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Abstract
Trans-ethnic meta-analysis of genome-wide association studies (GWAS) across diverse populations can increase power to
detect complex trait loci when the underlying causal variants are shared between ancestry groups. However, heterogeneity in
allelic effects between GWAS at these loci can occur that is correlated with ancestry. Here, a novel approach is presented to
detect SNP association and quantify the extent of heterogeneity in allelic effects that is correlated with ancestry. We employ
trans-ethnic meta-regression to model allelic effects as a function of axes of genetic variation, derived from a matrix of mean
pairwise allele frequency differences between GWAS, and implemented in the MR-MEGA software. Through detailed simula-
tions, we demonstrate increased power to detect association for MR-MEGA over fixed- and random-effects meta-analysis
across a range of scenarios of heterogeneity in allelic effects between ethnic groups. We also demonstrate improved fine-
mapping resolution, in loci containing a single causal variant, compared to these meta-analysis approaches and PAINTOR,
and equivalent performance to MANTRA at reduced computational cost. Application of MR-MEGA to trans-ethnic GWAS of
kidney function in 71,461 individuals indicates stronger signals of association than fixed-effects meta-analysis when hetero-
geneity in allelic effects is correlated with ancestry. Application of MR-MEGA to fine-mapping four type 2 diabetes susceptibil-
ity loci in 22,086 cases and 42,539 controls highlights: (i) strong evidence for heterogeneity in allelic effects that is correlated
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with ancestry only at the index SNP for the association signal at the CDKAL1 locus; and (ii) 99% credible sets with six or fewer
variants for five distinct association signals.

Introduction
There is increasing evidence from genome-wide association
studies (GWAS) that common SNPs driving complex human
trait associations are shared across diverse populations (1,2),
and furthermore, that alleles at these signals demonstrate con-
cordant directions of effect across ethnicities (3). This observa-
tion is consistent with a model in which causal variants are
shared across diverse populations, for which trans-ethnic meta-
analysis offers an opportunity to increase power to detect novel
loci through increased sample size. However, heterogeneity in
allelic effects between GWAS at SNPs in these loci, which can-
not be accommodated through traditional fixed-effects meta-
analysis, but which is correlated with ancestry, can occur for
several reasons. First, variability in patterns of linkage disequi-
librium (LD) with the causal variant(s) between ethnic groups
will propagate heterogeneity between populations in the allelic
effects of SNPs, which has the advantage of enabling high-
resolution fine-mapping (4–6). Second, the causal variant(s)
may interact with an environmental risk factor that differs in
exposure across populations, or with SNPs that differ in allele
frequency between ethnic groups, thereby generating heteroge-
neity in allelic main effects unless accounted for in the analysis.
Third, the quality of imputation might vary between popula-
tions, dependent on the reference panel used, leading to down-
ward bias in allelic effect estimates within ethnic groups in
which genotypes are less well predicted.

One approach to allow for heterogeneity in allelic effects be-
tween GWAS is to utilise meta-analysis under a random-effects
model. The RE2 meta-analysis increases power over the tradi-
tional random-effects model by taking account of the expected
homogeneity of allelic effects between GWAS under the null hy-
pothesis of no association for which all allelic effects are zero
(7). However, these models do not assume any structure to the
heterogeneity in allelic effects between populations that would
be expected in trans-ethnic meta-analysis. To account for this
structure, MANTRA implements a Bayesian partition model
that clusters GWAS using a prior model of similarity between
them, assessed by mean pairwise genome-wide allele frequency
differences (8). Compared to fixed- and random-effects meta-
analysis, MANTRA has been demonstrated to increase power to
detect association and improve the resolution of trans-ethnic
fine-mapping across a range of heterogeneity scenarios (8,9).
Nevertheless, MANTRA utilises Markov chain Monte Carlo
methods to approximate the posterior distribution of model pa-
rameters, which can be computationally intractable for meta-
analysis of large numbers of GWAS and SNPs. For trans-ethnic
fine-mapping, methodology integrating association summary
statistics and functional annotation to improve localisation of
causal variants has been implemented in PAINTOR (10), al-
though this approach does not take account of the genetic simi-
larity between GWAS to inform the structure of heterogeneity
in allelic effects.

To address the shortcomings of existing methodologies for
aggregating GWAS from diverse populations, we have developed
a novel approach to detect and fine-map complex trait associa-
tion signals via trans-ethnic meta-regression. This approach uses
genome-wide metrics of diversity between populations to derive
axes of genetic variation via multi-dimensional scaling. Allelic

effects of a variant across GWAS, weighted by their correspond-
ing standard errors, can then be modelled in a linear regression
framework, including the axes of genetic variation as covariates.
The flexibility of this model enables partitioning of the heteroge-
neity into components that are correlated with ancestry and
residual variation, which would be expected to improve fine-
mapping resolution. Here, we present the results of a detailed
simulation study to investigate the properties of trans-ethnic
meta-regression for the detection and fine-mapping of loci con-
taining a single causal variant contributing to a binary phenotype
over a range of scenarios for heterogeneity in allelic effects be-
tween diverse populations. We compare the performance of the
meta-regression with fixed- and random-effects (RE2) meta-
analysis, implemented in METASOFT (7), and with MANTRA (8)
and PAINTOR (10) in the context of fine-mapping. We also pre-
sent the results of an application of trans-ethnic meta-regression
to: (i) GWAS of kidney function in 71,461 individuals of African
American, East Asian, European and Hispanic/Latino ancestry
from the COGENT-Kidney Consortium (11) and; (ii) fine-mapping
four type 2 diabetes (T2D) susceptibility loci in 22,086 cases and
42,539 controls of East Asian, European, South Asian, African
American and Mexican American ancestry from the T2D-GENES
Consortium (12).

Results
We have developed a novel approach to aggregate association
summary statistics across GWAS from diverse populations to
account for heterogeneity in allelic effects that is correlated
with ancestry (Materials and Methods). Briefly, we employ
trans-ethnic meta-regression to model allelic effects as a func-
tion of axes of genetic variation, derived from a matrix of mean
pairwise allele frequency differences between GWAS. The
meta-regression model partitions heterogeneity in allelic effects
between GWAS into two components: (i) heterogeneity that is
correlated with ancestry; and (ii) residual heterogeneity. Bayes’
factors in favour of association can be derived from the meta-
regression model for each variant, enabling fine-mapping and
construction of credible sets. The meta-regression methodology
has been implemented in the MR-MEGA (Meta-Regression of
Multi-Ethnic Genetic Association) software (http://www.geeni
varamu.ee/en/tools/mr-mega).

Simulation study design

We began by undertaking a detailed simulation study to com-
pare the performance of the meta-regression methodology with
existing approaches for discovery and fine-mapping of GWAS
loci across diverse populations. We considered the 26 reference
populations from Phase 3 of the 1000 Genomes Project (13), in-
corporating haplotypes of African, East Asian, European, Native
American and South Asian ancestry (Supplementary Material,
Table S1). We used a subset of 13,189 autosomal variants from
the reference panel with minor allele frequency (MAF)> 5% in
all populations, and separated by at least 1 Mb, to derive the ma-
trix of pairwise Euclidean distances between the populations.
We then implemented multi-dimensional scaling of the dis-
tance matrix to derive three axes of genetic variation to
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separate populations between ancestry groups (Supplementary
Material, Fig. S1).

We considered a range of models of association of a causal
variant with a binary phenotype across ancestry groups, para-
meterised in terms of the allelic effect (odds-ratio, w) in each
population (Supplementary Material, Table S1). These scenarios
incorporated heterogeneity in allelic effects of the causal
variant between ancestry groups: (i) homogenous; (ii) African-
specific; (iii) Eurasian; (iv) Native American; (v) random (non-
ancestral). Under model (i), the allelic effect of the causal variant
is homogeneous across all populations. Under model (ii), the al-
lelic effect of the causal variant is specific to populations of
African ancestry. Under model (iii), the allelic effect of the
causal variant is zero in populations of African ancestry, and
heterogeneous between populations of East Asian ancestry and
those of European, South Asian and Native American ancestry.
Under model (iv), the allelic effect of the causal variant is spe-
cific to, but heterogeneous between, populations of Native
American ancestry. Finally, under model (v), the allelic effect of
the causal variant is specific to one population in each ancestry
group.

Simulation study: false positive error rate and power

To assess false positive error rates and power for each scenario,
we generated 1,000 replicates of genotype data for the causal
variant in 1,000 cases and 1,000 controls from each population
(Materials and Methods). Association summary statistics for the
causal variant were aggregated across populations using the
meta-regression model, implemented in MR-MEGA, including

three axes of genetic variation as covariates to separate ances-
try groups. For comparison, we also aggregated association
summary statistics via fixed-effects (inverse-variance weighted
log-odds ratios) and random-effects (RE2) meta-analysis imple-
mented in METASOFT (7). We have not included MANTRA in
our comparisons of methods for false positive error rates and
power because: (i) the increased computational burden makes
simulations intractable and; (ii) the required derivation of nomi-
nal and genome-wide significance thresholds for Bayes’ factors
in favour of association across the allele frequency spectrum is
not straightforward.

False positive error rates for detecting association were con-
sistent with the nominal significance threshold (P< 0.05), across
all heterogeneity scenarios considered, for fixed- and random-
effects meta-analysis, and for meta-regression including three
axes of genetic variation to account for heterogeneity in allelic
effects between ancestry groups (Supplementary Material,
Table S2).

For scenarios in which heterogeneity in allelic effects between
populations was correlated with ancestry (African-specific,
Eurasian and Native American), greatest power to detect associa-
tion was attained for the meta-regression including three axes of
genetic variation as covariates (Fig. 1). The gains in power over
fixed- and random-effects meta-analysis were greatest when the
effect of the variant was specific to one ancestry group (African-
specific and Native American). For all three of these scenarios,
power to detect heterogeneity in allelic effects that is correlated
with ancestry in the meta-regression model is greater than that
obtained from Cochran’s Q statistic in the fixed-effects meta-
analysis (Supplementary Material, Fig. S2).
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Figure 1. Power to detect association, at genome-wide significance (P<5�10�8), using alternative approaches to aggregate GWAS across diverse populations: fixed-effects

meta-analysis; random-effects (RE2) meta-analysis; and meta-regression including axes of genetic variation as covariates as implemented in MR-MEGA. Power is presented

as a function of the allelic odds-ratio for each of five scenarios for heterogeneity in effects between populations, described in Supplementary Material, Table S1.
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For the scenario in which heterogeneity in allelic effects be-
tween populations is random (non-ancestral), power was low
for all methods, but greatest for random-effects meta-analysis
(Fig. 1). As expected, power to detect heterogeneity in allelic ef-
fects that is correlated with ancestry in the meta regression
model attained the nominal significance threshold (P< 0.05) for
this scenario (Supplementary Material, Fig. S2). Power to detect
residual heterogeneity in allelic effects in the meta-regression
model or via Cochran’s Q statistic in the fixed-effects meta-
analysis was equivalent.

Finally, for the scenario of homogenous allelic effects across
populations, greatest power to detect association was attained
through fixed-effects meta-analysis, as expected (Fig. 1). There
was only a small reduction in power for random-effects (RE2)
meta-analysis, which appropriately accounts for the lack of het-
erogeneity under the null hypothesis of no association (7). There
was a further small reduction in power for the meta-regression
model, which was penalised for the additional parameters re-
quired for the axes of genetic variation that do not contribute to
heterogeneity in allelic effects between populations in this sce-
nario. For this scenario, power to detect heterogeneity in allelic
effects that is correlated with ancestry in the meta regression

model attained the nominal significance threshold (P< 0.05), as
expected (Supplementary Material, Fig. S2). Power to detect resid-
ual heterogeneity in allelic effects in the meta-regression model
or via Cochran’s Q statistic in the fixed-effects meta-analysis also
attained the nominal significance threshold.

Simulation study: fine-mapping loci with a single causal
variant

To assess fine-mapping resolution within loci containing a single
causal variant, for each scenario, we generated 500 replicates of
genotype data for variation in a 2 Mb genomic region, in 1,000
cases and 1,000 controls for each population (Materials and
Methods). For each replicate, we considered two settings: (i) ‘per-
fect’ data, where all variants in the region were captured, with no
missing genotypes or errors, for benchmarking purposes; and
(ii) ‘imperfect’ data, where only 100 randomly selected variants in
the 2 Mb region were retained, to represent a typical GWAS array,
and the resulting scaffold of genotypes was imputed up to haplo-
types from the 1000 Genomes Project Phase 3 reference panel (13)
(Material and Methods). For each replicate, for both ‘perfect’ and
‘imperfect’ data settings, we obtained the posterior probability of
driving the association for each variant from the meta-regression
model, implemented in MR-MEGA, including three axes of ge-
netic variation as covariates to separate ancestry groups. For
comparison, posterior probabilities of driving the association
were derived, for each variant, from: (i) fixed- and random-effects
meta-analysis, implemented in METASOFT (7); (ii) MANTRA (8);
and (iii) PAINTOR (10), assuming a single causal variant at the lo-
cus and approximating LD between variants in each population
from haplotypes in the 1000 Genomes Project Phase 3 reference
panel (13). Note that we did not run PAINTOR in a mode to infer
functional enrichment because our simulations did not use an-
notation to weight the selection of the causal variant in the re-
gion. In each replicate, we used posterior probabilities from each
of the five methods to construct the 99% credible set driving the
association signal at the locus (Materials and Methods).

We considered three metrics of fine-mapping performance
across simulations: (i) the number of variants in the 99% credible
set; (ii) the mean posterior probability ascribed to the causal vari-
ant; and (iii) the coverage of the causal variant by the 99% credible
set. Smaller credible sets correspond to fine-mapping at higher res-
olution, whilst the mean posterior probability for the causal vari-
ant measures accuracy. For each heterogeneity scenario, we
considered population-specific odds-ratios with approximately
80% power to detect association with the meta-regression model
(Fig. 1): homogeneous, w¼ 1.10; African-specific, w¼ 1.25; Eurasian,
w¼ 1.10; Native American, w¼ 1.30; and non-ancestral, w¼ 1.35.

We first considered the ‘perfect’ data setting, where all vari-
ants in the region were captured, with no missing genotypes or
errors (Fig. 2, Table 1). First, we note that, across the range of
scenarios considered, the coverage of the causal variant by the
credible set obtained from PAINTOR was not consistent with
99%, suggesting that this method is not well calibrated in our
simulations. Only meta-regression, as implemented in MR-
MEGA, attained coverage rates for the causal variant that were
consistent with 99% across all heterogeneity scenarios. For sce-
narios in which heterogeneity in allelic effects was correlated
with ancestry (African-specific, Eurasian and Native American),
the resolution and accuracy of fine-mapping was always sub-
stantially worse for the fixed- or random-effects meta-analysis,
with the meta-regression model and MANTRA performing bet-
ter than PAINTOR. For example, for the Native American
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Figure 2. Metrics of fine-mapping resolution, with ‘perfect data’, across alterna-

tive approaches to aggregate GWAS across diverse populations: fixed-effects

meta-analysis; random-effects meta-analysis; meta-regression including axes

of genetic variation as covariates as implemented in MR-MEGA; MANTRA; and

PAINTOR. Two metrics are presented: (i) the median number of variants in the

99% credible set on a log10-scale; and (ii) the mean posterior probability ascribed

to the causal variant. Metrics are presented for each of five scenarios for hetero-

geneity in effects between populations, described in Supplementary Material,

Table S1. In each scenario, the odds ratio has been fixed to obtain approximately

80% power to detect association at genome-wide significance (P<5�10�8) in the

meta-regression analysis.
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scenario, the median number of SNPs in the 99% credible set
was 1,156 and 2,063 for fixed- and random-effects, respectively,
whilst for the meta-regression, MANTRA and PAINTOR was just
7, 10 and 15, respectively. This improved fine-mapping resolu-
tion reflects the increased power obtained through modelling of
heterogeneity in allelic effects between GWAS that is correlated
with ancestry. For the scenario in which heterogeneity in

allelic effects between populations is random (non-ancestral),
PAINTOR outperformed all other methods in terms of fine-
mapping resolution and accuracy. For this scenario, axes of ge-
netic variation that distinguish broad ethnic groups in the
meta-regression model cannot fully account for non-ancestral
heterogeneity between GWAS. Finally, for the scenario of ho-
mogenous allelic effects across populations, the number of vari-
ants in the 99% credible set was similar across the range of
meta-analysis methods considered. However, the mean poste-
rior probability for the causal variant was substantially lower
for PAINTOR than the other fine-mapping methods.

We then considered the more realistic ‘imperfect’ data set-
ting, in which a subset of genetic variation across a locus was
assayed directly with a GWAS array, with subsequent imputa-
tion up to haplotypes from the 1000 Genomes Project Phase 3
reference panel (13). Coverage of the causal variant by the 99%
credible set was reduced for all methods across the range of sce-
narios considered (Supplementary Material, Table S3). This re-
duced coverage reflects that the causal variant may not always
be well imputed across all populations, and thus may have re-
duced association signal compared with other variants at the lo-
cus, resulting in exclusion from the credible set. The relative
performance of the methods with imputed data across the
range of scenarios considered was consistent with that ob-
served for ‘perfect data’, although the posterior probability as-
cribed to the causal variant was lower (Fig. 3).

We also compared, across simulations, the computational
burden of each of the trans-ethnic meta-analysis approaches to
assess association with variants within the locus
(Supplementary Material, Table S4). Using a dedicated single
core processor, MANTRA was the most computationally expen-
sive (mean run time of 66 minutes), compared to less than two
minutes for all other methods.

Trans-ethnic meta-analysis of GWAS of kidney function

We considered nine GWAS of kidney function, assessed by the
estimated glomerular filtration rate (eGFR), in 71,461 individuals
of African American, East Asian, European and Hispanic/Latino
ancestry (Supplementary Material, Table S5). Analyses of these
GWAS, including 71,638 individuals, have been previously re-
ported by the COGENT-Kidney Consortium (11). However, since
publication of these results, 177 individuals from HCHS/SOL
have withdrawn consent, and association analyses have been
repeated for this cohort. Each GWAS was imputed up to the
1000 Genomes Project Phase 1 reference panel (14), and each
variant passing quality control was tested for association with
eGFR (Materials and Methods). Association summary statistics
for each variant were aggregated across studies via: (i) fixed-

Table 1. Coverage of the causal variant by the 99% credible set across 500 simulations of each scenario with ‘perfect’ data for five fine-mapping
approaches: (i) fixed-effects meta-analysis; (ii) random-effects meta-analysis; (iii) meta-regression accounting for heterogeneity in allelic ef-
fects implemented in MR-MEGA; (iv) MANTRA; and (v) PAINTOR

Fine-mapping method Heterogeneity scenario
Homogeneous African-specific Eurasian Native American Non-ancestral

Fixed-effects 0.998 0.986 0.660 0.944 0.996
Random-effects 1.000 0.990 0.966 1.000 0.998
Meta-regression 0.992 0.998 0.978 0.992 0.980
MANTRA 0.994 0.982 0.992 0.918 0.878
PAINTOR 0.692 0.772 0.972 0.916 0.922

Coverage rates highlighted in bold are consistent with 99% (based on 500 simulations of each of the five scenarios).
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Figure 3. Metrics of fine-mapping resolution, with imputed data, across alterna-

tive approaches to aggregate GWAS across diverse populations: fixed-effects

meta-analysis; random-effects meta-analysis; meta-regression including axes

of genetic variation as covariates as implemented in MR-MEGA; MANTRA; and

PAINTOR. Two metrics are presented: (i) the median number of SNPs in the 99%

credible set on a log10-scale; and (ii) the mean posterior probability ascribed to

the causal variant. Metrics are presented for each of five scenarios for heteroge-

neity in effects between populations, described in Supplementary Material,

Table S1. In each scenario, the odds ratio has been fixed to obtain approximately

80% power to detect association at genome-wide significance (P<5�10�8) in the

meta-regression analysis.
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effects meta-analysis, implemented in METASOFT (7); and
(ii) trans-ethnic meta-regression, implemented in MR-MEGA, in-
cluding the two axes of genetic variation as covariates
(Materials and Methods, Supplementary Material, Fig. S3).

Genome-wide, we observed strong correlation in association
P-values for eGFR from the trans-ethnic meta-regression and the
fixed-effects meta-analysis (Supplementary Material, Fig. S4).
Stronger signals of association with eGFR were observed from the
meta-regression when there was heterogeneity in allelic effects
between GWAS that was correlated with ancestry. A total of 16
loci attained genome-wide significant evidence (P< 5�10�8) of as-
sociation with eGFR from the trans-ethnic meta-regression
(Table 2), with the strongest signals observed at/near SLC34A1
(rs35716097, P¼ 3.0�10�17), SHROOM3 (rs28394165, P¼ 1.8�10�15),
UNCX (rs62435145, P¼ 8.3�10�15) and PDILT-UMOD (rs77924615,
P¼ 9.7�10�15). Signals of association at these loci were stronger
from the fixed-effects meta-analysis than the meta-regression
when the lead SNP demonstrated little evidence of heterogeneity
in allelic effects between GWAS. The strongest evidence of het-
erogeneity in allelic effects in the fixed effects meta-analysis, as
assessed by Cochran’s Q statistic, was observed for the lead SNP
at WDR72 (rs690428, P¼ 7.8�10�5). In the meta-regression analy-
sis, the heterogeneity was partially correlated with ancestry
(P¼ 0.00053), where allelic effects of the lead SNP on eGFR are
specific to populations of European and East Asian descent
(Supplementary Material, Fig. S5).

Fine-mapping of four T2D susceptibility loci: CDKAL1,
CDKN2A-B, IGF2BP2 and KCNQ1

We considered 18 GWAS of T2D susceptibility in 22,086 T2D
cases and 42,539 controls of East Asian, European, South
Asian, African American and Mexican American ancestry
(Supplementary Material, Table S6), analyses of which have
been previously reported by the T2D-GENES Consortium (12). In
their study, each GWAS was imputed up to the 1000 Genomes
Project Phase 1 reference panel (14) for the four loci, and each
variant passing quality control was tested for association with
T2D susceptibility. Association summary statistics for each vari-
ant were then aggregated across GWAS using MANTRA (8), and

step-wise conditional analyses revealed a total of seven distinct
signals of association across the four loci, three mapping to
KCNQ1, two to CDKN2A-B, and one each at IGF2BP2 and CDKAL1.

For each distinct association signal, we applied the meta-
regression model, implemented in MR-MEGA, including three axes
of genetic variation as covariates (Materials and Methods,
Supplementary Material, Fig. S6). We observed genome-wide signif-
icant evidence of T2D association (P< 5�10�8) for index SNPs for
each distinct signal across the four susceptibility loci from meta-
regression accounting for ancestry with three axes of genetic varia-
tion as covariates (Table 3, Supplementary Material, Fig. S7). We
observed strong evidence for heterogeneity in allelic effects that is
correlated with ancestry only at the index SNP for the association
signal at the CDKAL1 locus (rs9368222, P¼ 0.00042). The heteroge-
neity was primarily accounted for by the third axis of genetic varia-
tion (P¼ 0.0046), which separates GWAS of South Asian ancestry
from those of African American, East Asian, European and
Mexican American descent (Supplementary Material, Fig. S6).
Allelic effect sizes increased along this axis (log-odds ratio 2.69,
standard error 0.81), suggesting that rs9368222 has weaker effects
on T2D susceptibility in South Asian populations (Supplementary
Material, Fig. S8). These data are consistent with previous reports
of heterogeneity at the CDKAL1 locus (15,16), where allelic effects
are stronger in European and East Asian ancestry populations than
in other ethnic groups.

Construction of 99% credible sets of variants driving distinct
association signals across the four susceptibility loci revealed
that the resolution of fine-mapping attained from meta regres-
sion was equivalent to that previously reported using MANTRA
(12) (Table 4). The most precise localisation was observed for
two of the association signals at the KCNQ1 locus, indexed by
rs2237897 (4 variants mapping to 342 bp of an intron of KCNQ1)
and rs231353 (4 variants mapping to 38.5 kb of KCNQ1-OT1).
At the CDKN2A-B locus, the 99% credible sets for both associa-
tion signals incorporate a total of 12 non-overlapping variants
that map to the same<5 kb interval. Annotation of the 99%
credible sets revealed inclusion of no coding variants, consis-
tent with previous reports that T2D association signals at
these four loci are most likely to be mediated through gene reg-
ulation (12,17).

Table 2. Loci attaining genome-wide significant evidence of association (P< 5� 10�8) with eGFR in MR-MEGA meta-regression of 71,461 individuals

Locus Lead SNP Chr Position(bp, b37) Alleles Fixed-effects meta-analysis MR-MEGA meta-regression
Effect Other Beta SE P-value pQ P-value pHET-ANC pHET-RES

SLC43A1 rs35716097 5 176,806,636 T C �1.092 0.128 3.5� 10�17 0.13 3.0� 10�17 0.016 0.66
SHROOM3 rs28394165 4 77,394,018 C T �0.949 0.117 1.0� 10�15 0.0028 1.8� 10�15 0.041 0.036
UNCX rs62435145 7 1,286,567 T G �1.097 0.138 4.0� 10�15 0.16 8.3� 10�15 0.042 0.58
PDILT-UMOD rs77924615 16 20,392,332 G A �1.184 0.147 1.9� 10�15 0.010 9.7� 10�15 0.10 0.017
BCAS3 rs9895661 17 59,456,589 C T �0.990 0.132 1.7� 10�13 0.18 6.5� 10�13 0.085 0.38
GCKR rs1260326 2 27,730,940 C T �0.867 0.115 9.0� 10�14 0.072 2.0� 10�12 0.54 0.041
WDR72 rs690428 15 53,950,578 A C �0.688 0.115 4.1� 10�9 7.8� 10�5 8.7� 10�11 0.00053 0.0081
CPS1 rs715 2 211,543,055 C T �0.880 0.128 1.1� 10�11 0.21 1.3� 10�10 0.31 0.21
SPATA5L1-GATM rs2486288 15 45,712,339 C T �0.875 0.126 7.5� 10�12 0.73 1.8� 10�10 0.65 0.63
ALMS1 rs11884776 2 73,746,923 C T �0.929 0.141 7.6� 10�11 0.15 3.3� 10�10 0.59 0.035
LRP2 rs57989581 2 170,194,459 C A �1.961 0.315 8.6� 10�10 0.19 7.7� 10�10 0.025 0.70
PIP5K1B rs4744712 9 71,434,707 A C �0.756 0.112 2.8� 10�11 0.90 8.1� 10�10 0.80 0.80
PRKAG2 rs10265221 7 151,414,329 C T �0.952 0.146 1.2� 10�10 0.24 1.9� 10�9 0.44 0.19
DAB2-C9 chr5:39404526:D 5 39,404,526 D R �0.822 0.126 1.2� 10�10 0.79 2.2� 10�9 0.56 0.74
SLC22A2 rs316009 6 160,675,764 C T �1.190 0.193 1.2� 10�9 0.48 1.4� 10�8 0.36 0.49
LOC100132354-VEGFA rs881858 6 43,806,609 A G �0.777 0.127 1.6� 10�9 0.0019 2.1� 10�8 0.40 0.00092

Chr: chromosome. SE: standard error. pQ: Cochran’s Q P-value. pHET-ANC: P-value for heterogeneity correlated with ancestry. pHET-RES: P-value for residual heterogeneity.
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Discussion
We have developed a novel approach to aggregating association
summary statistics across GWAS from diverse populations
through trans-ethnic meta-regression. The approach models al-
lelic effects, weighted by their standard errors, as a function of
axes of genetic variation, derived from pairwise allele frequency
differences, genome-wide, between studies. Across a range of
scenarios of heterogeneity in allelic effects between ancestry
groups, meta-regression has increased power to detect associa-
tion over fixed- and random-effects meta-analysis, whilst main-
taining false positive error rates.

Axes of genetic variation are generated via multi-
dimensional scaling of the mean allele frequency difference,
genome-wide, between each pair of GWAS contributing to the
meta-regression. In most consortia meta-analysis settings, al-
lele frequencies would be expected to be provided as one of as-
sociation summary statistics for each SNP, in addition to the
allelic effect size and corresponding standard error, for exam-
ple. If contributing GWAS do not provide allele frequency infor-
mation, one solution is to use data from reference populations,
such as those from the 1000 Genomes Project (13,14). GWAS
from the same broad ethnic group would be matched to the
same reference population, and would therefore be located at
the same position on axes of genetic variation. Consequently,
MR-MEGA would be able to detect heterogeneity in allelic effects
between ancestry groups, but would not be able to recognise
more subtle differences, due to admixture for example, within
ethnicities. We would therefore expect there to be a relative loss
in power to detect association in settings where heterogeneity
in allelic effects was correlated with admixture proportions, for
example in the ‘Native American’ scenario in our simulation

study. However, we would still expect increased power over
fixed- and random-effects analysis by allowing for heterogene-
ity between ethnic groups.

Alternative metrics to the genome-wide mean allele fre-
quency difference exist for quantifying the extent of genetic dif-
ferences between GWAS. We investigated the impact of an
alternative metric, the fixation index (FST) (18), on multi-
dimensional scaling of the 26 populations from the 1000
Genomes Project Phase 3 reference panel (13) used in our simu-
lation study. Whilst the absolute projection of populations onto
the first three principal components changed from those ob-
tained from mean allele frequency differences, their relative po-
sitions on these axes of genetic variation were highly correlated
(Supplementary Material, Fig. S9). Consequently, the use of FST

as a distance metric, instead of mean allele frequency differ-
ences, has no impact on our downstream meta-regression anal-
ysis results.

The meta-regression model assumes a linear trend in allelic
effects with each axis of genetic variation included as a covari-
ate. Whilst it is unlikely that this linear trend will hold exactly,
we have demonstrated that axes of genetic variation are suffi-
cient to cluster GWAS of similar ancestry, but also distinguish
populations within the same ethnic group (Supplementary
Materials, Figs S1, S3, S6). Consequently, if the allelic effect of a
variant is specific to one ancestry, or varies between diverse
populations according to their genetic similarity (within or be-
tween ethnic groups), including axes of genetic variation as co-
variates in the meta-regression model can account for this
heterogeneity. Indeed, the heterogeneity scenarios considered
in our simulation study do not assume a linear trend on the al-
lelic effect of the causal variant in any of the axes of genetic

Table 4. Properties of 99% credible sets of variants underlying distinct T2D association signals at four susceptibility loci on the basis of aggrega-
tion of association summary statistics from 18 GWAS (22,086 cases and 42,539 controls) from diverse populations using: (i) MR-MEGA meta-re-
gression accounting for ancestry with three axes of genetic variation as covariates; and (ii) MANTRA

Locus Index SNP MR-MEGA meta-regression MANTRA
SNPs Distance (bp) Interval (bp) SNPs Distance (bp) Interval (bp)

IGF2BP2 rs11705729 40 39,163 185,495,320–185,534,483 36 31,027 185,503,456–185,534,482
CDKAL1 rs9368222 6 12,330 20,675,792–20,688,121 5 12,330 20,675,792–20,688,121
CDKN2A-B rs10965246 6 1,556 22,132,698–22,134,253 5 1,371 22,132,698–22,134,068

rs10757282 6 4,041 22,133,645–22,137,685 7 4,435 22,133,251–22,137,685
KCNQ1 rs231353 4 38,477 2,691,471–2,729,947 3 17,549 2,691,471–2,709,019

rs233448 13 20,175 2,837,723–2,857,897 11 20,273 2,837,625–2,857,897
rs2237897 4 342 2,858,295–2,858,636 3 197 2,858,440–2,858,636

Table 3. Index SNPs for distinct T2D association signals at four susceptibility loci on the basis of aggregation of summary statistics from 18
GWAS (22,086 cases and 42,539 controls) from diverse populations using: (i) MR-MEGA meta-regression accounting for ancestry with three axes
of genetic variation as covariates; and (ii) reported results from fixed-effects meta-analysis

Locus Index SNP Chr Position Alleles MR-MEGA meta-regression Fixed-effects meta-analysis
Risk Other P-value pHET-ANC pHET-RES OR (95% CI) P-value pQ

IGF2BP2 rs11705729 3 185,507,299 T C 2.1� 10�19 0.50 0.44 1.14 (1.11–1.17) 1.3� 10�21 0.49
CDKAL1 rs9368222 6 20,686,996 A C 5.1� 10�31 0.00042 0.23 1.17 (1.14–1.21) 4.1� 10�30 0.0058
CDKN2A-B rs10965246 9 22,132,698 T C 4.8� 10�37 0.62 0.0012 1.31 (1.26–1.36) 8.4� 10�40 0.0029

rs10757282 9 22,133,984 C T 3.9� 10�11 0.16 0.24 1.12 (1.09–1.16) 2.0� 10�12 0.17
KCNQ1 rs231353 11 2,709,019 G A 2.7� 10�9 0.92 0.64 1.11 (1.07–1.14) 1.7� 10�11 0.79

rs233448 11 2,840,424 C T 3.9� 10�10 0.34 0.17 1.12 (1.09–1.16) 9.5� 10�12 0.18
rs2237897 11 2,858,546 C T 2.9� 10�10 0.33 0.36 1.19 (1.14–1.26) 7.7� 10�12 0.35

Chr: chromosome. OR: odds-ratio. CI: confidence interval. pHET-ANC: P-value for heterogeneity correlated with ancestry. pHET-RES: P-value for residual heterogeneity.

pQ: Cochran’s Q statistic P-value.
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variation (Supplementary Material, Table S1). However, in those
scenarios for which heterogeneity is correlated (non-linearly)
with ancestry (African specific, Eurasian and Native American),
meta-regression including three axes of genetic variation as co-
variates offered improved power to detect association over
fixed- and random-effects meta-analysis (Fig. 1). Only when
heterogeneity is completely uncorrelated with ethnicity (non-
ancestral scenario) did the power of the random-effects meta-
analysis exceed that of the meta-regression.

The meta-regression model enables partitioning of heteroge-
neity in allelic effects between GWAS that is correlated with an-
cestry from residual variation due to other sources (such as
variable phenotype definition). Heterogeneity in allelic effects
due to ancestry is of particular relevance to fine-mapping, since it
can occur as a result of differences in patterns of LD between di-
verse populations, which we model in the meta-regression
framework by including axes of genetic variation as covariates.
Consequently, the meta-regression model offers substantial
gains in fine-mapping resolution over fixed- and random-effects
meta-analysis, even for heterogeneity scenarios in which allelic
effects do not follow a linear trend in the axes of genetic variation
(Figs 2 and 3). We also compared the meta-regression approach
with MANTRA, which models heterogeneity in allelic effects be-
tween GWAS according to a prior model of genetic similarity be-
tween them. The fine-mapping resolution achieved by the meta-
regression model was greater than that for MANTRA, except in
the scenario in which heterogeneity in allelic effects between
studies was random, irrespective of ancestry, and cannot by ac-
counted for by axes of genetic variation that distinguish broad
ethnic groups. Similar performance between the methods was
also observed through application to fine-mapping of association
signals for T2D in four established susceptibility loci.

There has been recent development of novel methods for
fine-mapping that utilise meta-analysis summary statistics and
a reference panel of LD between variants across a locus, includ-
ing CAVIAR (19), PAINTOR (10) and FINEMAP (20). By modelling
LD between variants across a locus, these approaches have the
advantage that they can allow for fine-mapping of multiple
causal variants, simultaneously. However, CAVIAR and
FINEMAP allow for specification of a single LD reference across
the locus, which is not appropriate in the context of trans-
ethnic fine-mapping because the correlation between variants
is not the same for diverse populations. PAINTOR, on the other
hand, overcomes this problem by allowing for specification of
ethnic- or population-specific association summary statistics
and LD references. Previously reported simulation highlighted
substantial improvements in fine-mapping resolution for
PAINTOR over an application of CAVIAR using an ‘average’ LD
reference across all ethnic groups (10). PAINTOR also has the ad-
vantage that it can incorporate a prior model of causality based
on genomic annotation, allowing a boost in the posterior proba-
bility that coding variants drive association signals, for exam-
ple, as observed in genome-wide enrichment analyses (21).
Nevertheless, the results of our simulation study of loci with a
single causal variant highlight that PAINTOR is not well cali-
brated across the scenarios considered, even in the ‘perfect’
data setting, and has lower resolution than MR-MEGA and
MANTRA (larger 99% credible sets and less posterior probability
ascribed to the causal variant) when heterogeneity in allelic ef-
fects is correlated with ancestry.

An alternative approach to allow for multiple causal variants
is to first dissect ‘distinct’ association signals at a GWAS locus
through (approximate) conditional analysis (22). Conditional

analyses can be performed using backward elimination to iden-
tify index variants for each distinct association signal, for exam-
ple as implemented in GCTA (23), until association at the locus
is fully explained. Fine-mapping is then undertaken for each
distinct association signal by conditioning on all other index
variants at the locus. Each of these distinct signals is assumed
to represent a different underlying causal variant, acting in iso-
lation or through haplotype effects. Such an approach has been
widely employed for fine-mapping association signals for a
range of complex human traits and diseases, in the context of
both trans-ethnic and ancestry-specific meta-analyses
(11,12,17,24–32).

Unfortunately, the results of our simulation study highlight
that there is no single optimal approach to the aggregation of
GWAS from diverse populations across the range of scenarios
for heterogeneity in allelic effects we have considered. For ex-
ample, under a scenario in which allelic effects are homoge-
neous across ethnic groups, there is a small loss in power for
the meta-regression model compared to fixed- and random-
effects meta-analysis that is due to the inclusion of axes of
genetic variation as covariates that are not predictive of hetero-
geneity. Our analyses have focussed on three axes that distin-
guish populations of African, East Asian, European, Native
American and South Asian ancestry. Reducing the number of
axes of genetic variation included as covariates in the meta-
regression model would decrease the loss in power, compared
to fixed- or random-effects meta-analysis, under a scenario of
homogenous allelic effects across populations. However, the
power of the meta-regression model to detect SNP association
would then be decreased when heterogeneity in allelic effects
between GWAS is driven by ancestry. One solution to this di-
lemma is to use both fixed-effects meta-analysis and meta-
regression for aggregation of GWAS from diverse populations,
although thresholds of significance should be adjusted to ac-
count for multiple testing at each SNP.

One of the advantages of the meta-regression approach is
that we can assess the contribution of each axis of genetic vari-
ation to heterogeneity in allelic effects between GWAS. For ex-
ample, we observed strong evidence for heterogeneity in allelic
effects on T2D susceptibility due to ancestry at the CDKAL1 lo-
cus, which was accounted for by one axis of genetic variation.
Allelic effect sizes increased along this axis, separating those of
South Asian ancestry from other ethnic groups, consistent with
previous reports that this locus has greater impact on popula-
tions of European and East Asian descent.

A second advantage of the meta-regression approach is that
additional covariates can be included to investigate other sour-
ces of potential heterogeneity in allelic effects between studies.
For example, where sex-specific association summary statistics
are available, inclusion of sex as covariate provides an assess-
ment in allelic effects between males and females, after ac-
counting for ancestry. Inclusion of imputation quality metrics
as a covariate enables confirmation that apparent heterogeneity
in allelic effects between studies is not a reflection of variable
imputation success, which may vary according to ancestry be-
cause of the availability of closely matched population haplo-
types in the reference panel, for example.

In conclusion, trans-ethnic meta-regression, as imple-
mented in the MR-MEGA software, offers a powerful approach
for the discovery and fine-mapping of complex trait loci across
GWAS from diverse populations. With the increasing availabil-
ity of multi-ancestry GWAS of complex human traits, powerful
statistical methodology for trans-ethnic meta-analysis, such as
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that implemented in MR-MEGA, shows great promise for future
improvements in our understanding of the genetic basis of
common diseases.

Materials and Methods
Consider a series of K GWAS of a complex trait. At each variant,
we assume that all GWAS are aligned to the same reference al-
lele. We denote the reference allele frequency of the jth SNP in
the kth GWAS by pkj. We construct a matrix of pairwise
Euclidean distances between GWAS across autosomal variants,
denoted D¼ [dkk’], where

dkk0 ¼
P

jIj pkj � pk0 j
� �2

P
jIj

:

In this expression, Ij is a binary indicator variable of the inclu-
sion of the jth variant in the distance calculation. We recommend
dividing the genome into 1 Mb bins, and utilising one variant
with MAF of at least 5% in all GWAS from each bin to minimise
the impact of LD. We then implement multi-dimensional scaling
of the distance matrix, D, to derive T axes of genetic variation,
denoted xk for the kth GWAS. Note that the choice of the number
of axes of genetic variation will depend on the population diver-
sity of GWAS, but is restricted to T�K-2.

For the jth variant, we denote the estimated effect of the ref-
erence allele in the kth GWAS, and the corresponding variance,
by bkj and vkj, respectively. We then model the reference allele
effect across GWAS in a linear regression model, given by

E bkj
� �

¼ aj þ
XT

t¼1
btjxkt; (1)

where aj is the intercept and btj is the effect of the tth axis of ge-
netic variation for the jth variant. The contribution of the kth
GWAS is weighted by the estimated inverse variance of the ref-
erence allele effect at the jth variant, denoted v�1

kj . We can inter-
pret the intercept, aj, as the expected allelic effect of the jth
variant for a population of ancestry represented by zero on each
of the T axes of genetic variation.

We test the null hypothesis of no association of the jth vari-
ant across GWAS by comparing the deviance of model (1) with
aj¼ b1j¼ . . .¼ bTj¼ 0 to that for which the parameters are uncon-
strained, with the resulting test statistic denoted Xj having an
approximate chi-squared distribution with Tþ 1 degrees of free-
dom. We can also test for the presence of heterogeneity in alle-
lic effects between GWAS that is correlated with ancestry by
comparing the deviance of model (1) with b1j¼ . . .¼ bTj¼ 0 to
that for which the parameters are unconstrained, with the re-
sulting test statistic having an approximate chi-squared distri-
bution with T degrees of freedom. Finally, the deviance of
model (1), with all parameters unconstrained, provides a test of
residual heterogeneity in allelic effects between GWAS after ac-
counting for ancestry, having an approximate chi-squared dis-
tribution with K-T-1 degrees of freedom.

We can also assess the contribution of the tth axis of ge-
netic variation to heterogeneity in allelic effects by comparing
the deviance of model (1) with btj¼ 0 to that for which the pa-
rameters are unconstrained, with the resulting test statistic
having an approximate chi-squared distribution with one de-
gree of freedom.

Fine-mapping

Consider a locus encompassing a pre-specified interval from an
index variant. For the jth variant in the locus, we approximate
the Bayes’ factor in favour of association (33) by

Kj ¼ exp
Xj � T þ 1ð ÞlnK

2

� �
:

We then calculate the posterior probability that the jth variant
is driving the association signal at the locus by

pj ¼
KjP

iKi
:

In this expression, the summation in the denominator is over
all variants across the locus. Finally, we derive a 99% credible
set (34) for the association signal by: (i) ranking all variants ac-
cording to their Bayes’ factor, Kj; and (ii) including ranked vari-
ants until their cumulative posterior probability of driving the
association attains or exceeds 0.99.

Software

We have implemented the methodology in the MR-MEGA
(Meta-Regression of Multi-Ethnic Genetic Association) soft-
ware (http://www.geenivaramu.ee/en/tools/mr-mega). For each
study, a flat file of association summary statistics is required,
including one row per variant, and columns for the variant
name and position in the genome, effect and other alleles, effect
allele frequency, allelic effect and standard error, and sample
size. For each variant, MR-MEGA aligns studies to the same ef-
fect allele, and flips the allele frequency and allelic effect if re-
quired. MR-MEGA then performs multi-dimensional scaling of
mean genome-wide allele frequency differences between each
pair of GWAS. Meta-regression is undertaken in a linear regres-
sion framework, as described above, including axes of genetic
variation as covariates in the model. MR-MEGA can perform ge-
nomic control at the study level, and/or after meta-regression.
For each variant, MR-MEGA provides: (i) P-value and Bayes’
factor in favour of association, accounting for heterogeneity
that is correlated with ancestry; (ii) P-value for heterogeneity
that is correlated with ancestry; and (iii) P-value for residual
heterogeneity.

Simulation study: false positive error rate and power

For each replicate, the causal variant was selected at random
from those reported in the reference panel from Phase 3 of the
1000 Genomes Project (13) with MAF> 1% in all populations.
Genotypes in each population were then simulated using the
causal variant population-specific odds-ratio (Supplementary
Material, Table S1) and 1000 Genomes Project allele frequency,
under an assumption of Hardy-Weinberg equilibrium. For each
replicate of data, in each population, we tested for association
of the causal variant with case-control status in a logistic re-
gression framework under an additive model in the log-odds ra-
tio in PLINK (35), and obtained estimated allelic effect sizes,
corresponding standard errors and Z-scores.

We then tested for association of the causal variant with
case-control status across populations using the meta-
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regression model, implemented in MR-MEGA, including three
axes of genetic variation as covariates to separate ancestry
groups. For comparison, we also tested for association using
fixed-effects (inverse-variance weighted log-odds ratios) and
random-effects (RE2) meta-analysis implemented in METASOFT
(7). False positive error rates were assessed at a nominal signifi-
cance threshold (P< 0.05), whilst power was evaluated at
genome-wide significance (P< 5�10�8). Next, we tested for het-
erogeneity, at nominal significance (P< 0.05), in allelic effects
between populations that is correlated with ancestry using the
meta-regression model implemented in MR-MEGA. Finally, we
tested for residual heterogeneity, at nominal significance
(P< 0.05), in allelic effects between populations: (i) from the
meta-regression model implemented in MR-MEGA after ac-
counting for ancestry; and (ii) using Cochran’s Q statistic from
the fixed-effects meta-analysis implemented in METASOFT (7).

Simulation study: fine-mapping loci with a single
causal variant

For each replicate, the 2 Mb region was centred on a single
causal variant, selected at random from those reported in the
reference panel from Phase 3 of the 1000 Genomes Project (13)
with MAF> 1% in all reference populations. Genotypes in each
population were then simulated, using HAPGEN2 (36), using the
causal variant population-specific odds-ratio (Supplementary
Material, Table S1) and haplotypes from the 1000 Genomes
Project Phase 3 reference panel (13).

We first considered the ‘perfect’ data setting, where all vari-
ants in the region are captured, with no missing genotypes or
errors, for benchmarking purposes. For each replicate of data,
we considered the 1 Mb region centred on the causal variant.
Within each population, we tested all variants in this region for
association with case-control status in a logistic regression
framework under an additive model in the log-odds ratio in
PLINK (35), and obtained estimated allelic effect sizes, corre-
sponding standard errors and Z-scores.

We then considered the more realistic ‘imperfect’ data set-
ting. For each replicate of data, genotypes at only 100 randomly
selected variants in the 2 Mb region were retained, to represent
a typical GWAS array. Within each population, separately, this
scaffold of genotypes was imputed up to haplotypes from the
1000 Genomes Project Phase 3 reference panel (13) using
IMPUTEv2 (37,38). Imputation was performed in the 1 Mb region
centred on the causal variant, with the remaining 500 kb regions
up- and down-stream retained as buffers. Within each popula-
tion, we then tested for association of all variants with case-
control status in a logistic regression framework under an addi-
tive model in the log-odds ratio in SNPTEST (39), taking account
of uncertainty in the imputation process with the genotype dos-
age (‘expected’ option), and obtained estimated allelic effect
sizes, corresponding standard errors and Z-scores. We per-
formed post-imputation quality control, and excluded variants
with IMPUTEv2 info< 0.4 from downstream analyses (40).

For each replicate of data, for both ‘perfect’ and ‘imperfect’
data settings, we obtained Bayes’ factors in favour of associa-
tion for each variant from the meta-regression model, imple-
mented in MR-MEGA, including three axes of genetic variation
as covariates to separate ancestry groups. For comparison, we
also obtained, for each variant: (i) approximate Bayes’ factors
(41) on the basis of allelic effect estimates, and corresponding
standard errors, from fixed-effects and random-effects meta-
analysis implemented in METASOFT (7), assuming a Gaussian

prior N(0,0.22) for log-odds ratios; and (ii) the Bayes’ factor from
MANTRA (8) using the matrix of pairwise Euclidean distances
between the reference populations to model heterogeneity.
These (approximate) Bayes’ factors were used to obtain the pos-
terior probability of driving the association for each variant
across the locus. Finally, we undertook trans-ethnic meta-anal-
ysis across populations using PAINTOR (10), assuming a single
causal variant at the locus (option ‘-enumerate 1’), and approxi-
mating LD between variants in each population from haplo-
types in the 1000 Genomes Project Phase 3 reference panel (13).
Under the assumption of a uniform prior model of causality (no
functional enrichment), we used PAINTOR to generate the pos-
terior probability of driving the association for each variant
across the locus. In each replicate, we constructed the 99% cred-
ible set driving the association signal at the locus for each
method by: (i) ranking all variants by their posterior probability;
and (ii) including ranked variants until their cumulative poste-
rior probability attains or exceeds 0.99.

Trans-ethnic meta-analysis of GWAS of kidney function

Each GWAS was pre-phased and imputed up to the 1000
Genomes Project Phase 1 reference panel (14) using IMPUTEv2
(37,38) or minimac (37). Variants were retained for analysis in
each GWAS if: (i) MAF� 0.5%; and (ii) IMPUTEv2 info� 0.4 or
minimac r2�0.3 (40). Kidney function was assessed by eGFR, cal-
culated from serum creatinine (mg/dL), with adjustment
for age, sex and ethnicity by means of the four variable
Modification of Diet in Renal Disease equation (42). Within each
study, association of eGFR with each variant was tested in a lin-
ear regression framework, under an additive dosage model, and
with adjustment for study-specific covariates to account for
confounding due to population structure (Supplementary
Material, Table S5). Within each study, association summary
statistics were corrected in each study for residual population
structure by genomic control (43) (Supplementary Material,
Table S5).

Association summary statistics for each variant passing
quality control in at least 50% of the total sample size were ag-
gregated across studies via fixed-effects meta-analysis, with
inverse-variance weighting, implemented in METASOFT (7).
Association summary statistics from the meta-analysis were
then corrected for a second round of genomic control (43)
(kGC¼1.029). Heterogeneity in allelic effects between studies at
each variant was assessed by means of Cochran’s Q-statistic
from the fixed-effects meta-analysis implemented in
METASOFT (7). We implemented multi-dimensional scaling of
the matrix of pairwise Euclidean distances between studies to
derive two axes of genetic variation that were sufficient to sepa-
rate GWAS between ancestry groups (Supplementary Material,
Fig. S3). We then applied the meta-regression model, imple-
mented in MR-MEGA, to each variant passing quality control in
at least 50% of the total sample size, including the two axes of
genetic variation as covariates. Association summary statistics
from the meta-analysis were then corrected for a second round
of genomic control (43) (kGC¼1.017).

Fine-mapping of four T2D susceptibility loci: CDKAL1,
CDKN2A-B, IGF2BP2 and KCNQ1

We made use of summary statistics derived by the T2D-GENES
Consortium (12) for seven distinct signals of T2D association at
the four loci. Briefly, at each locus, the scaffold of genome-wide
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genotype data in each GWAS was imputed up to the 1000
Genomes Project Phase 1 reference panel (14) using IMPUTEv2
(37,38) or minimac (37). Variants were retained for analysis in
each study if: (i) MAF� 1%; and (ii) IMPUTEv2 info� 0.4 or mini-
mac r2� 0.3 (40). These variants were used to derive a matrix of
pairwise Euclidean distances between the studies. T2D associa-
tion with each retained variant was tested in a logistic regres-
sion framework under an additive model in the log-odds ratio,
and estimated allelic effect sizes and corresponding standard
errors were obtained. Association summary statistics for each
variant passing quality control in at least 80% of the total sam-
ple size were then aggregated across GWAS using MANTRA (8)
using the matrix of pairwise Euclidean distances between stud-
ies. Step-wise conditional analyses were undertaken at each lo-
cus, at each stage including the variant with the strongest
association as a covariate until the residual signal did not attain
genome-wide significance (MANTRA log10 Bayes’ factor>6).

We implemented multi-dimensional scaling of the Euclidean
distance matrix to derive three axes of genetic variation to sepa-
rate GWAS between ancestry groups (Supplementary Material,
Fig. S6). For each distinct association signal, we applied the meta-
regression model, implemented in MR-MEGA, including the three
axes of genetic variation as covariates, to each variant passing
quality control in at least 80% of the total sample size. From this
model, we assessed the evidence of T2D association for each SNP
and the extent of heterogeneity in allelic effects between GWAS
that is correlated with ancestry. Subsequently, we obtained a
Bayes’ factor in favour of T2D association and constructed a 99%
credible set of variants driving each of the distinct signals.

Supplementary Material
Supplementary Material is available at HMG online.
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