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Cardiovascular diseases (CVD) have become the leading
causeofmorbidityandmortalityworldwide.[1,2]During the
past twodecades,manyexperimentalandpreclinical studies
have highlighted the critical roles of histone modifications
(eg, acetylations andmethylations) in regulating cardiovas-
culardevelopment,homeostasis, anddiseaseprogressionby
regulating gene transcription.[3] The well-studied histone
acetylations such as H3K9ac and H3K27ac activate gene
transcription and have shown critical functions in cardio-
vascular homeostasis and remodeling.[4] For instance,while
class I and II histone deacetylases (HDACs) generally
promote the development of cardiac hypertrophy and
diabetic cardiomyopathy, most class III HDACs (Sirtuins)
exhibit cardioprotective capacity.[5] The inhibitors of class I
HDACs have been proven to repress cardiac remodeling
and heart failure.

For a long time, the roles of other types of acylations in
cardiac homeostasis remain largely unknown. Short-chain
fatty acids (SCFAs) (eg, succinate, propionate, malonate,
butyrate, 2-hydroxyisobutyrate, b-hydroxybutyrate, crot-
onate, and glutarate) from the gut microbiota and cellular
metabolites, have been identified to participate in CVD,
such as hypertension, ischemic injury, and diabetic
CVD.[6] In 2011, Zhao et al identified eight types of
short-chain lysine acylations on histones in mammalian
cells, many of which have been demonstrated to be
physiologically and pathologically important in CVD and
associated risk factors such as obesity and diabetes
[Figure 1].[7] However, the roles of short-chain lysine
acylations such as crotonylation in cardiovascular homeo-
stasis remain largely unknown.
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Histone crotonylation and cardiac hypertrophy

Crotonylation is a short-chain lysine acylation identified on
histones. P300 and GCN5 are the typical writers of histone
crotonylation, while class I HDACs and SIRT1-3 act as
erasers. Chromodomain-Y-like and Short-chain enoyl-CoA
hydratase (SCEH, also known as ECHS1) act as crotonyl-
CoA hydratases to control intracellular crotonyl-CoA and
histone crotonylation.[6] Histone crotonylation has been
reported to trigger gene transcription and participate in
biological processes, including mesoendodermal commit-
ment of human embryonic stem cells, spermatogenesis, and
neurobiology.[6,8] However, the roles of this newly identified
histone crotonylation in the pathophysiological processes of
CVD, such as cardiac hypertrophy, remain unknown.

Inclinicalpatients,mutationofECHS1causeshypertrophic
and dilated cardiomyopathy.[9] ECHS1 deficiency results
in cardiac hypertrophy by elevating histone crotonylation
and transcription of hypertrophic fetal genes.[10] Histone
crotonylation (H3K18cr and H2BK12cr) is significantly
upregulated and participates in human and mouse hyper-
trophic hearts. Histone crotonylation promotes the recruit-
ment of the transcription factor nuclear factor of activated
T-cellC3onthepromotersofhypertrophicgenes suchas the
B-typenatriuretic peptide.Therefore, histone crotonylation
critically contributes to cardiac development and hypertro-
phic remodeling. Thus, enhanced histone crotonylation
potentially is a mechanism underlying cardiac defects
mediated by ECHS1 mutations in humans and mice.

Histone acylations are critically regulated by metabolic
enzymes that modulate the intracellular levels of metabo-
lites (eg, acyl-CoA), supporting post-translational modifi-
cation of histones.[5] The expression of fatty acid
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Figure 1: Lysine acylation is related to CVD. Energetic metabolism can generate acyl-CoA, which contributes to the acylation of histone and non-histone proteins. Acylation of histone
regulates gene transcription while acylation of non-histone proteins regulates intracellular signaling to participate in cardiovascular homeostasis and diseases. ACSS2: Acetyl-CoA
synthetase 2; ACLY: ATP citrate lyase; CVD: Cardiovascular diseases; KAT: Lysine acyltransferase; SCFAs: Short-chain fatty acids; TCA: Tricarboxylic acid. LCFA: Long-chain fatty acids;
Bhb: b-hydroxybutyrate; Ac-CoA: Acetyl-coenzyme A; Acyl: ATP citrate lyase.
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b-oxidation genes coincides with the b-oxidation byprod-
uct crotonyl-CoA, determining the degree of histone
crotonylation and gene transcription.[6] These findings
highlight the regulatory effect ofmitochondrialmetabolism
(by ECHS1) on histone crotonylation and gene transcrip-
tion in cardiac remodeling Notably, unlike that of histone
acetylation,[5] inhibitionof histone crotonylationmay serve
as a therapeutic option for children with ECHS1mutations
and provide an alternative therapeutic strategy for patients
with cardiac hypertrophy.

Propionylation, succinylation, and malonylation in
cardiovascular homeostasis

In addition to histone crotonylation, propionylation of
histones (H3K14pr and H3K23pr) was recently identified
Cardiac anomalies are present in a subset of patients with
deficient H3K23pr catalyzed by BRPF1–KAT6 com-
plexes.[11] Further studies are required to investigate how
histone propionylation (H3K14pr and H3K23pr) partic-
ipates inCVD. Interestingly, recent studies have highlighted
that tropomodulin-3 propionylation in platelets promotes
thrombosis risk in rodents,[12] and that propionate induces
oxidative stress by manganese superoxide dismutase 2
propionylation, indicating that propionylation of non-
histone proteins is also functional important in CVD.

In mitochondria, SIRT5-mediated desuccinylation of mito-
chondrial enzymes is crucial for cardiac function andmouse
survival.[13] Besides, malonylation impairs mammalian
target of rapamycin (mTORC1) kinase activity, eventually
leading to angiogenic defects,[14] an event involved in
myocardial infarction. Thus, the role of crotonylation of
non-histone proteins may also be important for cardiac
homeostasis. Furthermore, although the roles of SCFAs
were reported in vascular biology, such as blood pressure,[6]

it remains undetermined whether short-chain lysine acyla-
tions contribute to vascular biology.
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In conclusion, the critical roles of SCFAs and related
shortchain lysine acylations in the development of CVD
have been identified.[6,10] Short-chain lysine acylations (eg,
crotonylation and succinylation) of histones and nonhis-
tone proteins have been reported to play critical roles in the
development of cardiac diseases such as hypertrophy and
ischemic injury [Supplementary Table 1, http://links.lww.
com/CM9/A954]. These findings opened a new window
informing the cardiovascular community that “acylations
relevant to cardiac homeostasis are broader than simply
acetylation,” which requires further systemic investiga-
tion.[21-25] Some apparent questions appear.
(1)
 Further detailed studies are needed to test the roles of
histone crotonylation and propionylation in cardio-
vascular development and diseases (eg, myocardial
infarction, hypertension, and diabetic complications)
and to elucidate the underlying mechanisms using
approaches such as chromatin immunoprecipitation-
seq and assay of transposase-accessible chromatin-seq
The key regulators and activators that participate in
this biological process were also elusive.
(2)
 Moreover, further studies are needed to determine the
individual mechanisms underlying different types of
histone acylations in cardiovascular homeostasis. A
previous study implicated the spatial and temporal
interactions between histone acetylation and crotony-
lation in regulating metabolic processes such as
glycolysis.[15] Knowledge of how different types of
histone acylations differentially regulate cardiac and
vascular homeostasis and diseases is also critical for
understanding histone acylations in cardiology.
(3)
 Finally, SCFAs are generally derived from gut micro-
biota and intracellular metabolites and contribute to
blood glucose homeostasis.[6,16-18] It would also be
interesting to test whether gut microbiota affects CVD
such as atherosclerosis and hypertension by regulating
short-chain lysine acylations of histones and such
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pivotal intracellular signaling regulators as insulin-like
growth factor signaling, mTOR, adenosine mono-
phosphate (AMP) activated protein kinase, and Fork-
head box O (FOXO) transcription factors.[19,20] These
answers would help to illuminate the function and
underlying mechanisms of different acylation types in
cardiovascular development and diseases and to eluci-
date how different organs (eg, gut, liver, muscle, heart,
and blood vessels) communicate with each other.
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