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Cognitive and physical activities can benefit cognition. However, knowledge about the
neurobiological mechanisms underlying these activity-induced cognitive benefits is still
limited, especially with regard to the role of white matter integrity (WMI), which is
affected in cognitive aging and Alzheimer’s disease. To address this knowledge gap,
we investigated the immediate and long-term effects of cognitive or physical training on
WMI, as well as the association between cognitive and physical lifestyles and changes
in WMI over a 6-month period. Additionally, we explored whether changes in WMI
underlie activity-related cognitive changes, and estimated the potential of both trainings
to improve WMI by correlating training outcomes with WMI. In an observational and
interventional pretest, posttest, 3-month follow-up design, we assigned 47 community-
dwelling older adults at risk of dementia to 50 sessions of auditory processing and
working memory training (n = 13), 50 sessions of cardiovascular, strength, coordination,
balance and flexibility exercises (n = 14), or a control group (n = 20). We measured
lifestyles trough self-reports, cognitive training skills through training performance,
functional physical fitness through the Senior Fitness Test, and global cognition through
a cognitive test battery. WMI was assessed via a composite score of diffusion tensor
imaging-based fractional anisotropy (FA) of three regions of interest shown to be
affected in aging and Alzheimer’s disease: the genu of corpus callosum, the fornix,
and the hippocampal cingulum. Effects for training interventions on FA outcomes,
as well as associations between lifestyles and changes in FA outcomes were not
significant. Additional analyses did show associations between cognitive lifestyle and
global cognitive changes at the posttest and the 3-month follow-up (β ≥ 0.40, p ≤ 0.02)
and accounting for changes in WMI did not affect these relationships. The targeted
training outcomes were related to FA scores at baseline (cognitive training skills and
FA composite score, rs = 0.68, p = 0.05; functional physical fitness and fornix FA,
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r = 0.35, p= 0.03). Overall, we found no evidence of a link between short-term physical
or cognitive activities and WMI changes, despite activity-related cognitive changes in
older adults at risk of dementia. However, we found positive associations between the
two targeted training outcomes and WMI, hinting at a potential of long-term activities to
affect WMI.

Keywords: white matter integrity, cognitive training, physical training, cognitive lifestyle, physical lifestyle, older
adults, memory complaints, dementia

INTRODUCTION

An active cognitive and physical lifestyle can reduce the risk of
cognitive decline (Valenzuela and Sachdev, 2006; Sofi et al., 2011;
Ngandu et al., 2015) and dementia (Valenzuela and Sachdev,
2006; Hamer and Chida, 2009; Barnes and Yaffe, 2011). Cognitive
training programs and video games showed cognitive benefits
(Karbach and Verhaeghen, 2014; Lampit et al., 2014; Toril et al.,
2014; Ballesteros et al., 2015), and first evidence indicated that
cognitive training reduces the incidence of dementia over a 10-
year period (Edwards et al., 2016). Similarly, physical activity has
yielded promising results with regard to cognitive benefits (Smith
et al., 2010; Nagamatsu et al., 2012; Kattenstroth et al., 2013).

Revealing the neurobiological mechanisms of the activity-
induced prevention of cognitive decline and dementia
could pave the way for an endogenous (Sale et al., 2014),
personalized treatment approach (Cuthbert and Insel, 2013).
By understanding the mechanisms of intervention effects, the
identified neuropathological processes in a given patient can be
targeted in an individualized fashion (Cuthbert and Insel, 2013).
For example, cognitively impaired patients with deteriorated
white matter integrity (WMI) may benefit more from an
intervention that targets this microstructural impairment than a
patient with the same behavioral syndrome but normal WMI.

However, our knowledge of the neurobiological mechanisms
underlying the beneficial cognitive effects of an active lifestyle
and training interventions is still in its infancy. Although there
is initial evidence of functional and structural brain changes
through cognitive and physical activity (Valenzuela et al., 2008,
2011; Erickson et al., 2011; Buschkuehl et al., 2012; Voss et al.,
2012; Bennett D.A. et al., 2014; von Bastian and Oberauer, 2014;
Constantinidis and Klingberg, 2016), the role of WMI in activity-
related cognitive changes is largely unclear.

Cognitive and physical activity may increase WMI through
activity-related myelination (Fields, 2015) that could lead to
cognitive benefits. However, current evidence is inconsistent.
While some studies support this mechanism for cognitive
(Lövdén et al., 2010; Takeuchi et al., 2010; Engvig et al., 2011; Sagi
et al., 2012; Steele et al., 2013; Salminen et al., 2016) and physical
activities (Chaddock-Heyman et al., 2014; Svatkova et al., 2015),
others do not (Voss et al., 2012; Chapman et al., 2013; Strenziok
et al., 2014; Lampit et al., 2015). For example, Lampit et al. (2015)
did not find cognitive training-induced changes in WMI, despite
positive effects on global cognition, and Voss et al. (2012) did not
observe positive effects on WMI following an extensive exercise
program of three weekly 40-min sessions over the period of 1 year
in a sample of 70 participants.

Moreover, there are four knowledge gaps in our understanding
of physical and cognitive activity-related WMI changes. These
comprise, first, training-induced WMI changes in tracts shown
to be affected in cognitive aging and Alzheimer’s disease
(Head et al., 2004; Ringman et al., 2007; Madden et al.,
2012; Wang et al., 2012; Kantarci, 2014; Salat, 2014), second,
training-induced WMI changes in a population of older
adults at risk of dementia, third, maintenance of training-
induced WMI changes, and fourth, lifestyle-related WMI
changes.

To address the inconsistent findings and the knowledge
gaps, this study had two primary aims: First, to assess the
immediate and long-term effects of cognitive and physical
training programs on the integrity of tracts shown to be
affected in cognitive aging and Alzheimer’s disease (the genu
of the corpus callosum, the fornix, and the hippocampal
cingulum) in older adults at risk of dementia, and second,
to investigate the relationship between cognitive and physical
lifestyles and changes in WMI over the 6-month study
period.

As additional analyses, we assessed the association at baseline
between the two targeted training outcomes (cognitive training
skills, functional physical fitness) and WMI in order to reveal
the potential of training programs to affect WMI. Finally, we
investigated whether changes in WMI could account for activity-
related cognitive changes to understand whether changes in WMI
underlie these cognitive changes.

For the cognitive training program, we used a computer-
based training program targeting auditory processing and
working memory that has been shown to have robust cognitive
benefits (Smith et al., 2009; Zelinski et al., 2011, 2014; Bamidis
et al., 2015; Shah et al., 2017). For the physical training
program, we used a multimodal training regime based on a
program that has previously been shown to have cognitive
benefits (Thurm et al., 2011). The use of a multimodal
exercise program is consistent with findings of larger cognitive
benefits through combined aerobic and strength training versus
aerobic exercise only (Colcombe et al., 2006; Smith et al.,
2010).

With regard to our primary objectives, we hypothesized
that the cognitive and physical training groups, in contrast
to a passive control group, would exhibit an increase in the
fractional anisotropy (FA) composite score at posttest and at
the 3-month follow-up. We expected that self-reported active
cognitive and physical lifestyles at baseline would be positively
associated with changes in the FA composite score at both
follow-ups.
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MATERIALS AND METHODS

Study Design
This 10-week interventional, two-center, controlled clinical
trial (Ulm and Konstanz, Germany) entailed a three-arm
assessor-blinded study evaluating training- and lifestyle-related
changes in WMI. This diffusion tensor imaging (DTI) study
comprises a subsample of participants of the main study whose
results on the cognitive outcomes have previously been reported
(Küster et al., 2016). We found that the associations of an active
lifestyle with cognitive changes over time were stronger than
the effects of specifically designed cognitive or physical training
interventions in the same period.

Participants
For inclusion in the study, participants had to be 55 or
older, suffer from subjective memory complaints and either
objective [Munich Verbal Learning Test (Ilmberger, 1988):
average of the learning and free long-delayed recall trials
below −1 SD of the age norm] or clinically apparent memory
impairment (e.g., increased difficulty locating objects, keeping
appointments, remembering conversations or events), have
vision and hearing adjusted to normal, and be fluent in German.
Exclusion criteria were a moderate or severe stage of dementia
[Mini Mental State Examination (MMSE) < 20], changes in
antidementive or antidepressive medication within 3 months
prior to study initiation, a history of severe psychiatric or
neurologic disorders, or physical impairment that would prevent
participation in the physical training program. Participants
without contraindications for magnet resonance imaging (MRI)
were offered the opportunity to participate in the MRI subsample.

Subjects were recruited via newspaper articles, flyers,
informative meetings at community centers, and personal
contacts in the memory clinics of the University Hospital Ulm
and the Reichenau Psychiatry Center in Konstanz. The study
was approved by the Ethics Committees of the University of
Konstanz and Ulm University, Germany. Participants gave
written informed consent at screening visits before enrollment in
the study.

Of the 122 individuals we screened, 65 were enrolled in the
intervention study (Küster et al., 2016); of these, 47 participated
in the MRI subsample and were assigned to a 10-week cognitive
training group (five sessions/week, n = 13), a physical training
group (five sessions/week, n = 14), or a passive control group
(n= 20, see Figure 1).

The analysis included 39 participants (83% of all enrolled
participants). Apart from the FA of the hippocampal cingulum,
the three groups did not significantly differ in terms of
demographics, FA outcomes, cognitive outcomes, lifestyles,
or study-related data, even without adjusting for multiple
comparisons (see Table 1).

Procedure
Outcome variables were assessed within 4 weeks before the
10-week intervention, within 4 weeks after the intervention,

and another 3 months later to measure training and lifestyle-
related changes in WMI. Due to logistic issues (e.g., limited
available facilities, a highly selected study sample with more
than 60% exclusions at screening, the required time commitment
of participants, the limited time period between pretest and
the start of the intervention, and the time slots of the
physical training program), it was not possible to achieve
the necessary number of included participants that allowed
both randomized allocation and a sufficient number of
participants to start a new group-based physical training
program. To avoid any selection bias, the groups were
matched in terms of age, education, gender, and MMSE.
When a new physical training program started, all successfully
screened participants were allocated to this group until the
required number of participants was reached. During the other
time periods, a minimization approach was implemented for
the allocation of participants to the cognitive training and
control groups in order to minimize group differences in age,
gender, education, and MMSE. Neuropsychological outcome
assessors were blind to the group allocation of participants.
In rare cases, participants disclosed their group assignment
during the neuropsychological assessment. The blinding of
participants was not feasible due to the nature of the behavioral
interventions.

Outcomes
MRI Analysis
Data recording
The MRI analysis was performed on 1.5 Tesla scanners at
the two study centers, Ulm University (center 1, Magnetom
Symphony, Siemens Medical) and the University of Konstanz
(center 2, Intera, Philips Medical Systems). The DTI study
protocol consisted of 2 × 30 gradient directions with
b = 1000 s/mm2 and two b = 0 gradient directions. At
both centers, slice thickness was 2.5 mm and in-plane pixel size
was 1.875 mm × 1.875 mm; 55 slices (128 pixels × 128 pixels)
and 62 slices (128 pixels × 128 pixels) were recorded at center
1 and center 2, respectively. The echo time and repetition time
were 28 and 3080 ms at center 1 and 70 ms and 8035 ms at
center 2.

Data processing
DTI analysis was performed using the software package
Tensor Imaging and Fiber Tracking (TIFT, Müller et al.,
2007; Müller and Kassubek, 2013). For longitudinal data
analysis, affine halfway linear registration (Menke et al., 2014)
was employed. Pretest and posttest images were halfway-
transformed, whereas follow-up images were affine transformed
to the transformed pretest images. FA maps were calculated
and smoothed with a Gaussian filter of 2 voxels full-width
at the half maximum (FWHM, Madhyastha et al., 2014).
Individualized FA templates were calculated by using FA
maps of all available measurements of each individual. Based
on these individualized FA templates, regions of interest
(ROIs) were set. Because this processing procedure was
implemented, Montreal Neurological Institute transformation
was not necessary.
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FIGURE 1 | Flow of participants. Flow of participants within the physical training, cognitive training, and passive control groups. ∗all participants that were
assessed at least once at the posttest or at the 3-month follow up were included in the analysis using mixed-effects models that includes all time points in a single
analysis without excluding participants with missing values at one time point.

Regions of Interest
Regions of interests were defined in an attempt to focus on
white matter correlates of cognitive aging and Alzheimer’s
disease (Head et al., 2004; Ringman et al., 2007; Madden
et al., 2012; Wang et al., 2012; Kantarci, 2014; Salat, 2014).
To this end, the WM integrity of hippocampus-related
limbic tracts and prefrontal cortex tracts were examined:
the genu of the corpus callosum, the fornix and the
hippocampal cingulum (see Figure 2). The tracts in the
genu of the corpus callosum connect the two prefrontal
cortices (Hofer and Frahm, 2006), and their white mater
integrity has been shown to correlate with executive function
(Madden et al., 2009). The fornix and the hippocampal
cingulum interconnect the hippocampus with distributed
brain areas; their WMI correlates with episodic memory
(Bennett I.J. et al., 2014; Bennett and Stark, 2015; Ezzati et al.,
2015).

Within the three ROIs (the genu of the corpus callosum, the
fornix, and the hippocampal cingulum), two non-overlapping
subregions were set and averaged in order to increase
reliability. In the genu of the corpus callosum, the two

515-voxel subregions were set in the center of the genu
of the midsagittal slice and six voxels to the right lateral
direction in the center of the tract. In the fornix, the two
33-voxel subregions were set halfway between the anterior
and posterior ends of the fornix in the center of the
tract of the midsagittal slice and four voxels apart in the
anterior-ventral direction in the center of the tract. In the
hippocampal cingulum, the two 33-voxel subregions were set
on the same coronal slice in the center of the tract in both
hemispheres. The coronal slice was selected as the most anterior
and dorsal area of the pyramidal tract. This slice – located
anterior to the posterior commissure – generally cuts through
the anterior pons and the midsection of the hippocampal
cingulum.

The lower threshold for FA values was set to 0.2 to increase the
probability that only white matter voxels would be included in the
measurements (Kunimatsu et al., 2004). If fewer than 75% of all
possible voxels in each subregion were above the threshold, it was
lowered accordingly. Only in one participant did the threshold
have to be lowered to 0.17 to include more than 75% of the fornix
voxels.
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TABLE 1 | Baseline characteristics of study groups.

Measure Control group (n = 16) Cognitive training (n = 11) Physical training (n = 12) p-valuea

Demographic data

Age, mean years ± SD 70.5 ± 5.0 71.4 ± 5.6 74.0 ± 5.2 0.22

Female, n (%) 8 (50%) 6 (55%) 9 (75%) 0.39

Education, mean years ± SD 15.1 ± 4.1 13.0 ± 4.2 13.9 ± 4.4 0.37

Fractional anisotropy data

Composite score, mean FA ± SD 0.43 ± 0.04 0.44 ± 0.05 0.42 ± 0.04 0.40

gCC, mean FA ± SD 0.59 ± 0.05 0.58 ± 0.06 0.59 ± 0.06 0.85

Fornix, mean FA ± SD 0.37 ± 0.08 0.37 ± 0.06 0.33 ± 0.06 0.26

HC, mean FA ± SD 0.34 ± 0.05 0.38 ± 0.04 0.34 ± 0.04 0.05

Cognitive data

MMSE, mean ± SD 28.3 ± 2.2 28.0 ± 1.7 27.8 ± 1.7 0.79

Global cognition, mean ± SD −0.1 ± 1.2 0.2 ± 0.9 −0.1 ± 0.9 0.71

Executive function, mean ± SD 0.0 ± 1.0 0.3 ± 0.9 −0.2 ± 1.1 0.40

Episodic memory, mean ± SD −0.1 ± 1.2 0.1 ± 1.0 0.1 ± 0.9 0.81

Lifestyle data

Physical lifestyle, mean % ± SD 20.2 ± 8.8 20.3 ± 13.2 20.1 ± 9.2 >0.99

Cognitive lifestyle, mean % ± SD 43.3 ± 12.1 35.7 ± 15.9 36.3 ± 9.8 0.23

Study-related data

Included in analysis, n/ngroup (%) 16/20 (80%) 11/13 (85%) 12/14 (86%) 0.89

ap-values of group comparisons refer to one-way ANOVA for continuous variables and to χ2 tests for categorical variables. gCC, genu of the corpus callosum; HC,
hippocampal cingulum; MMSE, Mini Mental State Examination; n, number of participants.

FIGURE 2 | Regions of interest. These examples depict a 515-voxel region of interest (ROI) in the genu of the corpus callosum (A, midsagittal slice), a 33-voxel
ROI in the fornix (B, midsagittal slice), and a 33-voxel ROI in the left hippocampal cingulum (C, coronal slice).

Composite Score of WMI
A composite score of the three ROIs was constructed in order
to increase statistical power by avoiding multiple comparison
problems and by improving the reliability of the outcome. The
composite score was calculated by averaging the FA values of the
fornix, the hippocampal cingulum, and the genu of the corpus
callosum.

Cognitive Outcomes
Global cognition, episodic memory, and executive functions
were assessed through an extensive cognitive test battery.
Principal component analysis served to construct the
three composite scores (see Küster et al., 2016). The two
composite scores for episodic memory and executive function
represent the weighted average of the z-standardized
cognitive test scores with loadings of at least aij = 0.4

on the respective components. The global cognition
score represents the average of the two component
scores.

The test battery consisted of the phonemic and semantic
fluency tasks, the Trail Making Test (A and B) from the
CERAD neuropsychological battery (Welsh et al., 1994), the
forward and backward digit span, the digit symbol coding
subtest from the Wechsler Adult Intelligence Scale-III (WAIS-
III, Von Aster et al., 2006), the working-memory subtest
from the Everyday Cognition Battery (Allaire and Marsiske,
1999), the free recall trial from the Alzheimer’s Disease
Assessment Scale – cognitive subscale (ADAS-cog, Ihl and
Weyer, 1993), and the learning and free long-delayed recall
trials from an adapted version of the California Verbal
Learning Test (Munich Verbal Memory Test, Ilmberger,
1988).
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Interventions
Cognitive Training
Participants were asked to complete a total of 50 h of
computerized, home-based cognitive training within a period
of 10 weeks, with five 1-h sessions per week. The training
consisted of six different tasks targeting auditory processing and
working memory (for details see Mahncke et al., 2006a,b; Küster
et al., 2016). In each session, four different 15-min training
tasks were completed. The order of the tasks varied in each
session; moreover, the difficulty was adapted according to the
participant’s performance, and correct answers were positively
reinforced. This training program was originally developed
by Posit Science (San Francisco, CA, USA) and has been
adapted and translated into German in a collaboration between
Posit Science and the University of Konstanz. In the German
version, a sound frequency discrimination task replaces the
original auditory working memory task “listen and do” (see
Mahncke et al., 2006b; Küster et al., 2016 for detailed training
descriptions).

Physical Training
Participants were asked to attend a total of 20 sessions of a
multimodal physical training program at the respective trial sites
within a period of 10 weeks, with two 1-h sessions per week.
The training was carried out in groups of 5–10 participants. In
addition, a total of 30 sessions of a 20-min home-based physical
training program was to be performed three times per week.
These training sessions were documented by participants and
monitored by the trainers. The multimodal training program
involved aerobic, strength, coordination, balance, and flexibility
elements and was designed in the form of an imaginary journey.
The difficulty was adapted individually by the trainers to match
the needs of participants. The structure of this training regime
was based on a program that induced positive effects on cognition
in a previous study on frail nursing-home residents (Thurm et al.,
2011).

Passive Control Group
Wait-list control participants (controls) were asked to continue
their daily life as usual and were given the opportunity to
participate in one of the training programs after their follow-up
assessment.

Assessment of Lifestyle
The cognitive and physical lifestyles of participants were
assessed through the Community Healthy Activities Model
Program for Seniors Physical Activity Questionnaire for Older
Adults (CHAMPS, Stewart et al., 2001). This questionnaire
describes 40 possible activities in the participants’ daily
life, categorized into physical activities (such as running,
swimming, or bicycling) and cognitively challenging activities
(such as playing card or board games, performing voluntary
work, or playing a musical instrument; see Küster et al.,
2016). Participants were asked to report the activities in
which they had engaged in the previous four weeks. The
number of completed activities was divided by the potential
number of activities in each domain. These scores reflect the

variety in the participants’ cognitive and physical lifestyles,
respectively.

Cognitive Training Skills
Cognitive training skills were measured by averaging the
standardized training performance in the most frequently used
cognitive training tasks: “high or low,” “tell us apart,” “sound
replay,” and “match it.” Changes in cognitive training skills were
measured in terms of the difference between the third and the
last training session (the first two training sessions were guided
by trainers). Unfortunately, the cognitive training data from two
individuals were not properly stored and could not be included
in the analysis.

Functional Physical Fitness
Functional physical fitness was assessed with four tasks from
the Senior Fitness Test (Rikli and Jones, 2001): “chair stand,”
“chair sit-and-reach,” “2-min step,” and “8-feet up-and-go” which
measure strength, flexibility, endurance, and agility, respectively.
Z-standardized scores were averaged to create the functional
physical fitness composite score.

Statistical Analyses
Statistical analyses were conducted using R version 3.2.1 for
Windows (R Development Core Team, 2015). To assess baseline
differences between the three groups, χ2-tests and one-way
analyses of variance were used for categorical variables and
continuous variables, respectively.

Training- and Lifestyle-Related FA and Cognitive
Changes
The effects of training interventions on WMI as well as
lifestyle-related changes in WMI were assessed with linear
mixed-effects models with maximum likelihood estimation
(nlme package, Pinheiro et al., 2000). Group (with contrasts
cognitive training vs. controls and physical training vs. controls),
physical lifestyle, cognitive lifestyle, and time (with contrasts
pre vs. post and pre vs. follow-up) were defined as fixed
effects, and subject as the random intercept. Hypothesis-
relevant effects were indicated by Group × Time, Physical
Lifestyle × Time, and Cognitive Lifestyle × Time interactions.
Hedges’ g was based on the pretest standard deviation; this
was calculated by the difference in change scores between
(1) the physical training group vs. the control group and (2)
the cognitive training group vs. the control group divided by
the pooled baseline standard deviation corrected for bias in
small samples (Lakens, 2013). Positive values indicate beneficial
effects of the intervention. Standardized regression coefficients of
cognitive and physical lifestyles predicting changes in outcomes
were used as effect size measure for lifestyle-related outcome
changes.

The Potential of the Two Training Programs to Affect
White Matter Integrity
To assess the potential of the cognitive and physical training
programs to improve hippocampus-related and prefrontal WMI,
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we performed two analyses: (1) at pretest, we assessed the cross-
sectional correlations of cognitive training skills and functional
physical fitness with FA and cognitive outcomes, and (2)
we investigated the improvement in cognitive training skills
and functional physical fitness within the respective training
groups. For the analyses of cognitive training skills, we used
non-parametric procedures (Spearman’s rank correlation and
Wilcoxon signed rank test for paired differences) due to the small
sample size (n= 9).

Reliability of FA Scores
Retest-reliability was assessed through correlations between
pretest and posttest scores within the total study sample including
all three groups.

RESULTS

Effects of Cognitive and Physical
Training on WMI and Cognition
We did not find a significant influence of the cognitive or
physical training program on WMI compared to the control
group, neither at the posttest (all ps ≥ 0.18 before adjustment
of multiple comparisons; Hedges’ gs ≤ 0.25) nor at the
3-month follow-up (all ps ≥ 0.16; Hedges’ gs ≤ 0.31). Hedges’
gs of the FA composite score were −0.09, 95% CI [−0.43,
0.22] at posttest and −0.14, 95% CI [−0.90, 0.57] at the
3-month follow-up for the cognitive training, and 0.03, 95%
CI [−0.41, 0.47] at posttest and −0.18, 95% CI [−0.79,
0.40] at the 3-month follow-up for the physical training (see
Table 2).

Likewise, we did not find a significant impact of both training
programs on global cognition compared to the control group,
neither at the posttest (all ps ≥ 0.09; Hedges’ gs ≤ −0.16) nor
at the 3-month follow-up (all ps ≥ 0.12; Hedges’ gs ≤ −0.12; see
Table 2).

Cognitive and Physical Lifestyle-Related
Changes in WMI and Cognition
We did not find significant associations between self-reported
cognitive and physical lifestyles at baseline and changes in WMI,
neither at the posttest (all ps ≥ 0.08 before adjustment of
multiple comparisons; all βs ≤ 0.34) nor at the 3-month follow-
up (all ps ≥ 0.31 before adjustment of multiple comparisons;
all βs ≤ 0.20). Effect sizes for the FA composite score were
β = 0.20, 95% CI [−0.16, 0.56] at the posttest and β = −0.04,
95% CI [−0.54, 0.45] at the 3-month follow-up with respect
to cognitive lifestyle, and β = −0.04, 95% CI [−0.40, 0.32]
at the posttest and β = 0.15, 95% CI [−0.34, 0.64] at
the 3-month follow-up with respect to physical lifestyle (see
Table 3).

Despite the lack of significant lifestyle-related FA changes, we
found an association between cognitive lifestyle and changes in
both global cognition and episodic memory from the pretest to
the posttest and to the 3-month follow-up (all ps ≤ 0.02, all
βs ≥ 0.40; see Figure 3 and Table 3).

Additional Analyses
The Potential of the Two Training Programs to Affect
White Matter Integrity
Additional analyses showed that cognitive training skills at the
start of the program were correlated with the FA composite score,
rs = 0.68, p = 0.05, indicating the potential of the cognitive
training program to affect WMI and the fact that engagement
in cognitive training taps the neural connections of interest
(see Figure 4). Associations between the various ROIs and the
cognitive training skills were similar, with medium to large
effect sizes: fornix, rs = 0.50, p = 0.18; hippocampal cingulum,
rs = 0.33, p = 0.39; genu of the corpus callosum, rs = 0.60;
p= 0.01.

In the cognitive training group, we found a significant increase
in cognitive training skills over the training period, with a very
large effect size, g = 1.68, p = 0.008. Performance changes in
all four training tasks revealed medium to very large effect sizes:
“match it,” g = 1.47, p = 0.02; “sound replay,” g = 0.52, p = 0.20;
“high or low,” g = 0.89, p = 0.008; “tell us apart,” g = 0.95,
p= 0.10.

Functional physical fitness was marginally significantly
associated with the FA composite score, r = 0.28, p = 0.08, and
significantly related to the fornix FA, r = 0.35, p = 0.03 (see
Figure 5) indicating that interventions that target physical fitness
have the potential to affect WMI.

In the physical training group, we found a significant increase
in functional physical fitness over the study period, p = 0.02.
This increase was marginally significant at the posttest, β = 0.51,
p = 0.07, and significant at the 3-month follow-up, β = 0.88,
p= 0.007.

Associations between Changes in Targeted Training
Outcomes and FA Changes
Changes in cognitive training skills were not associated with
changes in the FA composite score, rs = −0.27, p = 0.49, or
in global cognition, rs = 0.20, p = 0.61. Likewise, changes in
functional physical fitness did not correlate with changes in the
FA composite score at posttest, r = −0.19, p = 0.28, or at
follow-up, r = 0.01, p = 0.96, nor in global cognition at posttest,
r =−0.10, p= 0.58, or at follow-up, r =−0.14, p= 0.54.

Reliability of FA Measures
Retest-reliability between pretest and posttest was high for the
composite FA score, r = 0.91, and ranged from r = 0.92 for the
genu of the corpus callosum to r= 0.91 for the fornix and r= 0.80
for the hippocampal cingulum.

DISCUSSION

We found no evidence of an effect of short-term cognitive
or physical training programs on WMI in regions that have
previously been shown to be affected in cognitive aging and
Alzheimer’s disease (the genu of the corpus callosum, the fornix,
and the hippocampal cingulum) in a sample of older adults
at risk of dementia (Head et al., 2004; Ringman et al., 2007;
Madden et al., 2012; Wang et al., 2012; Kantarci, 2014; Salat,
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TABLE 2 | Effects of training interventions.

Measure Control group (n = 16) Cognitive training (n = 11) Physical training (n = 12)

Time point Change (95% CI) Change (95% CI) pa gb Change (95% CI) pa gb

Composite scores

FA composite

Posttest 0.0004 (−0.010 to 0.011) −0.004 (−0.012 to 0.004) 0.57 −0.09 0.001 (−0.013 to 0.016) 0.85 0.03

3-month FU 0.0001 (−0.018 to 0.018) −0.006 (−0.039 to 0.026) 0.41 −0.14 −0.007 (−0.023 to 0.008) 0.49 −0.18

Global cognition

Posttest 0.53 (0.34 to 0.72) 0.35 (0.06 to 0.65) 0.32 −0.16 0.23 (−0.07 to 0.53) 0.09 −0.27

3-month FU 1.28 (1.00 to 1.56) 0.91 (0.00 to 1.81) 0.12 −0.33 1.14 (0.63 to 1.65) 0.61 −0.12

Specific scores

gCC

Posttest 0.013 (0.001 to 0.025) −0.001 (−0.011 to 0.009) 0.18 −0.25 0.002 (−0.019 to 0.024) 0.45 −0.19

3-month FU 0.000 (−0.016 to 0.016) 0.013 (−0.001 to 0.027) 0.50 0.22 −0.017 (−0.043 to 0.009) 0.16 −0.29

Fornix

Posttest −0.018 (−0.034 to −0.002) −0.003 (−0.022 to 0.016) 0.23 0.21 0.001 (−0.018 to 0.019) 0.18 0.25

3-month FU −0.008 (−0.042 to 0.027) −0.030 (−0.073 to 0.013) 0.17 −0.29 0.016 (−0.017 to 0.049) 0.25 0.31

HC

Posttest 0.006 (−0.011 to 0.024) −0.007 (−0.018 to 0.004) 0.23 −0.28 0.001 (−0.022 to 0.024) 0.58 −0.11

3-month FU 0.008 (−0.020 to 0.036) −0.003 (−0.063 to 0.058) 0.54 −0.20 −0.020 (−0.038 to −0.003) 0.18 −0.59

Executive function

Posttest 0.39 (0.14 to 0.65) 0.20 (−0.00 to 0.41) 0.34 −0.19 0.30 (−0.09 to 0.69) 0.63 −0.09

3-month FU 0.39 (−0.01 to 0.79) −0.09 (−0.86 to 0.67) 0.04 −0.46 0.35 (−0.23 to 0.94) 0.65 −0.03

Episodic memory

Posttest 0.54 (0.28 to 0.81) 0.41 (0.01 to 0.82) 0.62 −0.12 0.12 (−0.27 to 0.52) 0.10 −0.39

3-month FU 1.82 (1.40 to 2.24) 1.62 (0.23 to 3.01) 0.64 −0.17 1.61 (0.86 to 2.37) 0.70 −0.18

ap-value of the Group [Control vs. Cognitive/Physical Training] × Session [pre vs. post and pre vs. 3-month FU] interaction, before adjustment for multiple comparisons.
bHedges’ g: change in cognitive/physical training minus change in control group divided by the pooled baseline standard deviation corrected for bias in small samples.
Positive values indicate beneficial effects of the interventions. gCC, genu of the corpus callosum; FA, fractional anisotropy; FU, follow-up; FX, fornix; HC, hippocampal
cingulum; MMSE, Mini Mental State Examination; n, number of participants.

2014). The estimated effect sizes of the two training programs
at the posttest were not of relevance (Hedges’ g < 0.1), and the
two 95% confidence intervals did not include medium effects
(Hedges’ g < 0.5).

The lack of training-induced changes in FA is consistent with
several previous findings. For example, for the cognitive training
program used in our study, Strenziok et al. (2014) did not find
any effect on FA scores compared to two other video games.
Moreover, in one of the largest studies in the field, Voss et al.
(2012) did not show significant FA increases in a 1-year aerobic
fitness training intervention compared to a stretching control
intervention.

It is worth to note that physical training has been shown to
increase FA in fiber tracts implicated in motor functioning such
as the corticospinal tract (Svatkova et al., 2015). These tracts were
not of interest in this study and potential effects could not be
detected in our ROI analysis.

The lack of a cognitive training effect contrasts with three
studies that found significant effects of different working
memory training programs on regions of the anterior part
of the corpus callosum (Lövdén et al., 2010; Takeuchi et al.,
2010; Salminen et al., 2016). These inconsistent results might
be explained by the working memory training and by the
study population. In contrast to the other studies our working

memory training did not include an updating component
and our sample comprised older adults at risk of dementia
vs. younger adults in Takeuchi et al. (2010) and Salminen
et al. (2016), and healthy older adults in Lövdén et al.
(2010).

The associations between cognitive training skills and the FA
composite, as well as between functional physical fitness with
the fornix FA hint at the potential of cognitive and physical
activities to improve WMI in these tracts. Correlations between
these two training outcomes and FA transfer outcomes allow us
to estimate the maximal transfer gains given a specific increase
in the training outcomes (Jaeggi et al., 2010; Baniqued et al.,
2013; Rode et al., 2014). The higher the association, the higher
is the transfer potential. Therefore, long-term rather than short-
term training programs and lifestyles that induce larger effects on
training outcomes may significantly increase the targeted white
matter tracts.

Self-reported lifestyles at baseline were not associated with
changes in WMI. In addition, positive associations between
cognitive lifestyle and changes in global cognition and episodic
memory were not altered after accounting for WMI. To our
knowledge, there has been no other study that has assessed the
relationship between lifestyles and changes in WMI. Therefore,
this is initial evidence that other brain mechanisms than changes
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TABLE 3 | Associations with cognitive and physical lifestyles.

Measures Cognitive lifestyle (n = 39) Physical lifestyle (n = 39)

Time point βa (95% CI) p-valueb βa (95% CI) p-valuec

Composite scores

FA composite

Posttest 0.20 (− 0.16 to 0.56) 0.27 −0.04 (− 0.40 to 0.32) 0.80

3-month FU −0.04 (− 0.54 to 0.45) 0.97 0.15 (− 0.34 to 0.64) 0.69

Global cognition

Posttest 0.51 (0.23 to 0.80) 0.004 0.12 (− 0.17 to 0.41) 0.49

3-month FU 0.40 (− 0.01 to 0.82) 0.01 0.12 (− 0.29 to 0.54) 0.71

Specific scores

gCC

Posttest 0.34 (− 0.00 to 0.69) 0.08 0.02 (− 0.32 to 0.36) 0.92

3-month FU −0.20 (− 0.68 to 0.29) 0.31 0.12 (− 0.37 to 0.61) 0.71

Fornix

Posttest −0.10 (− 0.46 to 0.26) 0.63 0.19 (− 0.17 to 0.55) 0.36

3-month FU −0.06 (− 0.56 to 0.43) 0.95 0.15 (− 0.34 to 0.64) 0.74

HC

Posttest 0.18 (− 0.17 to 0.53) 0.30 −0.28 (− 0.64 to 0.07) 0.13

3-month FU 0.16 (− 0.32 to 0.66) 0.33 −0.01 (− 0.50 to 0.48) 0.92

Executive function

Posttest 0.26 (− 0.08 to 0.60) 0.16 −0.08 (− 0.42 to 0.26) 0.67

3-month FU 0.08 (− 0.39 to 0.54) 0.21 −0.02 (− 0.49 to 0.44) 0.77

Episodic memory

Posttest 0.45 (0.15 to 0.74) 0.02 0.21 (− 0.09 to 0.50) 0.28

3-month FU 0.41 (0.00 to 0.82) 0.02 0.16 (− 0.25 to 0.57) 0.57

aβs represent the standardized regression coefficients of cognitive and physical lifestyles predicting changes in outcomes. bp-value of the Cognitive Lifestyle × Session
[pre vs. post and pre vs. 3-month FU] interaction. cp-value of the Physical Lifestyle × Session [pre vs. post and pre vs. 3-month FU] interaction. gCC, genu of the corpus
callosum; FA, fractional anisotropy; FU, follow-up; FX, fornix; HC, hippocampal cingulum; MMSE, Mini Mental State Examination; n, number of participants.

in WMI do underlie lifestyle-related cognitive changes in older
adults at risk of dementia.

Limitations
Our use of ROI analyses rather than whole brain-based
approaches means that any changes in other brain regions
would not be detected. However, in this sample of older
adults at risk of dementia, we were particularly interested
in the white matter tracts that are affected in cognitive
aging and Alzheimer’s disease. Importantly, by using ROIs, we
limited the problems of alpha-error inflation and a reduction
in power through multiple comparisons – an issue that is
particularly important in analyses with limited sample sizes.
Other limitations include the lack of randomization, which
was not feasible due to logistic issues (see above). However,
we used a minimization approach instead to prevent group
differences in participants’ characteristics from inducing bias.
The limited sample size likely impeded the detection of very
small effects. However, the sample size was sufficient to detect
lifestyle-related cognitive changes and to reveal associations
between WMI and both cognitive training skills and functional
physical fitness. In addition, the confidence intervals of the
training effects immediately after the training period were lower
than a Hedges’ g of 0.5, suggesting that effects of medium
size are unlikely. Finally, the lack of a lifestyle intervention

FIGURE 3 | Cognitive lifestyle as a predictor of cognitive change.
Association between self-reported cognitive lifestyle at baseline and changes
in global cognition from pretest to posttest (β = 0.51, p = 0.004) and from
pretest to 3-month follow-up (β = 0.40, p = 0.01).

prevented a causal inference regarding associations between
lifestyles and FA changes. However, before implementing cost-
intensive experimental designs, it is a reasonable strategy to
initially employ observational designs.
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FIGURE 4 | The potential of the cognitive training program to affect
white matter integrity. Association between cognitive training skills at the
beginning of the training and FA composite score at baseline (rs = 0.68,
p = 0.05). The cognitive training data from two individuals were not properly
stored and could not be included in the analysis.

FIGURE 5 | The potential of the physical training program to affect
white matter integrity. Association between functional physical fitness and
fornix FA at baseline (r = 0.35, p = 0.03).

Future Perspectives
Future studies should use larger samples to increase the
probability of finding small effect sizes; moreover, they should
lengthen the training periods to enhance the potential to
induce larger effects. In addition, little is known about the
time course and maintenance of activity-induced white matter
changes, suggesting that future studies should implement
multiple assessments during the training regime and after
the training period. Activity-related white matter changes
may be differential for specific populations; thus, younger
participants without cognitive impairments may profit more
than older adults at risk of dementia. Future meta-analyses
should assess these potential moderators. Interventional
studies have only rarely reported the correlation of training
outcomes with potential neurobiological mechanisms and have

neglected the relation between cognitive and neurobiological
changes. Future interventional studies should include these
analyses to allow a better understanding of the mediating
role of WMI for cognitive benefits. Finally, to our knowledge,
cognitive and physical lifestyle-related changes in WMI
have not yet been reported. Large-scale studies investigating
this association should be conducted as a first step to
explore the role of active cognitive and physical lifestyles
for WMI.

Conclusion
First, we found no evidence that short-term cognitive
and physical training programs do affect the integrity of
hippocampus-related and prefrontal white matter tracts in older
adults at risk of dementia. Second, we provide first evidence that
WMI changes do not underlie the positive association between
a cognitive lifestyle and cognitive change. However, as the two
training outcomes (cognitive training skills and functional
physical fitness) were related to WMI, engagement in long-term
cognitive and physical activities might have the potential to affect
WMI.
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