pairs extracted in our MFSN
modules. This gave us a subnetwork (Figure 5 highlights the miRNAs
within the MFSN that are differentially expressed under Cd stress.), with
only the synergistic miRNA pairs which were differentially expressed
under Cd stress. We identified that this subnetwork consisted of 131
synergistic pairs made up of 45 unique miRNAs which were associated
with 28 unique metabolic pathways.

These 131 pairs were derived from 9 different modules from the
original MFSN which had 25 modules, namely: mod:3, mod:4, mod:5,
mod:7, mod:8, mod:11, mod:12, mod:18, and mod:25. Eight pathways
out of 28 identified in this subnetwork were secondary metabolite
biosynthesis pathways like, (PWY-5048) rosmarinic acid biosynthesis I:
osa-miR169 family, (PWY-7068) ursolate biosynthesis: osa-miR439
family, (PWY-7137) quercetin gentiotetraside biosynthesis: osa-miR164
family, (PWY-6351) D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
osa-miR171 family, etc. This was similar to the results obtained by Tang
et. al. where they were able to identify enriched genes that encoded
pathways involved in secondary metabolite synthases, signaling mole-
cules, and ABC transporters along with ribosomal proteins and carot-
enoid biosynthesis. In addition to secondary metabolites pathways, we
also found 8 fatty acid and lipid biosynthesis pathways in the subnetwork
like: PWY0-1264, PWY-7388, PWY4FS-7, PWY-5269, PWY4FS-8, etc.
Similar observations were made by Ammar et. al. where they had re-
ported that the fatty acid biosynthesis pathways were disrupted due to
Figure 5. A list of miRNAs that were
differentially expressed under Cd stress
(green squares depict the miRNAs from
MFSN modules that are differentially
expressed under Cd stress while the dark
pink squares show the miRNAs from MFSN
modules that were not found to be differen-
tially expressed under Cd stress or were not a
part of the study) were taken from a study
done by Tang et. al. [52], and then they were
mapped onto the modules we extracted from
the MFSN earlier. The overlapping miRNAs
that were differentially expressed under Cd
stress and also present in the MFSN modules
are highlighted in green. They belong to 9
different modules out of 25; (3, 4, 5, 7, 8, 11,
12, 18 and 25) and are made up of 46 miR-
NAs from 9 different families.
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the metallic stress caused due to cadmium treatment in tomato leaves
[53]. On examining the DEMs obtained from the study done by Tang et.
al., we found that the miRNAs like osa-miR444, osa-miR396, osa-miR167
were all downregulated both in shoot and root cells. And these miRNAs
are present in the modules that contain the fatty acid biosynthesis
pathways. This extends support to our analysis results obtained via MFSN
module extraction and it shows that miRNA pairs expressed during stress
conditions have the potential to regulate different biological processes.

The list of synergistic miRNA pairs expressed differentially under Cd
stress, their corresponding modules, and associated pathways as pre-
dicted from the MFSN modules are presented in Supplementary File 6.
3.5. Future prospect and limitation

The analysis of co-functional modules, in this study allowed the
identification of sets of miRNAs which exhibit the potential for post-
transcriptionally alter known metabolic reactions via co-regulation.
Additionally, following the approach of co-functional modular analysis,
one can formulate hypotheses to examine possible correlations or in-
terdependencies between several other metabolic processes and which
can further be validated by performing relevant wet-lab experiments. It is
essential to be mentioned that even though this co-functional network
that was found in the identified in this study were supported by existing
literature; one can show interest to utilize the latent relationships among
other metabolic pathways, and reactions present within the same co-
functional modules. One key drawback in these computational
approach based research in biology is that most biological networks in
the real words are sparse, and a few crucial disadvantages are (i) false or
incorrect target prediction, and (ii) despite there being a substantial
amount of genes which might be targeted by multiple miRNAs [54, 55]
they might be non-functional in-vivo. Hence, experimental verifications
for all derived hypotheses are required. Although a whole genome level
miRNA-gene regulatory interaction network analysis may sound an
extremely promising approach in understanding complex network ar-
chitectures in nature, they are not easy to accomplish. However, recent
studies have made the potential of miRNA-mediated gene regulation
evident by demonstrating trait modification in plants via miRNA
manipulation [56]. Therefore, the findings in this particular study might
allow researchers in designing breeds of efficient and novel cultivars,
with agronomically useful characteristics by manipulating pathways
regulated by synergistic miRNAs.

4. Conclusion

In this study, we have re-constructed a genome-scale miRNA-miRNA
synergistic network and have also integrated transcription factor regu-
latory data in the context of rice metabolic pathways. This has helped us
identify important hubs/clusters of miRNAs from more than one family
contributing towards regulation of metabolic pathways that fall under
common functions. We also validated our findings using experimental
data (differentially expressed miRNA and secondary metabolite pathway
involvement under Cadmium stress). The methodology used in this study
can be followed as a protocol to identify functional miRNA clusters
responsible for regulation of rice metabolic pathways. In future, relevant
experimental data will help in developing/improving our preliminary in-
silico analysis to scan for metabolism-related miRNA clusters.
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