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a b s t r a c t

Coronavirus Disease 2019 (COVID-19) still presents a pandemic trend globally. Detecting infected
individuals and analyzing their status can provide patients with proper healthcare while protecting the
normal population. Chest CT (computed tomography) is an effective tool for screening of COVID-19. It
displays detailed pathology-related information. To achieve automated COVID-19 diagnosis and lung
CT image segmentation, convolutional neural networks (CNNs) have become mainstream methods.
However, most of the previous works consider automated diagnosis and image segmentation as two
independent tasks, in which some focus on lung fields segmentation and the others focus on single-
lesion segmentation. Moreover, lack of clinical explainability is a common problem for CNN-based
methods. In such context, we develop a multi-task learning framework in which the diagnosis of
COVID-19 and multi-lesion recognition (segmentation of CT images) are achieved simultaneously. The
core of the proposed framework is an explainable multi-instance multi-task network. The network
learns task-related features adaptively with learnable weights, and gives explicable diagnosis results
by suggesting local CT images with lesions as additional evidence. Then, severity assessment of COVID-
19 and lesion quantification are performed to analyze patient status. Extensive experimental results
on real-world datasets show that the proposed framework outperforms all the compared approaches
for COVID-19 diagnosis and multi-lesion segmentation.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Severe acute respiratory syndrome coronavirus (SARS-CoV)
1], middle east respiratory syndrome coronavirus (MERS-CoV)
2], and novel coronavirus (SARS-CoV-2) are highly pathogenic
oronaviruses known to infect humans, whose infection can cause
evere respiratory syndromes. At the beginning of 2020, SARS-
oV-2 quickly became a pandemic worldwide. SARS-CoV-2 in-
ection can inflame the air sacs in the lungs and cause pleural
ffusion, which can lead to breathing difficulties, fever, cough,
r other flu-like symptoms in patients. The diseases caused by
his virus are collectively referred to as Coronavirus Disease 2019
COVID-19) [3]. It has made a huge impact on the medical systems
nd economic activities around the globe. Molecular diagnostic
esting and imaging testing are two main detection methods
or COVID-19 infection. Reverse Transcription-Polymerase Chain
eaction (RT-PCR) as a molecular diagnostic test performed in
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standard laboratories, it is a common standard for the detection
of COVID-19. However, the current laboratory test has a long
turnaround time, and RT-PCR testing for COVID-19 may be falsely
negative due to specimen contamination or insufficient viral ma-
terial in the specimen, which may not be sufficient to confirm
infection or infection-free [4,5].

Radiology imaging procedure has a faster turnaround time
than RT-PCR, which facilitates the rapid screening of suspected
COVID-19 patients in the severe and complicated novel coron-
avirus pneumonia epidemic. As one of the most common imaging
tests, computed tomography (CT) is an effective tool for screening
lung lesions and a means of diagnosing COVID-19 [6]. Chest CT
images provide more detailed pathological information, which
can quantitatively measure lesion size and the extent of lung
involvement better [7]. Due to its convenience, accuracy, high
positive rate, and good reproducibility, CT images play an indis-
pensable role in screening COVID-19 and assessing the progres-
sion of patients. However, manual screening is a time-consuming
and labor-intensive task. In addition, CT images of COVID-19 and
some other common types of pneumonia have similar imaging
characteristics. Sometimes even the most experienced physicians
have difficulty analyzing them without relying on other test-

ing methods. Therefore, reliable computer-aided diagnosis (CAD)
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ethods based on CT images are needed to boost the efficiency
f COVID-19 diagnosis and assessment. Developing such methods
as been a research hotspot in the past year.
Because there are huge differences in the appearance, size,

nd location of the pneumonia lesions, it is difficult to design
n appropriate CAD method to deal with the complex features
f pneumonia lesions only using machine vision methods such
s classic image processing techniques or traditional statistical
earning methods.

Benefiting from the development of deep learning technology,
he application of convolutional neural networks (CNNs) in au-
omated COVID-19 diagnosis has become popular. For instance,
here have published several recent works that focused on auto-
ated diagnosis [8–10] or lesion segmentation of COVID-19 [11–
3]. However, most existing automated diagnosis methods are
wo-stage or depend heavily on expert knowledge and experi-
nce. And as a result, time cost and human factors will affect
he efficiency and consistency of diagnosis. In another aspect, the
iagnosis task of distinguishing COVID-19 from other common
neumonia with similar symptoms has received plenty of atten-
ion, but the severity of patients is rarely assessed which can be
ore challenging. In addition, the diagnosis results of deep learn-

ng methods also need to be explained with clinical significance.
or lesion segmentation, some studies treat the segmentation
ask as an intermediate step in the diagnosis of COVID-19, and
detailed quantitative or qualitative analysis of segmentation

esults is not conducted. The segmentation of multiple lesion
reas in the lung has been demanded due to clinical potential for
isease progression analysis, while it is challenging as lesions are
ften similar and the sizes are quite small.
It is observed that most previous works consider automated

iagnosis and lesion segmentation as two independent tasks or
reat segmentation as a pre-step of disease diagnosis, thus ig-
oring the correlation between these two tasks. During the seg-
entation of lesion areas, rich spatial information and tissue

ype information can be obtained from CT images. Similarly, the
iagnosis task also needs to pay attention to such information.
ince diagnosis and segmentation are highly related tasks, the
ulti-task learning (MTL) scheme can utilize the potential repre-
entations between these two tasks to improve the performance
n each task [14]. And this MTL method is also faster than the
wo-stage methods of first segmentation and then classification.

Based on the above analysis, this paper proposes a multi-
ask learning framework that combines automated diagnosis of
OVID-19 and lung multi-lesion segmentation in CT images.
pecifically, the regions related to pneumonia assessment are
ew and unevenly distributed in each CT image of the individual.
o address this problem, we treat each CT image as a bag of
T slices through a weakly supervised multi-instance learning
MIL) strategy and use these instance bags as the inputs of the
ollowing model. A multi-task network is designed, including a
hared encoder for feature extraction, a diagnosis branch and a
egmentation branch. Here, the shared encoder learns common
epresentations of both tasks and generates the information ex-
hange, the diagnosis branch and the segmentation branch are
sed to solve the diagnosis and segmentation tasks, respectively.
In addition, based on the results of lesion segmentation, sever-

ty assessment of COVID-19 and lesion quantification are
erformed. And explainability of the diagnosis results can be
mplemented through a dedicatedly-designed Transformer MIL
ooling (TMP) layer. Extensive experiments are conducted on
eal-world COVID-19 datasets to verify the effectiveness of the
roposed method. The contributions of this work can be summa-
ized as follows:
2

1. A multi-task learning framework is proposed to perform
automated diagnosis of COVID-19 and lung multi-lesion
segmentation in CT images simultaneously. Both tasks can
adaptively exchange unique task-related information and
learn common representations to improve the performance
on each task.

2. A novel explainable multi-instance learning strategy is de-
signed, in which a TMP layer considers the expressive
abilities of different instances, constructs the local to the
global representations of CT images, and can endow the
diagnosis results with a certain degree of explainability by
suggesting which sets of instances exert similar effects on
the diagnosis.

3. The explainable multi-instance multi-task network (EMTN)
in the framework is flexible, which has EM-Seg (EMTN
with only the segmentation branch) and EM-Cls (EMTN
with only the classification branch) two variants. Either
variant of EMTN can be employed to perform diagnosis of
COVID-19 or lesion segmentation in CT images.

The rest of the paper is organized as follows: Section 2 in-
troduces the related works about the automated diagnosis and
segmentation of COVID-19 based on CT images. In Section 3, we
explain the proposed framework in detail. Then, the datasets and
experimental setup are introduced in Section 4. The extensive
experiments and discussions are presented in Section 5. Finally,
Section 6 concludes this paper.

2. Related work

In this section, we briefly review the deep learning based
COVID-19 classification and segmentation studies, including seg-
mentation in CT images of COVID-19 and automated diagnosis of
COVID-19 from CT images.

2.1. Segmentation of CT images infected with COVID-19

Segmentation is a key task in the assessment of COVID-19. Its
main goal is to identify and mark the regions of interest (ROI)
such as lung, lung lobes, or lesion areas in CT images. In terms
of target ROI, the segmentation methods can be divided into two
categories, namely, methods for lung fields and for lung lesions.

(1) Segmentation methods for lung fields: The methods aim
to separate lung fields (i.e., the whole lung or lung lobes) from
background areas. This is considered a basic task of segmentation
in CT Images of COVID-19. For example, Chaganti et al. [11]
proposed a two-stage method for segmenting lungs and lung
lobes in CT images of COVID-19 patients. In the first stage, deep
reinforcement learning was used to detect lung fields. Then, a
depth image-to-image network was employed to segment the
lungs and lung lobes from the detected lung fields. Xie et al. [12]
introduced a non-local neural network module in the CNN to
capture structural relationships of different tissues and perform
the segmentation of lung lobes.

(2) Segmentation methods for lung lesions: The purpose is to
segment lung lesions from other tissues in CT images. Since the
lesions are of a variety of shapes and textures, and the sizes are
usually small. A focus on lung lesions can improve the efficiency
of follow-up in patients with COVID-19. Lung lesion segmentation
is widely regarded as a challenging task. Some studies performed
binary segmentation of lesions, that is, predicting the masks of
all types of lesions without distinction [15–17]. For instance,
Abdel-Basset et al. [15] adopted a dual-path network architecture,
and designed a recombination and recalibration module that
exchanges feature information to improve the segmentation of
infected areas. Wu et al. [16] proposed an encoder–decoder CNN
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rchitecture with attentive feature fusion and deep supervision
trategy, and obtained the locations of the infected areas. Chas-
agnon et al. [17] designed a CovidENet, which is an ensemble of
D and 3D architectures based on AtlasNet [18]. CovidENet was
mployed to segment the lung lesions as a whole, and it can reach
segmentation level close to physicians in terms of dice coef-

icient and Hausdorff distance. Moreover, some scholars carried
ut researches on multi-lesion segmentation methods. Chaganti
t al. [11] also paid attention to multi-lesion segmentation. They
sed a densely connected U-Net [19] to segment ground-glass
pacities (GGO) and lung consolidation. Fan et al. [20] utilized a
wo-stage method with two CNNs for multi-lesion segmentation.
he first CNN segmented the total lesions, and then based on the
egmentation results of the first CNN, the second CNNwas used to
urther segment the GGO and lung consolidation of total lesions.
imilar to Fan et al. [20], Zhang et al. [13] also adopted a two-
tage method to perform lesion segmentation. Total lesions and
ealthy lung tissues were first segmented. After that, different
ypes of lesions were separated from total lesions, including GGO,
ung fibrosis, lung consolidation, etc.

.2. Automated diagnosis of COVID-19 from CT images

Automated diagnosis (classification) is one crucial task in
OVID-19 detection. It aims to provide rapid and accurate judg-
ents for the diagnosis of suspected COVID-19 patients. Con-
idering the screening COVID-19 patients as the main target,
he diagnosis of COVID-19 based on CT images mainly includes
wo categories: (1) binary classification (COVID-19 or non-COVID-
9); (2) multi-class classification (COVID-19 and other types of
neumonia).
(1) Binary classification: In this category, many studies have

een carried out to distinguish COVID-19 patients from non-
OVID-19 patients. Li et al. [6] utilized a modified CheXNet [21] to
iagnose COVID-19. The modified CheXNet was first pre-trained
n a chest X-rays dataset, and then the pre-trained network
as transferred to the target task by transfer learning. Wang
t al. [22] utilized a 3D U-Net [23] based segmentation model to
btain lung segments in CT images, then coupled two 3D-ResNets
nto a classification model via a priority attention strategy, and
inally predicted the type of patients through this classification
odel. A weakly-supervised automated diagnosis framework [24]
as established. Specifically, a pre-trained U-Net was adopted
o segment lung fields. Afterwards, the segmented lung fields
nd original CT images were as the inputs of a 3D deep neural
etwork, which can determine whether patients are infected with
OVID-19 or not. Shaban et al. [25] proposed an enhanced KNN
lassifier with hybrid feature selection, which selected significant
eatures from CT images and detected COVID-19 patients based
n these features. Ardakani et al. [8] extracted 1020 CT slices
rom CT images of 108 COVID-19 patients and 86 non-COVID-
9 patients, and ten classical CNNs were employed to distinguish
etween COVID-19 patients and non-COVID-19 patients based
n the extracted 2D slices. However, the classification results of
rdakani et al. were slice-level rather than individual-level. This
ay have the problem of data leakage. Bai et al. [9] segmented the

ung regions in CT images and sliced them, then an EfficientNet
4 [26] was used to obtain the classification score of each 2D slice.
fter that, they integrated the predicted classification scores of
everal 2D CT slices to make final decisions at the individual level.
(2) Multi-class classification: COVID-19 has similar imaging

eatures in CT images to other viral, bacterial, and community-
cquired pneumonia, especially viral pneumonia. It is a chal-
enging task for physicians to judge suspected patients if the
neumonia-related lesions are subtle. The classification of COVID-
9 patients from other types of pneumonia patients can acceler-
te the screening of patients in clinical practice. Wang et al. [27]
3

proposed a two-stage method to perform the classification of
COVID-19 and other types of pneumonia. In the first stage, a
3D DenseNet121-FPN was adopted to segment lung fields in
CT images, and then in the second stage, a COVID-19Net was
designed to determine the label of each patient based on the
patient’s clinical information and segmented lung fields. Han
et al. [10] proposed a deep 3D multiple instance learning method
based on the attention mechanism. With a certain number of 3D
patches extracted from CT images as the inputs of a 3D CNN,
the patch-level features were obtained through this CNN, and
an attention-based pooling layer mapped the patch-level features
into embedding space. Then, the features were transformed into
the Bernoulli space, which can give the probabilities of patients
with COVID-19. Song et al. [28] utilized OpenCV [29] to extract
15 complete lung slices from each CT image, and a diagnosis
system was proposed to identify patients with COVID-19 from
other types of pneumonia based on these slices, in which the
system mainly consists of a ResNet50 fused with feature pyramid
networks. Similarly, Wang et al. [30] manually selected slices
with lesions according to the typical characteristics of pneu-
monia, and separated the CT slices into lung fields and other
regions. Afterwards, they used these lung fields as the inputs of
a pre-trained GoogLeNet [31] for the diagnosis of patients.

3. Methodology

3.1. Method overview

We construct a framework to perform automated diagnosis
of COVID-19 and multi-lesion segmentation in CT images. The
proposed framework is illustrated in Fig. 1. In order to weaken the
influence of different CT images qualities, several preprocessing
steps are adopted, and then a bag of instances is constructed
by randomly choosing a set of 2D image slices. An explainable
multi-instance multi-task network (EMTN) is designed to simul-
taneously perform classification and segmentation tasks based on
the instance bags. As shown in Fig. 1, the architecture of EMTN
consists of a shared encoder and two task branches (i.e., diagnosis
and segmentation). The shared encoder plays a role in feature
extraction of 2D image slices in each bag of instances, where
the obtained features are fed into the following diagnosis and
segmentation branches. In the diagnosis branch, these extracted
features are used to construct the global representations of CT
images, and the diagnosis of patients is determined through a
classification layer learned from these global representations. In
the segmentation branch, multi-lesion segmentation is performed
via a decoding architecture symmetrical to the shared encoder.
In the way of multi-task learning, task-related features such as
textures and shapes can be properly utilized by both tasks to
improve performance. In addition, EM-Seg (EMTN with only the
segmentation branch) and EM-Cls (EMTN with only the classifi-
cation branch) as two variants of EMTN, they can be employed to
perform segmentation or diagnosis task individually.

After classification and segmentation, lesion quantification
and severity assessment of COVID-19 patients are carried out to
further enrich the functionalities of the framework. Moreover, the
diagnosis results can be more explainable by observing the key
instances.

3.2. Network architecture

As above-emphasized, the proposed backbone network is an
encoder-focused MTL model used to simultaneously perform
classification of patients and segmentation of multi-lesion. As
shown in Fig. 2, the forward-propagation direction of the bags
or the features in the EMTN is from the shared encoder to the
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Fig. 1. Illustration of the pipeline of the proposed framework. For each CT image, a bag of instances (2D image slices) is constructed through the preprocess
steps, which is fed into the explainable multi-instance multi-task network (EMTN) for the diagnosis of COVID-19 and multi-lesion segmentation. Following EMTN,
explainability analysis endows the diagnosis results with explainability, lesion quantification and severity assessment provides the detailed information of patient
status.
Fig. 2. The architecture of the proposed explainable multi-instance multi-task network (EMTN).
classification branch and the segmentation branch. Following
this, the class label and the pixel label are determined by the
corresponding branches.

Specifically, the shared encoder contains four down-sampling
blocks. The first three blocks include two convolutional (Conv)
layers followed by a 2 × 2 max pooling layer. They are designed
to down-sample the intermediate feature maps. The last down-
sampling block only has two Conv layers, which is designed to
ensure the size of the features extracted by the encoder. The num-
ber of channels for Conv layers in four blocks are [64, 64], [64, 64],
[128, 128] and [128, 256], respectively. Each Conv layer has one
convolutional layer with unit stride and zero padding, followed
by batch normalization (BN) and rectified linear unit (ReLU) ac-
tivation. The segmentation branch has three up-sampling blocks,
which forms a symmetrical codec architecture with the shared
encoder. The number of channels for Conv layers in three up-
sampling blocks are [128, 128], [64, 64] and [64, 64], respectively.
All up-sampling blocks have the same Conv layers as down-
sampling blocks, and a lesion attention module (LAM) is adopted
4

in each up-sampling block to concatenate the up-sampled fea-
ture maps and the outputs of the corresponding down-sampling
block. The LAM mainly includes feature similarity calculation
and original feature enhancement two core parts. In the feature
similarity calculation part, linear transformation, dot product,
and feature decoupling are performed on the up-sampled feature
maps and corresponding down-sampled feature maps to obtain
a similarity matrix. Then, in the feature enhancement part, this
similarity matrix is multiplied by the dimensionality reduced
features to get the enhanced features, where the dimensionality
reduced features can be obtained by concatenating and trans-
forming the up-sampled and down-sampled features. Finally, the
enhanced features are added to the original feature maps as
the output of LAM. The LAM is designed to better consider the
global information in the original images and enhance some tiny
features beneficial to segmentation. A successful application was
presented in [32]. The segmentation branch outputs the masks for
the four areas (i.e., lung areas, GGO, lung consolidation, and back-
ground areas) of image slices in the bag. The classification (and



M. Li, X. Li, Y. Jiang et al. Knowledge-Based Systems 252 (2022) 109278

a
l
i
t
l
o

f
t
b
a
i

s

L

lso diagnosis) branch contains a 2 × 2 max pooling layer, a TMP
ayer, and a classification layer. In this classification branch, local
nstance-level features are mapped to the embedding-level space
hrough a novel explainable MIL strategy, and these embedding-
evel features are further processed by classification layer to
btain predicted diagnosis results.
Both tasks are simultaneously supervised by the MTL loss

unction which is usually a combination of single task loss func-
ions. Since the loss functions of different tasks may have un-
alanced contributions when optimizing the model parameters,
weight-adaptive multi-task learning loss function is designed

n this paper. Specifically, let {[(Xn, Yn), (xnl, Gl)]}Nn=1 be a training
set containing N samples, where Xn and Yn ∈ {1, . . . , Ccls} denote
the bag of instances for the nth CT image and the corresponding
class label, respectively; xnl denotes the lth instance in Xn, and Gnl
is the corresponding ground-truth segmentation mask for xnl. For
ingle task, the loss functions Lcls and Lseg for classification and
segmentation tasks are as follows.

Lcls = −
1
N

N∑
n=1

Ccls∑
ccls=1

log(Pcls(Ŷn = ccls | Xn)) (1)

seg =−
1
N

N∑
n=1

Cseg∑
cseg=1

log(Pseg (Ĝnl = cseg | xnl))

− 2
Cseg∑

cseg=1

(
Ĝnl ∩ Gnl

Ĝnl + Gnl
)+ 1

(2)

where Lcls is the cross-entropy loss, and Lseg is the aggregation
of cross-entropy loss and dice loss. In terms of a given bag
(e.g., Xn) being diagnosed as a specific class (e.g., Ŷn = ccls)
or a given instance (e.g., xnl) being segmented as a predicted
mask (e.g., Ĝnl = cseg ), function Pcls(·|·) and Pseg (·|·) denote the
probability obtained by the classification branch and segmenta-
tion branch, respectively. In this work, three classification targets
and one multi-categories semantic segmentation are performed,
namely Ccls=3, Cseg=4.

Then, the single task loss function is weighted by the trade-off
factors λ to form a joint loss function.

Ljoint =
1

2× λ2
cls
· Lcls + ln(1+ λ2

cls)+

1
2× λ2

seg
· Lseg + ln(1+ λ2

seg )
(3)

where λcls and λseg are the trade-off factors for the classification
task and segmentation task, respectively. The factors λ are learn-
able parameters that can be adjusted in the process of model
optimization. The regularization terms [33] R(λ) = ln(1 + λ2)
are added to avoid the trade-off factor of each task reaching
minimum, maximum, negative values, or zero solution.

3.3. Explainable multi-instance learning

COVID-19-related infection regions usually exist in some par-
tial regions of the lung, while the regions in CT images are
unlabeled, i.e., only the entire CT images have the corresponding
labels. This situation is seen as a weakly supervised problem
which can be solved with multi-instance learning (MIL) strat-
egy. In this section, the details of the proposed explainable MIL
strategy are introduced.

As mentioned in Section 3.1, a bag of image slices is con-
structed as the input of the network. Let Xi =

{
xi1, xi2, . . . , xini

}
denotes the bag which represents the ith CT image, where xkl ∈
R (l = 1, 2, . . . , nk) represents the lth slice of the kth CT image.
And then, the shared encoder performs feature extraction on
5

these CT slices to obtain instance-level features Si = {si1, si2, . . . ,
sini

}
, followed by a proposed Transformer MIL Pooling (TMP)

layer to generate embedding-level features Bi from instance-level
features.

The proposed TMP layer is one of the few attempts that
combine transformers [34] with MIL. Medical images usually have
explicit sequences, such as modalities, slices, patches, etc. From
these sequences, some important long-range dependence and
semantic information can be mined. Transformers can effectively
focus on long-range dependence in the data sequences. In the
process of feature learning, MIL also needs to pay attention to
the dependence among instances to generate embedding-level
features. As a useful tool to process sequence relations, Trans-
formers combine instance-level features with MIL, which can not
only provide the degree of connection between instances and
diagnosis results, but can also further improve the performance
of the network. This is the motivation for us to propose TMP.
Different from transformers which only analyze a single image,
the TMP layer in this work is a core component of explainable
MIL. It operates on features in the instance feature space and
the embedding feature space, and generates embedding-level
features, which can also provide the explainability of diagnosis
results.

As shown in Fig. 2, the designed TMP layer contains the
following three parts in series.

(1) Instance embedding and class token: For each extracted
instance-level feature skl ∈ RC×H×W , C is the number of channels,
(H,W ) is the size of the feature map. In order to facilitate the
propagation of features among different layers, we flatten the
instance-level features and concatenate them into a sequence
of embedded instance-level features S ′i = [s

′

i1; s
′

i2; ...; s
′

ini
] ∈

RN×(CHW ), where s′kl ∈ R1×(CHW ) is the reshaped instance-level fea-
ture map, N is the number of instances, which also serves as the
input sequence length for the TMP. Then, the embedded instance-
level features are mapped to D dimensions with a trainable linear
projection. The above process is instance embedding.

Considering that it is unfair to choose one of the embedded
instance-level features as the feature for subsequent classifica-
tion, a learnable vector is prepended to the sequence of embed-
ded instance-level features, which is referred to as class token
sclass. The class token plays the role of the bag representation,
which will learn in the following steps and be used to predict
the class label.

The resulting sequence of embedded instance-level features
and the class token is as follows:

zi = [siclass; s′i1E; s
′

i2E; ...; s
′

iniE] ∈ R(N+1)×D (4)

where zi and siclass indicate the resulting sequence and the class
token of ith CT image, respectively. E ∈ R(CHW )×D is the trainable
linear projection.

(2) Dependence mining among instances: The core of this
step is multi-head self-attention (MSA) [34] which mines the
dependence in the resulting sequences based on the calculation
of similarity among the elements of the sequence. MSA is an
extension of self-attention (SA), which performs SA operation
several times in parallel, and concatenates their outputs as the
output of MSA.

For the ith element in the resulting sequence z, it is trans-
formed into three vectors: query vector qi, key vector ki, and
value vector vi, where qi and ki are used to compute an attention
weight Aij that indicates the dependence with the jth element,
vi represents the unique feature map of the element. Then, a
weighted sum over the values V of all elements in the sequence
is computed (Eq. (5)).

[Q , K , V ] = zW , W ∈ RD×3d (5)
qkv qkv
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= softmax(
QK T

√
d
), A ∈ R(N+1)×(N+1) (6)

SA(z) = AV (7)

where Q , K and V are the sets of q, k and v, respectively. Wqkv
is a trainable linear projection which transforms the elements in
the sequence to the corresponding q, k, and v. A is the attention
weight which reflects the dependence between the class token
and instances. In addition, the dependence among instances can
also be calculated based on A.

MSA(z) = [SA1(z); SA2(z); ...; SAh(z)]Wmsa (8)

where SAh(z)(h = 1, 2, . . . , h) represents performing h SA opera-
tions in parallel. Wmsa ∈ R(h×d)×D is a trainable parameter matrix
that controls the output size of feature maps as D dimensions.

In this step, the MSA is with skip connections like residual
networks and with a layer normalization (LN) to normalize each
element in the sequence. Therefore, with the resulting sequence
z in the first step as input, the second step can be described by
the following equation:

z ′ = MSA(LN(z))+ z (9)

where z ′ is the output of the second step.
(3) Embedding-level feature generation: In this step, the

embedding-level representations are generated with a multi-
layer perceptron (MLP). The MLP is composed of two linear layers
with dropout and a Gaussian error linear unit (GELU) activation
which is inserted between these two layers. Like MSA in the
second step, the MLP also has the residual connection and a layer
normalization. This step can be written as follows.

z ′′ = MLP(LN(z ′))+ z ′ (10)

where z ′′ is the output embedding-level features. As mentioned
in step 1, a class token is prepended to the sequence as the sub-
sequently used bag representation. After three steps of learning,
the learned class token z ′′[0] is employed to predict the final
classification.

The above three steps are the details of TMP. Furthermore, to
provide the explainability of diagnosis results, the proposed ex-
plainable MIL strategy can not only process the weakly supervised
problem but also suggest key instances which exert similar effects
on the diagnosis. The acquisition process of the key instances is
described as follows.

At each SA operation, we get an attention matrix Ah that
defines the attention maps from the output class token to the
input instance-level space. To process the attention matrices of
multiple SA operations, we take the average of these matrices
across all SA operations and normalize them to get the averaged
attention matrix Aatt . Then, the attention weight between the
class token and each instance-level feature is obtained with Aatt .
Specifically, the class token corresponds to bag representation,
and the predicted result is obtained by mapping the bag repre-
sentation to the label space. Thus, the class token can represent
the bag of instances. Each instance-level feature corresponds to a
unique instance in the bag (a 2D image slice). It is straightforward
that the higher attention weight between the class token and
one instance-level feature, the greater impact this instance-level
feature has on the bag representation and the final diagnosis
result. The key instances can be selected according to the values
of the attention weights, and these instances usually contain
more lungs or lesion areas than other instances, which provides
the basis for the posterior test of the diagnosis results.

This explainable MIL is different from the standard multi-
instance assumption. The standard multi-instance assumption

states that a bag is positive if and only if it contains at least one

6

Fig. 3. The pipeline of the lesion quantification and severity assessment via
voxel-wise analysis.

positive instance, which relies heavily on the correctness of labels
and is susceptible to false positive instances. The explainable MIL
strategy considers the relationship between instances and bag
representation, and assigns suitable weights for instance-level
features to generate embedding-level features and bag represen-
tation. This allows the generated bag representation can better
characterize the samples and reduce the interference of false
positive instances.

3.4. Quantitative analysis of lesions and severity assessment of
COVID-19

The quantitative analysis of lesions and severity assessment
of COVID-19 can provide more detailed information for the eval-
uation of patient status, clinical treatment effect, or drug exper-
iments. In this section, we use a voxel-wise analysis method to
further analyze the segmentation results.

As shown in Fig. 3, at the segmentation branch in EMTN, the
positions and sizes of the lung fields, as well as GGO and lung
consolidation in CT images can be obtained. In order to facilitate
the analysis, GGO and lung consolidation are collectively referred
to as the lesion areas. Briefly, we count the number of voxels
in lung fields and lesion areas. Let nLF , nGGO and nCO denote the
umber of voxels in the lung fields, GGO and lung consolidation,
espectively. Then, the percentage of the number of voxels in the
esion areas to that in the lung fields is calculated as follows.

=
nGGO + nCO

nLF
× 100% (11)

where r is the key indicator for quantitative analysis of lesions,
i.e., infection rate. Furthermore, the severity of COVID-19 patients
can be assessed with r .

4. Experimental setup

4.1. Dataset and preprocess

The real-world datasets of CT images are acquired from three
sources: China Consortium of Chest CT Image Investigation
(CC-CCII),1 COVID19-CT-dataset,2 and Radiopaedia.org.3 The
ombined dataset contains CT images of COVID-19 patients, com-
on pneumonia patients, and normal control cases in three
roups. Fig. 4 shows the axial surface of CT images in different
roups.
The CC-CCII dataset consists of a total of 2778+ CT images

rom 2778 patients [13]. These patients and their CT images are

1 http://ncov-ai.big.ac.cn/download?lang=en
2 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/
ACUZJ
3 https://radiopaedia.org/cases?lang=us

http://ncov-ai.big.ac.cn/download?lang=en
http://dx.doi.org/https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6ACUZJ
http://dx.doi.org/https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6ACUZJ
https://radiopaedia.org/cases?lang=us


M. Li, X. Li, Y. Jiang et al. Knowledge-Based Systems 252 (2022) 109278

m

Fig. 4. Axial surface of CT images and variations in CT images of different groups. (a) One case of COVID-19 group. The COVID-19-specific patterns of lung infections
are denoted by blue boxes, including ground-glass opacities and consolidation. (b) One case of common pneumonia group. The increased and/or disordered lung
marking is (denoted by blue boxes) the CT manifestations of early common pneumonia patients. (c) One case of normal control group. The black area is normal lung
tissue, and the white dots are normal physiological structures such as blood vessels, bronchi, etc.
Algorithm 1: Automated diagnosis and lung lesion seg-
entation of COVID-19
Input: The real-world CT images collected from patients

with different types of pneumonia (mainly include
COVID-19, common pneumonia, and normal
control).

Output: The predicted diagnosis results of patients Ŷn;the
lung segmentation masks of CT images Gnl; the
explainability analysis results by suggesting
key instances;the infection rate r of the whole
lung and the severity level of COVID-19 patient.

1 Data preprocess is performed to construct the instances
bag;

2 Initialize variable n=1, the number of patients N in the
algorithm;

3 while n ≤ N do
4 With instances bag as input of shared encoder, obtain

instance-level features;
// Classification

5 Explainable multi-instance learning strategy is
employed to generate embedding-level features
(according to Eqs. (4)–(10));

6 Predict diagnosis results Ŷn of patient n from the
classification layer;
// Segmentation

7 Simultaneously predict lung segmentation masks of CT
images Gnl by segmentation branch;
// Explainability analysis

8 Get the averaged attention matrix Aatt , choose key
instances according to the value of the elements in
Aatt and show them;
// Quantitative analysis and severity

assessment
9 if Ŷn represents COVID-19 then

10 Calculate infection rate r by Eq. (11);
11 Obtain the severity level of COVID-19 patient

according to the severity level definitions;
12 return Ŷn, Gnl, key instances, r, severity level;
13 else
14 return Ŷn, Gnl, key instances;
15 end
16 n← n+ 1;
17 end

collected from six hospitals, including 917 COVID-19 patients,
983 common pneumonia patients, and 878 normal control cases.
All COVID-19 patients are tested positive by RT-PCR. The common
pneumonia patients are confirmed based on standard clinical,
7

radiological, and molecular test results. The segmentation of CT
images of COVID-19 patients is manually annotated and reviewed
by five experienced radiologists. The annotated range mainly
contains lesion areas (i.e., GGO and lung consolidation) which are
used to distinguish COVID-19 from other cases, and to distinguish
lung fields from background areas in CT images. Since part of
CT images masked other regions than the lungs, and this part
images cannot provide complete information of patients, so these
images are screened out. In addition, those CT images with a
small number of slices are also screened out. After screening,
the CC-CCII dataset includes 529 COVID-19 patients, 592 common
pneumonia patients, and 520 normal control cases.

The COVID-19-CT-dataset is an open-access chest CT image
repository, it consists of 3000+ CT images from 1013 patients with
confirmed COVID-19 infections [35]. These patients and their CT
images are collected from two general hospitals in Mashhad, Iran.
All COVID-19 patients have positive RT-PCR tests and accompany
by supporting clinical symptoms at the point of care in an in-
patient setting. And CT images of patients are visually evaluated
by two board-certified radiologists to confirm the presence of
COVID-19 infection. For the CT images in which the first two
radiologists are in disagreement, the final decision is rendered by
a third more experienced radiologist.

Radiopaedia is a non-profit, international collaborative, open-
edit radiology resource compiled by radiologists and other health
professionals from across the globe. We collect 130 common
pneumonia patients from Radiopaedia as a supplement. The col-
lected common pneumonia patients are confirmed by their con-
tributors based on standard clinical, radiological, or molecular test
results.

The quality of CT images is inconsistent due to the use of
different CT scanners or different scanning parameters during the
image acquirement process, it is a challenging task to diagnose
based on these images. To reduce the risk of data leakage and
to ensure the quality of images in the datasets, we make sure
that only one scan (CT image) per patient is selected and each CT
image is checked. Then, the following processing procedures are
performed.

Specifically, the axial slices are first extracted from each CT
image according to the physical spacing between slices [Fig. 5(a)].
To reduce the influence of noise in the images, each axial slice is
processed with morphological operations, including structuring
elements acquisition, erosion, and dilation [Fig. 5(b)]. Then, the
images are binarized by Otsu algorithm [Fig. 5(c)]. With the
above steps, the basic contours of human body and lung fields
are identified. We detect the key points of the inner and the
outer contours respectively, and identify the inner contour by
the size of enclosed area [Fig. 5(d)]. Morphological operations,
binarization, and contours detection are only used to determine
the rectangle region of interest (ROI), therefore these operations
will not lead to a loss of the image information. After that,
according to the shape of the inner contours, the axial slices are
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Fig. 5. Procedures of preprocessing. (a) Extract the axial slices. (b) Morphological
peration on the image. (c) Binarize image by thresholding. (d) Identify the basic
ontour and make mask. (e) Multiply the image with mask. (f) Crop the image
o get the ROI.

ropped to obtain the corresponding ROIs [Fig. 5(e–f)]. Finally,
ith the MIL strategy, a set of preprocessed axial slices in each
T image are randomly selected to construct a bag of instances,
nd each bag can represent a corresponding individual and serve
s the input of EMTN. In this way, we expect that the problems
f uneven data quality and data discrepancies can be alleviated.

.2. Evaluation metrics

The proposed framework performs both classification of COV-
D-19 patients and segmentation of multi-lesion two tasks. In
rder to verify the effectiveness of the overall framework, 5-fold
ross-validation is adopted, and different metrics are used in the
erformance evaluation.
For the classification task, five evaluation metrics are used

o evaluate the classification performance, including Accuracy
ACC), Precision, Recall, F1 Score, and the area under the receiver
perating characteristic (ROC) curve (AUC). The descriptions of
hese metrics are given below.

ccuracy =
TP + TN

TP + TN + FP + FN
(12)

recision =
TP

TP + FP
(13)

ecall =
TP

TP + FN
(14)

1 Score =
2× Precision× Recall
Precision+ Recall

(15)

here TP, TN, FP, and FN are the number of true positive samples,
rue negative samples, false positive samples and false negative
amples, respectively. It should be noted that ROC curve and AUC
nly partially summarize or explain the performance of diagnosis,
specially when the data is unbalanced or the values of AUC of
ifferent classifiers are close, judging a better curve is difficult.
he leftmost partial area of ROC curve is the region of interest
or classifying fewer positives than negatives, and ROC curves of
etter classifiers usually go up quickly or stay to the left side. A
oncordant partial AUC (pAUCc) focuses on the region of interest
in the ROC, and provides a good explanation for partial areas in
ROC curves. The pAUCc is a foundational partial measure, which
has all the interpretations offered by the AUC [36]. For an ROC
curve y = r(x), the definition of pAUCc is as follow:

pAUCc ≜
1

∫ x2
r(x)dx+

1
∫ y2

1− r−1(y)dy (16)

2 x1 2 y1

8

where x and y are false positive rate (FPR) and true positive rate
(TPR), respectively. r−1(·) denotes inverse function. In this work,
area measures are performed for three parts of an ROC curve i =
1,2,3, including the leftmost partial curve (i=1, FPR=[0.00,0.33]),
the middle partial curve (i=2, FPR=[0.33,0.66]), and the rightmost
partial curve (i=3, FPR=[0.66,1.0]).

For the segmentation task, three commonly used metrics are
adopted to evaluate the segmentation performance, including
Dice Score (DC), Positive Predict Value (PPV), and Sensitivity
(SEN). The evaluation metrics are defined as:

DC =
2|Rseg ∩RGT |

|Rseg | + |RGT |
(17)

PPV =
|Rseg ∩RGT |

|Rseg |
(18)

EN =
|Rseg ∩RGT |

|RGT |
(19)

here Rseg and RGT denote the predicted segmentation masks
nd the ground-truth, respectively.

.3. Implementation details

For the CC-CCII dataset, 70% of the samples and 20% of the
amples are respectively selected as the training set and valida-
ion set to supervise the training of EMTN, and 10% of the samples
re as the testing set to evaluate the performance. Since there
as no ground truth for segmentation contained in the COVID-
9-CT dataset and common pneumonia patients collected from
adiopaedia, both of them are used as an additional test set to
valuate the performance of EMTN, which do not participate in
he training stage of EMTN. Furthermore, the samples in these
wo datasets can be used to train and test a variant of EMTN,
.e., EMTN with only the classification branch, and the data split
lso follows a 7:2:1 ratio.
The proposed method is implemented with Python, in which

MTN is implemented based on the PyTorch deep learning library.
he training process is carried out on a workstation equipped
ith four NVIDIA GTX 1080Ti graphics cards. In both stages of
raining and testing, we randomly select a certain number of
xial slices from each CT image to construct a bag of instances,
here the bag size varies within {30, 50, 80, 100, 120, 150}, and

the sizes of all bags constructed from different CT images are
the same. During the training process, the EMTN is optimized by
Stochastic Gradient Descent (SGD) algorithm with 100 epochs,
and the weight decay is 1×10−4. The initial learning rate is
0.0001, and it decays by 35% every 20 epochs.

5. Experiments and analysis

In this section, comparison study (Section 5.1) examines the
superiority of the proposed method, ablation study (Section 5.2)
evaluates the effectiveness of the MIL and MTL strategies. Both
comparison study and ablation study are performed based on
the CC-CCII dataset. Additional study (Section 5.3) evaluates the
performance of the proposed method on the COVID-19-CT dataset
and common pneumonia patients collected from Radiopaedia.
Section 5.4 discusses the limitations of this work and future
research direction.

5.1. Comparison study

We first test the performance of the proposed EMTN on both
classification and segmentation tasks. Since the datasets in most
of the methods listed in Section 2 are not accessible, the com-
parison of these methods is not possible. To show the superi-
ority of the EMTN, it is compared with several state-of-the-art
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Table 1
Comparison of classification results of different methods on three targets (bag
size=100).
Targets Method ACC(%) AUC(%)

COVID-19 vs. NC

ResNet18-Voting 88.97
[85.52, 92.37]

90.08
[86.30, 92.18]

Gated-Attention 94.48
[92.07, 97.24]

94.63
[91.65, 97.08]

EM-Cls 96.73
[95.00, 98.80]

96.98
[93.80, 98.99]

EMTN 98.62
[97.59, 100.0]

98.90
[97.65, 100.0]

COVID-19 vs. CP

ResNet18-Voting 81.28
[76.68, 85.74]

81.63
[78.03, 84.08]

Gated-Attention 90.34
[87.19, 93.85]

90.68
[86.95, 93.15]

EM-Cls 93.10
[90.33, 95.89]

92.53
[89.83, 95.72]

EMTN 95.17
[92.28, 97.38]

95.87
[91.49, 98.65]

CP vs. NC

ResNet18-Voting 84.93
[80.86, 89.15]

85.72
[81.38, 88.65]

Gated-Attention 91.03
[87.99, 94.43]

91.00
[87.19, 94.22]

EM-Cls 93.79
[91.15, 96.45]

94.03
[90.39, 97.12]

EMTN 95.86
[93.95, 98.23]

96.46
[92.97, 98.79]

The upper and lower bounds of 95% confidence interval are shown in [·].

classification and segmentation methods. The competing classi-
fication methods in [37,38] are the non-MIL method and the
normal MIL method, respectively. ResNet18-Voting method [37]
is one of the common ensemble methods and is often used
in the field of patch-level or slice-level medical image analy-
sis. It uses ResNet18 as the backbone network and performs
individual-level classification through voting. Gated attention MIL
method [38] combines attention mechanism with MIL to replace
the pooling operators. Furthermore, two state-of-the-art segmen-
tation methods U-Net [19] and U-Net++ [39] are compared for
multi-lesion segmentation. U-Net [19] designs the commonly
used symmetric U-shaped architecture, which is a classic im-
age segmentation method. Based on U-Net, U-Net++ [39] adopts
dense skip-connections to improve the fluidity of gradient, which
connects the semantic gap between feature maps in the com-
pression path and the expansion path. These methods are applied
to the datasets used in this work, whose main architectures and
parameter settings are consistent with those in their respective
papers.

5.1.1. Classification of COVID-19
We compare and analyze the performance on three differ-

ent classification targets of EMTN, EM-Cls, ResNet18-Voting, and
Gated-Attention. EM-Cls represents a variant of EMTN, i.e., EMTN
with only the classification branch. The classification targets in-
clude (1) COVID-19 patients vs. normal control cases (denoted as
COVID-19 vs. NC), (2) COVID-19 patients vs. common pneumonia
patients (denoted as COVID-19 vs. CP), and (3) common pneu-
onia patients vs. normal control cases (denoted as CP vs. NC).
able 1 shows the comparison on ACC and AUC.
It can be observed that three MIL methods (i.e., EMTN, EM-Cls,

nd Gated-Attention) have satisfactory performance on different
lassification targets, which are better than the non-MIL method
esNet18-Voting. Taking the COVID-19 vs. CP target as an ex-
mple, the ACC achieved by EMTN, EM-Cls and Gated-Attention
9

Table 2
Comparison of area measure pAUCc of different methods on three targets (bag
size=100).
Targets Method pAUCc (%)

i = 1 i = 2 i = 3

COVID-19 vs. NC

ResNet18-Voting 53.04 20.37 16.67
Gated-Attention 60.96 17.00 16.67
EM-Cls 63.64 16.67 16.67
EMTN 65.56 16.67 16.67

COVID-19 vs. CP

ResNet18-Voting 46.96 17.50 17.17
Gated-Attention 56.00 18.01 16.67
EM-Cls 58.69 17.17 16.67
EMTN 62.53 16.67 16.67

CP vs. NC

ResNet18-Voting 50.03 19.02 16.67
Gated-Attention 54.97 19.36 16.67
EM-Cls 59.35 18.01 16.67
EMTN 63.12 16.67 16.67

Table 3
Comparison of multi-lesion segmentation results of different
methods.
Method DC(%) PPV(%) SEN(%)

U-Net 95.83 ± 3.1 96.00 ± 3.5 95.67 ± 2.7
U-Net++ 96.10 ± 2.3 96.16 ± 2.8 96.05 ± 1.9
EM-Seg 94.29 ± 3.4 94.49 ± 5.0 94.08 ± 3.9
EMTN 96.18 ± 3.7 96.26 ± 4.2 96.09 ± 3.8

The results are shown as mean ± standard deviation.

are 17.09%, 14.54% and 11.15% higher than ResNet18-Voting, re-
spectively, and AUC is 17.44%, 13.35% and 11.09% higher than
ResNet18-Voting, respectively. In the MIL methods, the proposed
EMTN achieves the best results on the three classification targets,
which can reach 98.62% ACC and 98.90% AUC on COVID-19 vs. NC
target, 95.17% ACC and 95.87% AUC on COVID-19 vs. CP target,
95.86% ACC and 96.46% AUC on CP vs. NC target. The ROC curves
of these methods are illustrated in Fig. 6, and the pAUCc of
the corresponding methods are shown in Table 2 to explain the
partial areas in ROC curves. It can be learned that the ROC curve
of EMTN is better than others. And the EMTN achieves the best
pAUCc in the leftmost partial curve area, which means the ROC
curves of EMTN rise faster and end with higher TPR than other
curves. Table 1, Table 2, and Fig. 6 indicate that the proposed
EMTN yields superior performance in these classification targets
based on CT images.

5.1.2. Segmentation of multi-lesion
We then compare and analyze the performance of EMTN,

EM-Seg, U-Net, and U-Net++ on multi-lesion segmentation. EM-
Seg represents that EMTN with only the segmentation branch.
Table 3 shows the segmentation results of different methods.
The proposed EMTN achieves the best results, with the DC of
96.18%, the PPV of 96.26%, and the SEN of 96.09%. The other
methods have similar results as EMTN in a part of evaluation
metrics. For example, U-Net++ has the DC of 96.10%, and the
SEN of 96.05%, which are only slightly lower than ours; U-Net
yields the PPV of 96.00%, while the PPV in our method is 96.26%.
Compared with other methods, the performance of EM-Seg in
terms of evaluation metrics is decreased, but considering that the
parameter number of EM-Seg is only 1.87M, the segmentation
performance is acceptable. In addition, the segmentation branch
in EMTN is based on EM-Seg, and with multi-task learning, EMTN
can also have a better performance.

The visualization of segmentation results achieved by four
different methods is shown in Fig. 7. It can be seen that the
segmentation masks generated by EMTN are more complete and
have fewer missing segmentation results than other methods. In
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Fig. 6. ROC curves of different classification targets achieved by four methods.
Fig. 7. Visualization of multi-lesion segmentation results achieved by different methods on five COVID-19 cases. Red pixels represent normal lung areas, green pixels
epresent ground-glass opacities (GGO), and blue pixels represent lung consolidation. Some error-prone regions are denoted by yellow boxes.
ddition, the GGO will transform to lung consolidation as the pro-
ression of the patient’s condition, it is difficult for segmentation
ethods and physicians to distinguish lesions in this transforma-

ion process. However, the EMTN ensures that the whole lesion
reas in the lung are correctly segmented, which can be reliably
sed for subsequent severity assessment of COVID-19.

.2. Ablation study

In this section, we take the COVID-19 vs. NC classification
target and multi-lesion segmentation as examples to evaluate the
influence of MIL and MTL strategies on the performance of EMTN.

5.2.1. Influence of MIL strategy
To evaluate the influence of the explainable MIL strategy

and its effectiveness, EM-Cls, the normal MIL method Gated-
Attention, and the non-MIL method ResNet18-Voting are com-
pared. Table 4 shows the comparison on evaluation metrics in
terms of COVID-19 vs. NC classification target.

From Table 4, it can be learned that MIL methods (i.e., EM-Cls
and Gated-Attention) yield better results in various metrics. One
reason for these results is that non-MIL methods are susceptible
to uneven distribution of lesions in CT images. This also proves
10
that MIL methods can pay more attention to relationships be-
tween instances, which is helpful to improve the final expression
abilities of instances when dealing with such weakly supervised
problem. The proposed EM-Cls achieves the best classification
performance in the MIL methods, with the ACC of 96.73%, the
F1 Score of 95.89%, and the AUC of 96.98%, which is at least
1.39% higher than the metrics generated by Gated-Attention.
These results reflect that the proposed explainable MIL strategy
can further improve the classification performance and is more
effective than normal MIL methods.

Furthermore, we analyze the performance of EMTN using dif-
ferent sizes of bags as inputs. Multi-lesion segmentation is a
type of semantic segmentation task, where changing the bag
size has little effect on the segmentation performance. Thus,
Table 5 shows the classification performance corresponding to
different bag sizes, and Table 7 shows the corresponding area
measure pAUCc . It can be observed that the performance of EMTN
fluctuates with the changing bag sizes. The best classification
performance is reached at the bag size of 100, and the pAUCc of
the leftmost partial curve is higher than others. When the bag
size is smaller than 100, the performance gradually improves as
the bag size increases; and the performance tends to be saturated
when larger than 80, the pAUC of the leftmost partial curve under
c
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Table 4
Evaluation of the explainable MIL strategy (bag size=100).
Method ACC(%) Precision(%) Recall(%) F1 Score(%) AUC(%)

ResNet18-Voting 88.97
[85.52, 92.76]

85.85
[80.49, 92.03]

90.37
[85.14, 94.85]

88.05
[83.74, 92.02]

90.08
[86.30, 92.18]

Gated-Attention 94.48
[92.07, 97.24]

95.89
[92.28, 98.73]

93.24
[91.61, 97.08]

94.55
[83.74, 92.02]

94.63
[91.65, 97.08]

EM-Cls 96.73
[95.00, 98.80]

97.22
[95.09, 100.0]

94.59
[90.21, 98.14]

95.89
[93.06, 98.17]

96.98
[93.80, 98.99]

The upper and lower bounds of 95% confidence interval are shown in [·].
Table 5
Classification performance of EMTN under different bag sizes.
Bag size ACC(%) Precision(%) Recall(%) F1 Score(%) AUC(%)

30 95.17
[93.10, 97.59]

93.99
[90.59, 98.08]

94.59
[90.44, 98.53]

94.29
[91.23, 97.01]

95.11
[91.20, 98.08]

50 96.55
[94.83, 98.62]

95.86
[92.95, 99.24]

95.80
[91.84, 99.20]

95.83
[93.63, 98.43]

96.78
[93.46, 98.79]

80 97.41
[96.02, 99.14]

96.05
[93.50, 100.0]

97.13
[93.76, 100.0]

96.59
[94.20, 98.59]

97.23
[94.50, 99.17]

100 98.62
[97.59, 100.0]

97.33
[95.18, 100.0]

98.65
[96.41, 100.0]

97.99
[95.86, 100.0]

98.90
[97.65, 100.0]

120 98.27
[97.23, 99.65]

98.63
[96.06, 100.0]

97.30
[94.36, 100.0]

97.96
[95.96, 99.59]

98.21
[96.14, 99.40]

150 97.93
[96.55, 99.66]

96.05
[92.60, 98.59]

98.65
[96.64, 100.0]

97.33
[94.94, 99.17]

97.72
[95.42, 99.84]

The upper and lower bounds of 95% confidence interval are shown in [·].
Table 6
Classification performance of EMTN using different instances selection strategies.
Bag size Random selection Front selection Middle selection Back selection

ACC(%) AUC(%) ACC(%) AUC(%) AUC(%) AUC(%) ACC(%) AUC(%)

30 95.17
[93.10, 97.59]

95.11
[91.20, 98.08]

94.89
[92.12, 97.21]

94.99
[90.97, 98.15]

94.41
[91.59, 96.80]

94.61
[90.73, 97.86]

94.85
[92.28, 97.38]

94.94
[90.93, 97.90]

50 96.55
[94.83, 98.62]

96.78
[93.46, 98.79]

95.17
[92.53, 97.47]

95.37
[91.54, 98.57]

95.00
[92.46, 97.23]

94.94
[90.72, 98.32]

96.46
[94.01, 98.41]

96.54
[93.40, 98.98]

80 97.41
[96.02, 99.14]

97.23
[94.50, 99.17]

95.65
[93.14, 97.90]

95.87
[92.70, 98.09]

95.34
[92.83, 97.47]

95.60
[92.37, 98.21]

97.02
[94.90, 98.89]

97.15
[94.58, 98.99]

100 98.62
[97.59, 100.0]

98.90
[97.65, 100.0]

96.34
[94.01, 98.41]

96.44
[93.38, 98.65]

95.80
[93.58, 97.93]

95.89
[93.10, 98.31]

97.57
[95.36, 99.13]

97.81
[95.65, 99.41]

120 98.27
[97.23, 99.65]

98.21
[96.14, 99.40]

96.28
[93.80, 98.35]

96.42
[93.41, 98.69]

95.61
[93.21, 97.70]

95.79
[92.84, 98.24]

98.03
[96.29, 99.57]

98.06
[96.06, 99.47]

150 97.93
[96.55, 99.66]

97.72
[95.42, 99.84]

95.86
[93.58, 98.04]

96.16
[93.10, 98.42]

95.55
[93.24, 97.62]

95.70
[92.48, 98.22]

97.79
[95.82, 99.35]

97.94
[95.72, 99.33]

The upper and lower bounds of 95% confidence interval are shown in [·].
Table 7
Area measure pAUCc of EMTN under different bag sizes.
Bag size pAUCc (%)

i = 1 i = 2 i = 3

30 61.77 16.67 16.67
50 63.44 16.67 16.67
80 63.89 16.67 16.67
100 65.56 16.67 16.67
120 64.87 16.67 16.67
150 63.84 17.21 16.67

different bag sizes are higher than 63.84%. This indicates that the
proposed EMTN needs at least 80 CT slices to obtain acceptable
performance.

As mentioned in Section 4.1, a random selection strategy is
sed to select instances and construct bags. And we further
nalyze the influence of different selection strategies on the per-
ormance of EMTN. Table 6 shows the classification performance
sing a random selection strategy and three other selection
trategies to create the bags. The three selection strategies include
11
selecting a set of slices in the front of CT sequence, in the back
of CT sequence, and in the middle of CT sequence. For the conve-
nience of description, they are referred to as front selection, back
selection and middle selection, respectively. From Table 6, it can
be learned that the results obtained by using other three selection
strategies are close to that obtained by using random selection
strategy, and creating the bags of instances by random selection
can make the performance optimal. The distribution of lesions
in CT images of different patients is diverse and not uniform, and
the bags are unfavorable for the representations of corresponding
individuals when the instances are selected on certain parts of
CT images. For example, in the case of small bag size, there may
be extreme situation that no positive instances in the bags of
positive individuals. These results illustrate that using a random
selection strategy to create the bags is more reasonable than the
other three selection strategies. Furthermore, the performance
achieved by using the other three selection strategies is close
to the optimal and acceptable, which indicates that the multi-
instance assumption in this work is effective and can reduce the
interference caused by different instances selection strategies.
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Table 8
Evaluation of the weight-adaptive MTL strategy on classification task and segmentation task (bag size=100).
Method Classification task Segmentation task

ACC(%) Precision(%) Recall(%) F1 Score(%) AUC(%) DC(%) PPV(%) SEN(%)

EM-Cls 96.73
[95.00, 98.80]

97.22
[95.09, 100.0]

94.59
[90.21, 98.14]

95.89
[93.06, 98.17]

96.98
[93.80, 98.99]

– – –

EM-Seg – – – – – 94.29 ± 3.4 94.49 ± 5.0 94.08 ± 3.9

EMTN 98.62
[97.59, 100.0]

97.33
[95.18, 100.0]

98.65
[96.41, 100.0]

97.99
[95.86, 100.0]

98.90
[97.65, 100.0]

96.18 ± 3.7 96.26 ± 4.2 96.09 ± 3.8

Classification task results: the upper and lower bounds of 95% confidence interval are shown in [·].
egmentation task results: the results are shown as mean ± standard deviation.
Table 9
Results for classification task and segmentation task with different λ (bag size=100).
λcls/λseg Classification task Segmentation task

ACC(%) Precision(%) Recall(%) F1 Score(%) AUC(%) DC(%) PPV(%) SEN(%)

1/1 97.44
[95.72, 99.50]

96.16
[93.46, 99.58]

97.53
[94.30, 100.0]

96.84
[94.24, 98.95]

97.52
[94.92, 99.19]

95.13 ± 3.6 95.29 ± 4.5 94.97 ± 4.2

0.6/1 98.37
[97.34, 99.75]

98.61
[95.89, 100.0]

97.25
[96.03, 100.0]

97.93
[95.85, 99.67]

98.48
[96.67, 99.45]

95.94 ± 3.3 96.06 ± 4.4 95.82 ± 3.5

0.2/1 96.86
[95.13, 98.93]

95.95
[93.06, 99.36]

96.37
[92.78, 98.98]

96.16
[93.40, 98.37]

97.03
[93.90, 98.93]

95.42 ± 4.0 95.78 ± 4.7 95.07 ± 4.5

Learning 98.62
[97.59, 100.0]

97.33
[95.18, 100.0]

98.65
[96.41, 100.0]

97.99
[95.86, 100.0]

98.90
[97.65, 100.0]

96.18 ± 3.7 96.26 ± 4.2 96.09 ± 3.8

Classification task results: the upper and lower bounds of 95% confidence interval are shown in [·].
egmentation task results: the results are shown as mean ± standard deviation.
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.2.2. Influence of MTL strategy
The proposed EMTN can simultaneously perform classifica-

ion task and segmentation task in a weight-adaptive multi-task
earning manner. We compare the performance of EMTN, EM-Cls,
nd EM-Seg to analyze the influence of MTL strategy. Table 8
ummarizes the results of COVID-19 vs. NC classification and
ulti-lesion segmentation. As shown in Table 8, for classification

ask, MTL strategy can further improve the classification perfor-
ance of EM-Cls. EMTN improves the ACC from 96.73% to 98.62%,

he F1 Score from 95.89% to 97.99%, and the AUC from 96.98%
o 98.90%. Meanwhile, for segmentation task, EMTN can achieve
atisfactory segmentation results in terms of overall metrics with
he influence of MTL strategy. In addition, Fig. 7 shows that
MTN generates more complete and detailed segmentation masks
han EM-Seg. In general, the performance of EMTN based on the
eight-adaptive MTL strategy is further improved on both classi-

ication of COVID-19 and multi-lesion segmentation tasks, which
roves that the proposed MTL strategy can utilize task-related
nformation to improve the performance on each task.

The multi-task loss function with adaptive weights is designed
o actively adjust the contribution ratio of different tasks to the
raining of the network parameters. We further analyze the influ-
nce of trade-off factors λ in Eq. (3). As mentioned in Section 3.2,

λcls and λseg denote the trade-off factors for classification task and
segmentation task, respectively, which are learnable parameters
modified during the iteration. Considering that the segmentation
task is a fine-grained pixel-level task, and the classification task
is a coarse-grained individual-level task, the segmentation task
makes a greater contribution to the network parameter opti-
mization during the training process. Specifically, we vary the
ratio of λcls and λseg within {1/1, 0.6/1, 0.2/1}, and investigate
he performance of EMTN when trade-off factors λ are different
onstants and learnable parameters. The comparison results are
hown in Table 9, and area measure pAUCc for classification task
with different λ are shown in Table 10.

From Tables 9 and 10, it can be observed that the proposed
EMTN can further improve the performance on both tasks when
λ are learnable parameters. Fig. 8 shows the learning curves of

the trade-off factors. The initial values of λcls and λseg are both o

12
Table 10
Area measure pAUCc for classification task with different λ (bag
size=100).
λcls/λseg pAUCc (%)

i = 1 i = 2 i = 3

1/1 64.18 16.67 16.67
0.6/1 65.14 16.67 16.67
0.2/1 63.69 16.67 16.67
Learning 65.56 16.67 16.67

Fig. 8. Learning curves of trade-off factors λ. λcls and λseg respectively denote
the trade-off factors for classification task and segmentation task.

set as 1, and the values of λ are recorded after each iteration.
λcls and λseg stabilize after about 40 iterations. The experiments
rove that EMTN generates the best performance after around 49
terations. The final values of λcls and λseg are approximately 0.5
nd 0.84, respectively. Through the analysis of λ learning process,
he contribution ratio of different tasks to the training of network
arameters can be determined, which can avoid the tedious pro-
ess of manually adjusting the trade-off factors. In addition, the
arger factor assigned to the segmentation task also indicates that
fine-grained task provides more support for network parameter
ptimization than a coarse-grained task.



M. Li, X. Li, Y. Jiang et al. Knowledge-Based Systems 252 (2022) 109278

C
s

p
s
t
a
i
l
n
r
t
1
p
a
s
a

5

d
e
t
w
T
s

o
i
i
u
s
s
t
s
r

Fig. 9. Assessment results on five COVID-19 cases from mild, intermediate, and severe groups. For each case, we show the 3D visualization results of the whole
lung and its lesion areas. The severity level definitions are as follows: less than three GGO lesions and lesion areas less than 5% of the entire lung fields is defined
as mild; lesion areas more than 5% of the entire lung fields is defined as intermediate; lesion areas more than 40% of the entire lung fields is defined as severe.
5.2.3. Quantitative analysis of lesions and severity assessment of
COVID-19

The quantitative analysis of lesions and severity assessment of
OVID-19 are considered as the subsequent tasks of multi-lesion
egmentation. Fig. 9 shows five assessment examples.
Specifically, the first, the second and the third rows of Fig. 9

resent the segmentation results, the lesion areas and the as-
essment results, respectively. From the segmentation results and
he separated lesion areas, it can be observed that the lesion
reas of the entire lung fields from case 1 to case 5 are gradually
ncreasing, while the infection rate of lung fields and the severity
evel of patients are unavailable. In the assessment results, the
umber of voxels in the lung fields and lesion areas, infection
ate, and severity assessment of patients are shown. For example,
he assessment results of case 3 suggest that the infection rate is
4.92% and the severity level of the patient is intermediate. Com-
ared with direct observation, quantitative analysis and severity
ssessment can give the infection rate of lung fields and the
everity level of patients, and these assessment results can serve
s a reference for the diagnosis of COVID-19.

.2.4. Explainability analysis of diagnosis results
As mentioned in Section 3.3, the proposed MIL strategy can

eal with the weakly supervised problem and make EMTN have
xplainability by suggesting the key instances. We further inves-
igate the explainability of our method by deriving the attention
eights between the class token and each instance-level feature.
he comparison of some key instances and non-key instances is
hown in Fig. 10.
Specifically, we select the key instances based on the values

f the attention weights, and the threshold is set to be 0.5. The
nstances with weights greater than the threshold are called key
nstances. Multiple experiments prove that these key instances
sually account for about 20% or even less of the whole bag. As
hown in Fig. 10, the first to third columns and the fourth to
ixth columns are key instances and non-key instances, respec-
ively; the second, the fourth and the last rows represent the
egmentation masks of the first, the third and the fifth rows,
espectively. For case 1, the weights of these six instances are
13
Fig. 10. Explainability analysis of diagnosis results of three cases by suggesting
their key instances.

1.0, 0.5999, 0.5871, 0.0154, 0.0088, 0.0 from left to right; for
case 2, the weights are 1.0, 0.6734, 0.6453, 0.0593, 0.0463, 0.0
from left to right; for case 3, the weights are 1.0, 0.8396, 0.7035,
0.1538, 0.0144, 0.0 from left to right. These weights are not
normalized, and the larger weights mean that the corresponding
instances have a greater influence on the diagnosis. It can be
observed that the key instances of cases contain more lesion areas
or complete lung fields than non-key instances, which can also
roughly suggest the severity level of patients. Compared with key
instances, the non-key instances contain many irrelevant areas,
which have limited influence on the diagnosis of patients.

Furthermore, consistency is important for clinical diagnosis,
and diagnostic decisions made by the same method are often
influenced by similar images. To evaluate the consistency of the
explainability part of the proposed framework, namely, to judge
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Table 11
Results for classification task on COVID-19-CT & Radiopaedia dataset. (bag size=100).
Method Training data Testing data ACC(%) Precision(%) Recall(%) F1 Score(%) AUC(%)

EM-Cls

CC-CCII COVID-19-CT
& Radiopaedia

88.37
[84.68, 92.34]

87.93
[82.57, 93.45]

87.29
[81.99, 92.86]

87.61
[82.69, 91.80]

89.17
[83.68, 93.18]

COVID-19-CT
& Radiopaedia

COVID-19-CT
& Radiopaedia

94.35
[91.94, 97.18]

93.44
[89.83, 97.52]

94.99
[90.83, 98.38]

94.21
[90.98, 97.02]

95.07
[90.52, 98.21]

EMTN CC-CCII COVID-19-CT
& Radiopaedia

89.92
[86.29, 93.95]

90.29
[85.48, 95.33]

89.05
[83.26, 94.14]

89.67
[85.60, 93.45]

90.12
[84.75, 94.56]

The upper and lower bounds of 95% confidence interval are shown in [·].
Fig. 11. Class activation maps of suggested key instances obtained by
Grad-CAM++.

whether the suggested key instances can provide the posterior
test of the diagnosis results, we give more explainable analy-
sis from the aspect of semantic comprehension. We use Grad-
CAM++ [40] to obtain class activation maps (CAMs) of several
key instances from different patients. As shown in Fig. 11, the
first and third rows are key instances (the lesion regions have
been marked with dashed lines), the second and fourth rows
are the corresponding class activation maps. It can be observed
that the class activation maps of suggested key instances show
the approximate locations of lesions, which indicates the key
instances suggested by the explainability part of this framework
are roughly consistent with the explainable analysis from the
semantic perspective. These results imply that the proposed ex-
plainable MIL can provide the posterior test of the diagnosis
results, and indicate the concern level of the network for different
instances.

5.3. Additional study

To further evaluate the proposed method, we analyze the
performance of EMTN and EM-Cls on other open-source datasets
referred to as COVID-19-CT & Radiopaedia (i.e., COVID-19-CT
dataset and common pneumonia patients collected from Ra-
diopaedia). Tables 11 and 12 show the classification results and
area measure pAUCc of EMTN and EM-Cls on the COVID-19-CT
& Radiopaedia dataset, respectively. Fig. 12 shows three severity
assessment examples based on multi-lesion segmentation masks
generated by EMTN. It should be noted that due to the lack of
ground truth for segmentation in the COVID-19-CT & Radiopaedia
data, the dataset has not participated in the training stage of
EMTN. The partial results in Table 11, Table 12, and Fig. 12 are
obtained by directly using the EMTN which trained on the CC-
CCII dataset for testing this dataset. For clarity, we illustrate the
training and test data in the tables.
14
Table 12
Area measure pAUCc for classification task on COVID-19-CT & Radiopaedia
dataset (bag size=100).
Method Training data Testing data pAUCc (%)

i = 1 i = 2 i = 3

EM-Cls

CC-CCII COVID-19-CT
& Radiopaedia

54.06 18.92 16.19

COVID-19-CT
& Radiopaedia

COVID-19-CT
& Radiopaedia

61.03 17.37 16.67

EMTN CC-CCII COVID-19-CT
& Radiopaedia

56.15 17.48 16.49

As shown in Table 11, without using COVID-19-CT & Radiopae-
dia dataset for training, the classification accuracy achieved by
EMTN and EM-Cls on this dataset are 89.92% and 88.37%, respec-
tively, and AUCs are about 90%. After training EM-Cls with COVID-
19-CT & Radiopaedia dataset, the evaluation metrics are on aver-
age 7.20% higher than that of EM-Cls without using COVID-19-CT
& Radiopaedia dataset for training. The ACC (94.35%) and AUC
(95.07%) have 6.77% and 6.62% improvement, respectively. From
Table 12, it can be observed that the ROC curve of EM-Cls trained
with the COVID-19-CT & Radiopaedia dataset goes up faster while
staying left, and it has a higher value of TPR than that trained
with the CC-CCII dataset. In Fig. 12, the first, the second, and
the third rows present the segmentation results, the lesion areas
and the assessment results, respectively. The assessment results
of these cases suggest the infection rate and the severity level
of the patients. From case 1 to case 3, their assessment results
are mild, intermediate, intermediate, and their infection rates are
0.91%, 6.12%, 9.39%.

Considering the influence of the differences between datasets
on the model, though the classification results of EMTN and EM-
Cls decline without using the COVID-19-CT & Radiopaedia as
training data, these results are acceptable. In the situation of
using the COVID-19-CT & Radiopaedia as training data, EM-Cls as
a variant of EMTN can achieve satisfactory results. For the seg-
mentation branch in EMTN, it accesses a large number of pixels
and learns to correctly predict each pixel to the correspond-
ing semantic category during the training process. Therefore,
generating segmentation masks for COVID-19-CT & Radiopaedia
dataset by EMTN trained on the CC-CCII dataset is less affected
by the differences between datasets, and the generated masks
are also relatively accurate. The above analysis indicates that
the proposed method is applicable to the new datasets and can
achieve satisfactory results.

5.4. Discussion on the limitation

This work is oriented towards an actual problem, that is, the
auxiliary diagnosis of COVID-19. The effectiveness of the pro-
posed framework has been verified by extensive experiments
based on real-world datasets, yet there are still some limitations
in our work. In this section, we discuss the limitations of this
work and the gap with practical clinical applications.



M. Li, X. Li, Y. Jiang et al. Knowledge-Based Systems 252 (2022) 109278
Fig. 12. Assessment results on three cases in COVID-19-CT & Radiopaedia
dataset.

As far as clinical data is concerned, data quality, data stan-
dards, and data amounts are all issues that need to be considered
in the transition from algorithm to practical application. The data
preprocessing procedures and multi-instance learning strategy
adopted in this work can alleviate the problem of uneven data
quality and diverse data standards, which is achieved by ob-
taining regions of interest and randomly selecting instances to
construct a bag of instances and represent an individual. The
real-world datasets of CT images used in this work have certain
limitations, part of CT images have no ground truth for segmenta-
tion task, and the severity of COVID-19 has to be assessed through
a robust voxel-wise analysis method. The proposed framework
will be further perfected if more well-labeled datasets are avail-
able, such as those used for the severity assessment of COVID-19.
In addition, considering the complexity of COVID-19, for some
special cases, such as asymptomatic infections without obvious
CT imaging features, decision-making cannot be performed only
based on CT images. In this situation, the diagnosis of COVID-
19 should be made under more comprehensive tests which may
include RT-PCR or other clinical examinations. It also inspired that
the information generated by these clinical examinations can be
adopted as auxiliary diagnosis indexes to help construct a more
robust computer-aided diagnosis system.

On the other hand, the interpretability of auxiliary diagnosis
methods based on deep learning is weak, while the process of
clinical diagnosis requires rigorous evidence. The black-box na-
ture is one of the main reasons which limits the wide application
of fully automated medical artificial intelligence (AI). In the Eu-
ropean ‘‘Artificial Intelligence Act’’, some clear guidance on the
use of medical AI has been already provided, which constitutes
a binding legal framework for the use of medical AI. This is the
protection of human rights in the context of medical AI devel-
opment. Stoeger et al. [41] point out that human oversight and
explainability are required in medical AI, namely, one AI system
must be explainable to be used in medicine. It not only coincides
with the requirements of European fundamental rights, but also
with the demands of computer science. Therefore, the importance
of explainable medical AI is self-evident. Though the proposed
explainable multi-instance learning can give the explainability
analysis of diagnosis results by suggesting the key instances, it
15
is not explainable in the mathematical sense but in the clinical
sense. Furthermore, it also requires human oversight and a more
complete explanation. Interactive machine learning with the "hu-
man in the loop" could be a potential solution to this limitation
of AI [42,43]. It should be noted that physicians/radiologists have
conceptual understanding and experience that no AI can fully
learn. Combined with the conceptual understanding and experi-
ence of physicians/radiologists, the interactive machine learning
with the "human in the loop" can find the underlying explanatory
factors for AI, which ensure that decisions made by AI can be
human-controlled and clinically justified. This human-in-the-loop
machine learning will be explored in our future work.

6. Conclusion

In this paper, we construct an integrated framework for seg-
menting lesion areas and diagnosing COVID-19 from CT images. It
takes the explainable multi-instance multi-task network (EMTN)
as the core, and the lesion quantification and severity assessment
as important components. The EMTN can make proper use of
task-related information to further improve the performance on
diagnosis and segmentation, and it also has EM-Seg (EMTN with
only the segmentation branch) and EM-Cls (EMTN with only the
classification branch) two variants. These two variants can be
respectively employed to perform diagnosis and segmentation,
which improve the flexibility of EMTN. An explainable multi-
instance learning strategy is proposed in EMTN for explainability
analysis of diagnosis results, and a weight-adaptive multi-task
learning strategy is proposed for the coordination between both
tasks. Considering that the evaluation of patient status needs
more detailed information, the lesion quantification and severity
assessment are adopted as the subsequent tasks of multi-lesion
segmentation. The experimental results show that the proposed
EMTN has better performance over several mainstream methods
on the diagnosis and multi-lesion segmentation of COVID-19,
and can provide explicable diagnosis results that enhance the
explainability of the network. Moreover, the proposed framework
gives the assessment of COVID-19 patient status as an extra
reference for the auxiliary diagnosis of COVID-19, including the
lung infection rate and the severity level of patients.
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