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Abstract

Mitochondrial genomes are readily sequenced with recent technology and thus evolutionary lineages can be densely sampled. This

permits betterphylogenetic estimatesandassessmentofpotential biases resulting fromheterogeneity innucleotide compositionand

rate of change. We gathered 245 mitochondrial sequences for the Coleoptera representing all 4 suborders, 15 superfamilies of

Polyphaga, and altogether 97 families, including 159 newly sequenced full or partial mitogenomes. Compositional heterogeneity

greatly affected 3rd codon positions, and to a lesser extent the 1st and 2nd positions, even after RY coding. Heterogeneity also

affected the encoded protein sequence, in particular in the nad2, nad4, nad5, and nad6 genes. Credible tree topologies were

obtained with the nhPhyML (“nonhomogeneous”) algorithm implementing a model for branch-specific equilibrium frequencies.

Likelihood searches using RAxML were improved by data partitioning by gene and codon position. Finally, the PhyloBayes software,

which allows different substitution processes for amino acid replacement at various sites, produced a tree that best matched known

higher level taxa and defined basal relationships in Coleoptera. After rooting with Neuropterida outgroups, suborder relationships

were resolved as (Polyphaga (Myxophaga (Archostemata + Adephaga))). The infraorder relationships in Polyphaga were (Scirtiformia

(Elateriformia ((Staphyliniformia + Scarabaeiformia) (Bostrichiformia (Cucujiformia))))). Polyphagan superfamilies were recovered as

monophyla except Staphylinoidea (paraphyletic for Scarabaeiformia) and Cucujoidea, which can no longer be considered a valid

taxon. The study shows that, although compositional heterogeneity is not universal, it cannot be eliminated for some mitochondrial

genes, but dense taxon sampling and the use of appropriate Bayesian analyses can still produce robust phylogenetic trees.

Key words: mitogenomes, long-range PCR, rogue taxa, RY coding, mixture models, PhyloBayes.

Introduction

Mitochondrial genomes have often been perceived as unreli-

able phylogenetic markers due to poor recovery of the

expected relationships, in particular in early studies that

were compromised by sparse taxon sampling (Bernt et al.

2013; Simon and Hadrys 2013). In insects, high rates of nu-

cleotide change in mitochondrial genomes, together with

high adenine-thymine (AT) content and constraints of protein

function, limit the type of character variation and result in high

levels of homoplasy (Talavera and Vila 2011). As rates of
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change and nucleotide composition vary among lineages,

mitogenome sequences are exposed to long-branch attrac-

tion, which confounds phylogenetic inferences. This phenom-

enon has received particular attention in studies of Coleoptera

(beetles) showing that compositional heterogeneity is perva-

sive (Sheffield et al. 2009; Pons et al. 2010; Song et al. 2010;

Bernt et al. 2013; Cameron 2014). However, although various

likelihood models of DNA evolution assume stationarity, that

is, an evolutionary process that keeps the character state dis-

tribution uniform across lineages, recent nonhomogeneous

models accommodate changes in composition over the tree

(Galtier and Gouy 1998; Foster 2004; Boussau and Gouy

2006; Foster et al. 2009).

An alternative approach for accommodating complex char-

acter variation is the site-heterogeneous CAT model imple-

mented in PhyloBayes (Lartillot et al. 2009), which infers an

infinite number of substitution processes (classes) from the

empirical data, each of which are defined by different

equilibrium frequencies of nucleotides or amino acids. This

“heterogeneous mixture model” is widely used for the anal-

ysis of protein sequences, and was shown to reduce the sus-

ceptibility to long-branch attraction (Lartillot et al. 2007;

Talavera and Vila 2011; Li et al. 2015). When applied to the

Coleoptera, the use of PhyloBayes greatly improved the tree to

match expected taxonomic groups over other models applied

to the nucleotide sequences. For example, in the analysis of

Timmermans et al. (2010) the single representative of the sub-

order Archostemata (genus Tetraphalerus) was placed incor-

rectly in a derived position within the suborder Polyphaga

under various coding schemes and optimality criteria, as also

observed in other studies (Pons et al. 2010; Song et al. 2010),

but under the CAT model it was placed correctly outside of

Polyphaga. Likewise, the CAT model was more successful than

other approaches in recovering the major clades including the

infraorders (“series”) within the Polyphaga (Timmermans et al.

2010). To some extent the effect of these mixture models can

be achieved by partitioning the data according to a priori de-

termined character sets and applying an independent GTR

model, which can be implemented using the RAxML likelihood

method (Stamatakis 2006).

The misleading signal from compositional heterogeneity is

not produced by all nucleotides in equal measure, as rates are

constrained in 1st and 2nd codon positions, which prevents

rapid divergence in base composition (Song et al. 2010;

Talavera and Vila 2011). Many previous studies therefore ex-

cluded 3rd codon positions from the analysis to reduce the

effects of compositional heterogeneity. In addition, purine-

pyrimidine (RY) coding can be used, which removes the AT

versus GC compositional information in the assessment of

character variation (Hassanin 2006). Finally, compositional

heterogeneity has sometimes been shown to be concentrated

in particular portions of the mitochondrial genome or in par-

ticular species or subclades, and hence data exclusion has

been recommended, for example, omitting individual genes

that produce trees in conflict with the topology obtained from

the full data (Talavera and Vila 2011). However, the link be-

tween topological incongruence among data partitions and

compositional heterogeneity has not been widely explored. In

Coleoptera, substitution rates are well known to differ among

mitochondrial genes (Vogler et al. 2005; Pons et al. 2010), but

the level of compositional heterogeneity has not been com-

pared among genes.

With the application of high-throughput sequencing tech-

niques, the number of mitochondrial genomes available for

these analyses is increasing rapidly. The resulting denser taxon

sampling may improve the estimation of molecular rates and

variation in base composition, and thus result in improvements

in estimates of tree topology, in particular through reduced

long-branch attraction of convergent character variation. Here

we generate a large set of mitochondrial genomes for the

Coleoptera to test if the known problems for phylogenetic

inference in this group previously ascribed to compositional

heterogeneity can be overcome by denser taxon sampling.

We also examine if high compositional heterogeneity affect-

ing some terminals weakens the recovery of monophyletic

groups and produce erroneous relationships. Not all such

groups are expected to be strongly supported, but instead

the effect of compositional heterogeneity may mainly

reduce levels of support for otherwise well founded groups,

and as their placement is ill-defined by the data they may

appear as nuisance “rogue taxa” weakening an otherwise

well supported topology (Wilkinson 1996). Their removal

may reduce the compositional heterogeneity across the data

and improve the overall tree topology.

We thus examine the evidence for compositional hetero-

geneity within and among genes, and test its impact on the

topology. However, measuring compositional heterogeneity

itself is challenging. A chi-square test (implemented in PAUP;

Swofford 2002) has been widely used to assess if nucleotide

composition in a data matrix is homogeneous, but this test

suffers from a high probability of Type II error (the null hypoth-

esis of homogeneity is false but fails to be rejected) because it

does not assume phylogenetic relatedness (Kumar and

Gadagkar 2001). As the effects of common ancestry are inte-

gral to the test quantity, they should be part of the null dis-

tribution as well. Such a null hypothesis can be generated by

simulating data on the tree topology and model parameters of

the empirical data, and the heterogeneity in the empirical data

is then assessed against this distribution from simulations,

again using the chi-square as a test quantity (Foster 2004).

This approach is used here to address how compositional het-

erogeneity in different partitions of the mitogenome data

matrix (e.g., various genes, codon positions, clades) affects

the accuracy of the tree. We also examine whether these

biases can be overcome by analyses of the translated protein

sequences and by removal of certain data partitions or diver-

gent lineages, including potential rogue taxa. We show that

densely sampled mitogenomes can provide a well-supported
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tree for the Coleoptera, even under moderate levels of com-

positional heterogeneity, and these relationships are best

captured by the mixture models in PhyloBayes. The new tree

consolidates the phylogenetic conclusions from previous stud-

ies and resolves several questionable nodes defining coleop-

teran superfamily and family-level relationships.

Materials and Methods

Sampling and Laboratory Procedures

Mitogenome sequences were generated from long-range PCR

amplicons using the Roche/454 sequencing platform.

Specimens were selected for uniform coverage of major line-

ages of Coleoptera from existing DNA extractions of various

age and quality of preservation (Hunt and Vogler 2008; Bocak

et al. 2014), in addition to newly collected specimens, resulting

in highly variable PCR success that limited the taxon choice

(supplementary table S1, Supplementary Material online).

Amplification primarily targeted a large cob to cox1 fragment

of ~10 kb. The remainder of the mitogenome was amplified

using primer sites in the cox1 and cob genes, to include the

rRNA genes and the control region, but amplification success

was lower (supplementary table S2, Supplementary Material

online). Primers used are described in Timmermans et al. (2010).

Sequence reads were assembled using the MIRA or Newbler

software as described previously (Timmermans et al. 2010;

Haran et al. 2013) and the longest contig obtained with either

assembler was retained. tRNA genes were annotated with

COVE using beetle-specific covariance models (Timmermans

and Vogler 2012). Protein-coding gene sequences were anno-

tated using existing Coleoptera mitochondrial genomes as ref-

erence in Geneious (http://www.geneious.com/, last accessed

December 17, 2015). For the rRNA genes, sequences were ex-

tracted from the newly generated and previously published

mitogenome sequences, using BLAST searches on a fasta for-

matted database with methods described in Bocak et al. (2014).

The taxonomic classification, voucher ID, GenBank accession

numbers, and geographic origin for each specimen are given

in supplementary table S1, Supplementary Material online.

Phylogenetic Inference

The 13 protein-coding genes were aligned with ClustalW using

the transAlign wrapper (Bininda-Emonds 2005). The cox1 gene

was split into the 50 “barcode” region (Hebert et al. 2003) and

the 30 region widely used in Coleoptera systematics usually

amplified with the Pat and Jerry primers (Simon et al. 1994).

This was to account for the fact that the two PCR fragments

with different amplification success are confined to the 50 or 30

ends for the short and long fragment, respectively. The two

rRNA genes were aligned using MAFFT v. 7 (Katoh et al. 2009)

under default parameters on the server http://mafft.cbrc.jp/

alignment/software/, last accessed December 17, 2015.

Protein-coding alignments were edited, trimmed, and

translated with Mesquite v. 2.75 (Maddison WP and

Maddison DR 2014). The final concatenated matrix consisted

of the 13 protein-coding genes (14 regions taking into account

the split cox1 gene) and 2 rRNA genes, with a minimum of 9

protein-coding genes represented in all taxa. All tree searches

and analyses of evolutionary patterns were done without

further outgroups, except for one case of a PhyloBayes analysis

designed to test the basal branching order in the light of non-

Coleoptera outgroups. Mutational saturation was assessed in

Dambe5, using a simulation-based analysis of the critical sub-

stitution saturation beyond which the correct tree is unlikely to

be recovered (Xia 2013).

Different partitioning strategies were compared for the nu-

cleotide data matrix of protein-coding genes, by calculating

likelihood scores on a fixed topology generated in RAxML

(Stamatakis 2006). Twelve partitioning schemes for the

protein-coding genes were compared, ranging from unparti-

tioned to a maximum of 42 partitions (by gene+codon posi-

tion). Likelihood scores were compared with reference to the

complexity of the partitioning schemes using the Akaike

Information Criterion (AIC). Bayes Factors and Relative Bayes

Factors (RBF) were calculated according to Castoe et al. (2005).

Phylogenetic trees were generated using ML and Bayesian

methods for partitioned and unpartitioned data sets. All

RAxML trees were generated at the CIPRES webserver,

(Miller et al. 2010; https://www.phylo.org/, last accessed

December 17, 2015) under the GTRCAT model of nucleotide

substitution, which approximates a GTR + � model with a re-

duced computational cost (Stamatakis 2006). Where relevant,

node support was assessed using a rapid bootstrap algorithm

implemented in RAxML with 500 replicates.

PhyML (Galtier and Gouy 1998; Guindon and Gascuel 2003)

was run on the ATGC webserver (Guindon et al. 2010; www.

atgc-montpellier.fr, last accessed December 17, 2015) and used

a GTR substitution model using eight rate categories. The

gamma shape parameter and the proportion of invariable

sites were estimated from the data. To infer relationships

under the nonhomogeneous model of Galtier and Gouy

(1998), nhPhyML (Boussau and Gouy 2006) was used, again

using eight rate categories. Topology, gamma shape parame-

ter, and transition/transversion rates were evaluated, but no

final optimization of parameters such as branch lengths was

performed (setting: -quick=y). As starting tree for tree searches

in PhyML and nhPhyML, we used the RAxML tree of the com-

plete, partitioned data set rooted on the Archostemata. Both

analyses used the Nearest Neighbor Interchange algorithm.

Finally, the translated data matrix was subjected to

Bayesian analysis with PhyloBayes 3 under the CAT-Poisson

model (Lartillot et al. 2009). Two Markov chain Monte Carlo

chains were run after the removal of constant sites from

the alignment. This Bayesian analysis was repeated with

outgroups included. These outgroups were from three

orders of Neuropterida, the presumed sister lineage of

Coleoptera, and were obtained from GenBank (Accession
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Genome Biol. Evol. 8(1):161–175. doi:10.1093/gbe/evv241 Advance Access publication December 8, 2015 163

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv241/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv241/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv241/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv241/-/DC1
http://www.geneious.com/
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv241/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv241/-/DC1
http://mafft.cbrc.jp/alignment/software/
http://mafft.cbrc.jp/alignment/software/
https://www.phylo.org/
www.atgc-montpellier.fr
www.atgc-montpellier.fr


numbers: NC_011277, NC_011278, NC_013257, NC_015

093, NC_021415, NC_023362, NC_024825, NC_024826).

PhyloBayes tree searches were also conducted on the

CIPRES webserver.

The R package “ape” (Paradis et al. 2004) was used to

obtain root-to-tip branch lengths from the RY-coded ML

and the Bayesian amino acid trees. Mean values and standard

deviations of branch lengths were calculated for each subor-

der and each of the polyphagan subfamilies.

Compositional Heterogeneity

Compositional heterogeneity in data matrices based on the

protein-coding genes was assessed as described in Foster

(2004), using the chi-square statistic. Significance was as-

sessed using a null distribution generated by simulations on

the ML tree with branch lengths and a value (a of the �

distribution) optimized. If the procedure is performed on the

entire matrix, this presumes that there is no among-partition

rate variation and that branch lengths for all partitions are the

same. Since we used a homogeneous model, these values

form a valid null distribution by which to assess the chi-

square of the original data. RY-coded partitions were analyzed

as DNA with RAxML. For simulations of protein sequences, the

null distribution for assessing chi-square was generated using

simulations on the corresponding ML tree and the MtArt +�

model (Abascal et al. 2007). Missing taxa will not contribute to

the calculated chi-square value for the original data, and

therefore the chi-square calculations were done without the

taxa affected by missing data for a given locus. Assessment of

significance was based on tail area probabilities Pt, and a value

of 0.05 or less was taken to show compositional heterogene-

ity. We also used the conventional chi-square test of compo-

sitional heterogeneity for comparison. The analysis of

heterogeneity was conducted on the ingroup sequences only.

Identification of Rogue Taxa

The RogueNaRok algorithm (Aberer et al. 2013) was used to

identify rogue taxa (Wilkinson 1996), that is, those taxa that, if

excluded from the tree searches, yield a pruned consensus

tree with increased support values. Using an RAxML tree on

RY-coded data (see Results), two settings were tested, allow-

ing either one taxon (run #1) or two taxa to be pruned simul-

taneously (run #2). The change of support values was assessed

on the tree obtained from the ML tree. To handle the effect of

interaction between long branches we ran an analysis with a

maximum dropset size of 3.

Results

Mitochondrial Genomes of Coleoptera

Full or partial mitochondrial genomes were newly generated

for 159 taxa by sequencing LR-PCR fragments. In addition, 86

partial or full mitogenomes from previously published sources

were incorporated for a combined data set of 245 terminals.

The small PCR fragment was represented by fewer taxa, and

thus nad2, cox1-5’, and the 12S and 16S rRNA (rrnS and rrnL)

genes were missing for 148, 142, 169, and 139, respectively,

while the remaining set was nearly complete for all taxa (sup-

plementary table S2, Supplementary Material online), and 51

taxa were represented by the complete set of genes. All ter-

minals had a minimum of 9 protein-coding fragments (of 14

fragments in total, including 2 parts of cox1) and the average

data completion was 13.1 fragments, with a total sequence

length of 6,202–11,717 bp. The aligned supermatrix con-

sisted of 11,141 characters for protein-coding genes, and

12,271 characters when the 2 rRNA genes were included.

The two supermatrices contained 15.27% and 20.29% miss-

ing data, respectively. The sampling covered all 4 suborders of

Coleoptera, 15 superfamilies of Polyphaga (only leaving out

the Derodontoidea for which no sequences were available),

and a total of 97 families.

We found several gene order rearrangements in addition to

those already described by Timmermans and Vogler (2012),

which mainly affected the ARNSEF (Ala, Arg, Asn, Ser, Glu,

Phe) cluster between the nad3 and nad5 genes. Three species

of Chrysomelidae (Exema, Crytocephalus, and Pseudocolapsis)

had the order of tRNAAla and tRNAArg reversed (RANSEF). This

state had previously been observed in Peploptera

(Timmermans and Vogler 2012), which was placed together

with the other three suggesting a single origin of this gene

order but the tree topology suggests this group to be para-

phyletic for Imatidium, Laccoptera, and Arescus which appar-

ently reverted to the ancestral state. In addition, the RANSEF

gene order was also observed in a subclade of the distantly

related melyrid lineage (Cleroidea), represented by four spe-

cies, while it was also previously reported from Naupactus

(Curculionidae) (Song et al. 2010) and other weevil species

(Haran et al. 2013; Gillett et al. 2014). A further rearrange-

ment of this tRNA cluster was seen in Cyphonistes

(Scarabaeidae: Dynastinae) (ANRSEF). This represents a new

state not previously observed in Coleoptera. Finally, the order

of the genes for tRNALys and tRNAAsp (KD) located between

the cox2 and atp6 loci was reversed (DK) in Sphindus

(Sphindidae). In addition to these various rearrangements,

we observed two anticodon changes, including a GCG to

GCU change in the tRNAAla anticodon, present in all

Polyphaga, and a change from CUU to UUU of the tRNALys

anticodon, present in all Chrysomeloidea and also two species

of Curculionoidea (only one of them represented in the tree)

(fig. 1).

Model Testing

Partitioning greatly improved the likelihood scores. The model

testing under the AIC identified the most complex partitioning

scheme (partitioning by gene and codon) as the most favor-

able, with highly significant Bayes Factors against all other
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FIG. 1.—The tree of Coleoptera based on protein-coding genes obtained with PhyloBayes. Major groups at the level of superfamily and above are

labeled, and each superfamily is illustrated with a representative line drawing. Numbers on the branches represent posterior probabilities. Changes in

anticodons of tRNALys (in Chrysomeloidea and in taxon labeled with blue triangle) and tRNAAla (in Polyphaga and taxa labeled with orange triangles) and

several newly discovered gene order changes are mapped on the tree.
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partitioning schemes (table 1). However, various partitioning

schemes contributed in different ways. Based on the �AIC,

partitioning by forward and reverse strand resulted in a major

improvement over the unpartitioned model, and this could be

improved only slightly by further partitioning by genes.

Separating the genes according to those genes most strongly

affected by compositional heterogeneity (see below) had little

impact on the AIC score. In contrast, partitioning by codon

positions had a strong effect, and this was further improved by

partitioning according to coding on the forward and reverse

strands, that is, using six partitions. The likelihood score for this

partitioning scheme was closest to that from the full partition-

ing by gene and codon, and according to the RBF, it is the

most efficient way of improving the likelihood scores per

parameter added to the model. However, based on the

Bayes Factor the model distinguishing 42 partitions was still

significantly better.

Tests of Compositional Heterogeneity

The conventional chi-square test showed that the data are

heterogeneous (P = 0 that the data are homogeneous). We

then asked if heterogeneity is uniform across the data parti-

tions by performing the test separately on each gene partition

and codon position. The 3rd codon positions were heteroge-

neous for all genes (table 2) and also showed significant levels

of saturation for about half of the gene partitions (supplemen-

tary table S3, Supplementary Material online). Therefore they

were not considered further for tests of heterogeneity. In

Table 2

Compositional Heterogeneity in Mitogenomes

Conventional Chi-square Foster (2004)

No rogue Protein

n missing 1st 2nd 1st RY 1st RY 2nd 1st two-state 1st RY 2nd 1st two-state

atp6 22 0.0999 1 1 1 1 0.2 1 1 0.21 1

atp8 1 1 1 1 1 0.36 0.53 1 0.24 0.51 0.02

cox1–50 142 1 1 1 1 1 1 1 1 1 0.85

cox1–30 43 1 1 1 1 1 0.95 1 1 0.99 1

cox2 1 1 1 1 1 1 1 1 1 1 1

cox3 2 1 1 1 1 1 0.82 1 1 0.85 0.98

Cytb 1 0.006 1 1 1 0.99 0.94 1 0.93 0.99 0.03

nad1 8 1 1 1 1 1 0.34 1 0.98 0.42 0.79

nad2 148 0 0.981 1 1 0 0 0.5 0 0 0

nad3 2 1 1 1 1 0.22 0.12 1 0.14 0.22 0.45

nad4 5 0 1 1 1 0.01 0.01 1 0 0 0

nad4L 5 1 1 1 1 0.96 0.95 1 0.96 0.99 0.73

nad5 5 0 1 1 1 0 0 1 0 0 0

nad6 5 0 1 1 1 0 0 1 0.01 0 0

NOTE.—Each gene was tested for the probability that the data are homogeneous and P values are provided in the table, separately for 1st and 2nd codon positions.
Significance of the chi-square statistic was assessed either with the chi-square curve (“conventional chi-square”) or using a null distribution as described in Foster (2004). Note
that four loci generally have low probability of homogeneity throughout. n missing, mitogenomes in the matrix not sequenced for a locus; no rogue, analysis conducted with
rogue taxa omitted; protein, analysis based on amino acid sequence.

Table 1

Likelihood and AIC Values under Various Partitioning Schemes

Partitioning No. of Partitions Parameters (k) ln(L) AIC "AIC 2� ln "BF RBF

None 1 9 �1,279,328.877 2,558,675.754 105,496.41 21.76 0.059

Forward/Reverse 2 18 �1,258,902.112 2,517,840.225 64,660.88 20.79 0.058

Homogeneous/Heterogeneous 2 18 �1,273,139.835 2,546,315.669 93,136.33 21.51 0.060

Gene 14 126 �1,256,482.92 2,513,217.84 60,038.51 20.64 0.082

Codon 1 + 2 + 3 3 27 �1,251,864.871 2,503,783.742 50,604.41 20.30 0.058

Codon 1 + 2 + 3 + Forward/Reverse 6 54 �1,229,360.303 2,458,828.606 5,649.26 16.11 0.050

Gene � codon 42 378 �1,226,211.669 2,453,179.339 n/a n/a n/a

NOTE.—The likelihood of the data under each partitioning scheme was assessed on the fixed topology of a randomized parsimony tree under a GTR +G model, with the
number of partitions, free parameters, and ln(L) scores used in the calculations given. �AIC refers to the decrease in likelihood relative to the most complex model
(partitioning by gene and codon). Values for 2� ln �BF10> 10 are usually considered to be highly significant. RBF was calculated according to Castoe et al. (2005) as 2� ln
�BF10/� parameters, to penalize greater model complexity.
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contrast, all 2nd codon position partitions appeared homoge-

neous by this test. The 1st codon positions failed for some

genes, notably cytb, nad2, nad4, nad5, and nad6, but showed

compositional homogeneity in the others. When the 1st

codon positions were RY recoded, the data set as a whole

was still heterogeneous (P = 0), but heterogeneity was no

longer apparent in the 1st codon positions when tested for

each gene individually (table 2).

The data were also assessed against data simulated under a

homogeneous model (Foster 2004), which revealed heteroge-

neity (P< 0.05) in 2nd codon positions in genes nad2, nad4,

nad5, and nad6, despite appearing homogenous in the con-

ventional chi-square test. The RY-recoded 1st positions re-

mained compositionally homogeneous. However, it could be

argued that using a two-state model would be more valid for

analysis of RY-coded matrices, rather than calculations with

DNA models. We found that this approach detected highly

significant levels of heterogeneity in the nad2, nad4, nad5,

and nad6 genes that were already implicated in 2nd position

heterogeneity above (table 2). Finally, we conducted the test

of heterogeneity on the translated protein sequence. This

showed that out of 14 gene partitions, six were heteroge-

neous (P< 0.05), and eight were not. The highest level of

significance was again observed for nad2, nad4, nad5, and

nad6 (table 2).

The RogueNaRok algorithm identified 14 (run #1) and 30

(run #2) taxa as being inconsistently placed when investigating

the placement of a single terminal or a set of two terminals,

respectively, for a total of 33 rogue taxa (supplementary table

S4, Supplementary Material online). Compositional heteroge-

neity was investigated for a reduced data set that had these

33 taxa excluded. The results were very similar to those ob-

tained with the full matrix, with heterogeneity in 2nd positions

and in the two-state model of RY-recoded 1st position sites

limited to nad2, nad4, nad5, and nad6 partitions (table 2).

Rogue taxa instead seemed to be affected by slightly lower

data completion, specifically the sequences for the short

amplicon coding for nad2 and cox1-5’, which was missing

from 22 or 23 respectively of the 33 rogue taxa. Yet, the

average completion of the data set for rogue taxa was similar

to the complete data set (12.24 vs. 12.40 protein-coding loci

per taxon; supplementary table S4, Supplementary Material

online), and >120 other taxa in the matrix were also lacking

the short fragment (supplementary table S2, Supplementary

Material online).

Phylogenetic Analysis

A series of phylogenetic analyses was conducted to assess the

effects of nonhomogeneity on tree topology. We used three

different approaches for tree searches to make use of the

available phylogenetic methods, and scored these trees for

about 30 nodes defining deep relationships that were ex-

pected based on previous work or appeared noteworthy

because they differed among the tree searches here (table 3

and supplementary table S4, Supplementary Material online).

We used PhyML and nhPhyML for assessing the sensitivity of

the topology to the introduction of branch-specific parame-

ters in the nonhomogeneous model. The tree generated with

PhyML was unsatisfactory in many regards due to the failure

of recovering several key groups, including the large suborders

Adephaga and Polyphaga, four of the five infraorders, and the

superfamilies in the species-rich Cucujiformia. We then com-

pared the topology from the nhPhyML model, which adds a

separate parameter for the nucleotide composition for each

branch. The nhPhyML tree (supplementary fig. S1,

Supplementary Material online) was greatly improved, includ-

ing the monophyly of the suborders and all infraorders.

However, in the Cucujiformia only the (reciprocal) monophyly

of Tenebrionoidea and Lymexyloidea was recovered, whereas

paraphyly remained surrounding Chrysomeloidea,

Curculionoidea, and Cucujoidea.

The RAxML software was used to assess nonhomogeneity

across the data (not across the tree, as in nhPhyML) imple-

menting independent GTR models for different partitions of

the matrix (although without allowing among-partition rate

variation that is not implemented in this software). A tree from

the unpartitioned data had many of the same undesirable

features as the PhyML tree, including the nonmonophyly of

Adephaga and Polyphaga, although with a better outcome

overall including the recovery of three of five infraorders.

Partitioning the data according to the 42 codon and gene

partitions improved the topology by recovering all 4 subor-

ders, the 5 infraorders, and most superfamilies, but problems

with the recovery of the cucujiform superfamilies were not

fully solved. The impact of including and excluding the two

rRNA genes was limited (table 3 and supplementary table S4,

Supplementary Material online). We further used the RAxML

algorithm to explore the effects of removing the most com-

positionally heterogeneous data, first by removal of 3rd codon

positions and RY coding of 1st positions, and in an additional

search we also removed the four loci showing the greatest

level of heterogeneity. Finally, we used the amino acid trans-

lation (on all protein-coding genes) (table 3 and supplemen-

tary table S4, Supplementary Material online). Although most

of the correctly recovered higher groupings were robust to the

specific data treatment, there was a general decrease in

power with the removal of data, and none of these analyses

performed better than the partitioned analysis of all nucleo-

tides. Notably, the removal of the rate-heterogeneous genes

(nad2, nad4, nad5, nad6) resulted in the loss of monophyly of

both small suborders, Myxophaga and Archostemata (supple-

mentary fig. S2, Supplementary Material online, for a tree

from a matrix RY recoded for 1st positions and 3rd positions

removed). Equally, the amino acid coding resulted in the fail-

ure to recover several key groups, including the suborder

Polyphaga that was paraphyletic due to the misplaced

Tetraphalerus and Priacma (Archostemata). Hence, the
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RAxML analysis was not greatly distorted by compositional

heterogeneity and instead suffered more from the loss of

data when the most heterogeneous positions were removed.

Finally, the CAT model in PhyloBayes also partitions the

data, but unlike the RAxML analysis these partitions are not

determined a priori but are estimated from the data them-

selves. The resulting tree (fig. 1) showed most of the features

of the trees from the partitioned RAxML analysis, but also

recovered the two large superfamilies Curculionoidea and

Chrysomeloidea that were otherwise polyphyletic with respect

to each other and included portions of Cucujoidea in all other

analyses (supplementary table S4, Supplementary Material

online). This tree also recovered a different relationship of

the four suborders, linking Adephaga with Archostemata

and not Myxophaga, and when rooted with the neuropteroid

outgroups, the relationships were (Neuropteroid (Polyphaga

(Myxophaga (Archostemata + Adephaga)))), consistent with

the findings of transcriptome analyses (Misof et al. 2014).

Removal of the four heterogeneous nad genes did not greatly

change the tree topology, although the resolution was re-

duced, indicating the loss of phylogenetic signal (supplemen-

tary table S4, Supplementary Material online). Finally, the

Bayesian analysis was run again after removal of rogue taxa,

which produced a tree very similar to that based on the com-

plete data set, with the main improvement simply due to the

absence of the inconsistently placed rogue taxa themselves.

For example, only after removing several rogue taxa, in par-

ticular the divergent sequence for Sphindus (Sphindidae), the

Nitidulid and Cucujid series of Cucujoidea each resolved as

monophyletic and combined they were the sister group to

Curculionoidea + Chrysomeloidea (supplementary table S4,

Supplementary Material online).

The Branch Length across Superfamilies

Root-to-tip branch lengths were investigated on the RY-coded

ML tree (supplementary fig. S2, Supplementary Material

online) and the Bayesian amino acid tree (supplementary fig.

S3, Supplementary Material online) for each suborder and

polyphagan superfamily (fig. 2 and supplementary fig. S4,

Supplementary Material online). Variation among these

groups was very similar for each data set. The Adephaga

and Myxophaga showed substantially shorter branches than

the two other suborders Archostemata and Polyphaga.

Shorter branches were found in several polyphagan superfa-

milies, compared with Bostrichiformia and all superfamilies of

Cucujiformia, which are sister groups in most analyses and

occupy a derived position in the tree. Within some superfami-

lies branch lengths were highly variable, for example, the two

sequences of Passalidae with extremely long branches, which

were responsible for shifting the average branch length

in Scarabaeoidea beyond the rate of other staphyliniform

lineages. Similarly high variation in branch lengths was

found in Elateroidea due to extremely long branches in

Trixagus and Mastinocerus. Extremely long branches

compared with their sister taxa were found additionally

in Melittomma (Lymexylidae), Sphindus (Sphindidae),

Cassidinae (Chrysomelidae), and others. In addition, the

rogue taxa had a tendency to exhibit faster rates of nucleotide

change, with an average branch length higher than for the

complete set of taxa (0.86997 vs. 0.73820) and many termi-

nals in the top part of the range of root-to-tip distances, and a

generally higher proportion of rogue taxa was found in super-

families with higher branch length variability (supplementary

table S5, Supplementary Material online).

Discussion

This study generated a large number of new mitogenome

sequences for the Coleoptera that more than doubles the

available sequences and now permits an analysis of molecular

evolution at the resolution of the family level. Early studies of

Coleoptera using mitochondrial genomes noted the great het-

erogeneity in nucleotide composition and molecular rate that

apparently misled the trees (Pons et al. 2010; Song et al.

2010). The sparse taxon sampling of studies conducted with

conventional Sanger sequencing may have exacerbated these

problems. If nucleotide heterogeneity is high and localized in

the tree, and if similar composition arises convergently, there

will be a tendency to create biases that overwhelm the phy-

logenetic signal. Already denser taxon sampling, the removal

of synonymous codon positions, and the use of protein se-

quences were shown to partly overcome these problems

(Timmermans et al. 2010). This is confirmed here for a

much greater set of mitogenomes. However, it was not

clear if the improved phylogenetic inference is correlated

with reduced compositional heterogeneity, and to what

degree heterogeneity can be reduced by removal of the

most affected bases and by translation to protein sequences

that might reduce the compositional bias from different

codon usage.

Previous studies have established the distribution of com-

positional heterogeneity using the disparity index ID (Song

et al. 2010) that is based on the differences in substitution

pattern for pairs of sequences deviating from expectations

under a process of uniform nucleotide change. This analysis

produced a measure of compositional heterogeneity for each

terminal relative to other taxa in the data set and found that

the more densely sampled Polyphaga exhibit the lowest cu-

mulative disparity across all pairwise comparisons, whereas

Tetraphalerus as the single representative of Archostemata

had the highest disparity when summing the ID values from

comparisons with all other taxa (Song et al. 2010). These find-

ings suggest that compositional heterogeneity is increased be-

tween distantly related taxa and therefore greater sampling

density, as available in the Polyphaga, ameliorates the prob-

lem, although residual heterogeneity remains even in very
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densely sampled mitogenome trees, for example, in a tree of

~100 taxa in the family Curculionoidea (Gillett et al. 2014).

In this study, rather than using pairwise comparisons, het-

erogeneity was assessed for the matrix as a whole, but only

after the data were partitioned by gene. This analysis showed

that compositional heterogeneity is concentrated in four

genes, all of them NADH dehydrogenases. Two of these

(nad4 and nad5) are on the reverse strand, while nad6, but

not nad2, is in proximity to these genes, encoded by the for-

ward strand. It is intriguing that these genes did not deviate in

their impact on model fit in the partitioning, as splitting them

and all others did not greatly improve the likelihood of the

model (table 1). This was in contrast to data partitioning by

forward and reverse strand that accounted for a large im-

provement in statistical fit in GTR models (i.e., under compo-

sitional homogeneity assumed by the GTR, and hence

indicating different evolutionary patterns on either strand

unrelated to compositional heterogeneity). Although RY

recoding reduced the problem of compositional heterogene-

ity, it remains strong if applying a two-state model. Equally,

the problem of compositional heterogeneity was not removed

by using the amino acid sequences. Nucleotide bias has been

shown to feed through the amino acid level; for example,

there is a correlation of AT or GC-rich mitogenomes with a

prevalence of particular amino acids, which was established

mainly in inter-phyla and inter-order comparisons of mitogen-

omes greatly differing in base composition (Foster et al. 1997;

Bernt et al. 2013; Li et al. 2015), and this seems to be con-

firmed here at a lower hierarchical level. The finding that pre-

dominantly the nad genes were affected by heterogeneity,

which are functionally linked, might suggest that variation in

the protein level and possible covariation in the NAD protein

complex drives compositional heterogeneity, rather than

some unspecified genomic process driven by strand bias.

Evolutionary shifts in mitochondrial genes have been associ-

ated with positive selection, for example, with changes to re-

spiratory function (Tomasco and Lessa 2011), although

because compositional heterogeneity in the four affected

genes is encountered in all codon positions, other explanations

due to gene-wide effects may also apply.

We also tested if exclusion of the so-called rogue taxa im-

proves the tree topology for the remaining taxa. There are

different reasons for a taxon to be rogue, and here we spec-

ulated that compositional heterogeneity is a contributing

factor, but their removal had virtually no impact on the

degree of compositional heterogeneity in the data. It is not

clear what causes their inconsistent placement instead, but

multiple factors probably contribute. Rogue taxa have a

slightly lower representation of the nad2 and cox1-5’ markers

located on the shorter PCR fragment than the matrix as a

whole. Rogue taxa also have a tendency to show higher

rates of nucleotide variation, which appears to interfere with

stability of their placement on the tree. These factors may

affect the strength of the signal through limited data or

weak long-branch attraction.

Taken together, the compositional heterogeneity in

Coleoptera mitogenomes is moderate and it is spread over

the tree somewhat evenly, and therefore heterogeneity per

se might not have a great impact on the difficulties to recover

the correct tree, in particular for those lineages where the true

phylogenetic signal is strong. We can see the effect of nucle-

otide composition alone if we construct a tree based on the

composition of each taxon. Therefore we constructed dis-

tance matrices based on nucleotide compositions and made

neighbor joining trees based on the distance matrices with the

BIONJ algorithm (Gascuel 1997). Using 100 bootstrap repli-

cates, a consensus tree showed hardly any strong (>50%)

support for any lineage, and most support was weak at

<20% (data not shown). This confirms the idea that the

effect of compositional biases on the tree topology is moder-

ate and not localized.

Heterogeneity and Tree Topology

The three major approaches using the PhyML, RAxML, and

PhyloBayes algorithms are implementations of very different

likelihood models and search strategies, whose performance

FIG. 2.—Mean branch length for major groups at suborder and su-

perfamily levels. The corresponding numbers for the amino acid tree are

provided in supplementary figure 4, Supplementary Material online.
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was assessed in the light of information about the level of

compositional heterogeneity. As the tree of Coleoptera re-

mains insufficiently known, the quality of different models

cannot be tested against a “true tree,” but the knowledge

on coleopteran phylogeny is now sufficiently good to rely on

the recovery of numerous well-established monophyletic

groups to assess the quality and thus provides guidance on

how to select the most defensible topology. In turn, the as-

sessment against those “known” nodes also provides infor-

mation on the less well-known parts of the tree to establish

basal relationships.

Only the nhPhyML analysis provides a means for testing the

effect of nonhomogeneity explicitly, as it accommodates

changing the GC/AT ratio at every node in the tree (Galtier

and Gouy 1998), although perhaps at the risk of

overparameterization. The algorithm is implemented only for

DNA data. Other tree-heterogeneous models are also imple-

mented for protein sequences, such as the nonhomogeneous

nhPhyloBayes, and the NDCH and the NDRH models (node-

discrete composition heterogeneity and node-discrete rate

heterogeneity, respectively) which allow different composi-

tions and different rate matrices on different branches, imple-

mented in P4 (Foster et al. 2009). However, neither of these

can be applied on the scale required here. The improvement

obtained from nhPhyML over the homogeneous PhyML

model was considerable, indicating the importance of taking

into account the nonhomogeneity of nucleotide composition

across the tree. This approach clearly increases the number of

higher taxa recovered, although the tree remains unsatisfac-

tory in some parts. We also conducted a RAxML analysis that

only implements the standard GTR model (i.e., it does not

parameterize tree heterogeneity), but permits partitioning of

the data according to genes and codon positions. Data parti-

tioning clearly improved the tree topology, to a similar degree

as the use of the nonhomogeneous model in nhPhyML.

However, there was no improvement after RY coding and

removal of 3rd positions, while the removal of the heteroge-

neous nad genes or the recoding as amino acids caused a

deterioration. The only obvious improvement from omitting

the 3rd position was the avoidance of long-branch attraction

for two lineages in Elateriformia, Trixagus and Mastinocerus,

which are members of distantly related families, yet display

very long terminal branches that group them together in the

RAxML tree based on all data including 3rd positions, but not

in the other analyses. Interestingly, at least with the search

strategy applied here, the nhPhyML analysis does not

overcome this problem, suggesting that the cause of the

long-branch attraction is not primarily due to nucleotide het-

erogeneity of branches. The great rate acceleration in a few

isolated taxa is a curious feature of mitogenome evolution of

Coleoptera and affects nucleotide and amino acid variation

alike (fig. 1 and supplementary figs. S2 and S3, Supplementary

Material online). There is concern that taxa affected by this

increased rate are misplaced in the tree, in particular if multiple

such sequences attract each other, but for the most striking

cases the removal of 3rd position suffices to avoid this type of

long-branch attraction.

Finally, the CAT model generated the most defensible

trees, and although the method does not address tree hetero-

geneity explicitly, apparently it is best equipped to deal with

the complex sequence variation in mitogenomes, as it pro-

vides greater flexibility for modeling different classes of sites

with independent substitution processes (Lartillot and Philippe

2004). Due to the size of the data set we used the simpler

CAT-Poisson model whose estimate of global exchange rates

(obtained empirically from the data) is shared by all sites. Yet,

the CAT and CAT-GTR models are efficient in dealing with

long-branch attraction due to their ability to account more

accurately for saturation and thus the greater power for esti-

mating the evolutionary process (Lartillot et al. 2007). These

analyses were conducted only at the level of protein se-

quences, but the improvement over other analyses is not

due to the use of protein data per se. These data are also

affected by compositional heterogeneity, and amino acid

coding performed with RAxML did not result in any improve-

ment over the analysis of the nucleotide variation (table 3 and

fig. 3). These findings further support the power of the CAT

model, at least at the level of divergence within the

Coleoptera, where saturation may still be limited. An addi-

tional conclusion from this analysis was that the removal of

rogue taxa does not greatly improve the tree topologies, while

the level of heterogeneity also is not reduced. Rogue taxa

were, however, affected by longer average branches and

hence were more prone to long-branch attraction, and their

removal facilitated the recognition of higher taxa whose limits

were blurred otherwise. For example, the sequence for

Sphindus consistently interfered with the recognition of

other lineages in Cucujoidea, and the extremely long-

branched Trixagus interfered with relationships in

Elateroidea. Both were recognized as rogue taxa.

Implications for the Phylogenetic Tree of Coleoptera

The tree topology obtained from mitochondrial genomes adds

to the growing confidence in the principal lineages of

Coleoptera attained in the last two decades (Lawrence and

Newton 1995; Hunt et al. 2007; McKenna and Farrell 2009;

Bouchard et al. 2011; Lawrence et al. 2011; McKenna, Farrell,

et al. 2015). A schematic summary of basal relationships from

various analyses is given in figure 3. The results confirm the

monophyly of the four beetle suborders; the monophyly of the

infraorders within Polyphaga; the monophyly of most of

Crowson’s superfamilies (Crowson 1970); and the monophyly

of most families (where multiple representatives were used).

The study also paints an increasingly clearer picture of the

relationships of these groups to each other, in particular in

the species-rich Polyphaga.
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Specifically, the PhyloBayes analysis is the first to favor the

sister relationship of Polyphaga to the three other suborders

based on mitochondrial genes, which is supported by the

transcriptome study of Misof et al. (2014). Rooting was critical

for this inference; data from ESTs (Hughes et al. 2006) and a

smaller set of mitogenomes (Timmermans et al. 2010) in-

cluded coleopteran ingroup taxa only and were rooted on

Archostemata, which was supported by morphological studies

(Beutel and Haas 2000; Friedrich et al. 2009) and by the abun-

dance of fossils of this presumed earliest radiation of

Coleoptera (Crowson 1960). However, rerooting these trees

with Polyphaga produces the same ingroup topology as found

here after inclusion of Neuropterida outgroups. All other mo-

lecular studies based on mitogenomic analyses to date favored

Myxophaga + Adephaga (Pons et al. 2010; Song et al. 2010;

Timmermans et al. 2010), which was also supported by the

RAxML and PhyML analyses conducted here, and which could

easily be explained by the convergent low evolutionary rates in

both suborders (fig. 2 and supplementary fig. S4,

Supplementary Material online). Previous studies combining

mitochondrial data with nuclear rRNA genes generally support

a yet different topology of Polyphaga + Adephaga (Caterino

et al. 2002; Hunt et al. 2007; Bocak et al. 2014). If indeed

Polyphaga is the sister to the other suborders, this would

reduce the imbalance of species diversity at the basal node

of the tree, given that in previous work Archostemata and

Myxophaga with less than 100 species each were thought

to be the sister of all other Coleoptera and the Polyphaga,

respectively.

Within Polyphaga, we confirm the Scirtidae/Clambidae

grade as the earliest branching lineages in Polyphaga, as

proposed by Hunt et al. (2007) and Lawrence (2001), to

form the new series Scirtiformia. The Elateriformia is the

sister to all remaining Polyphaga, again in agreement with

studies from ESTs (Hughes et al. 2006), although the RAxML

(all nucleotides) and nhPhyML analyses group them as sister

to Bostrichiformia. Internal relationships of Elateriformia re-

cover the three large groups Buprestoidea, Elateroidea, and

Dryopoidea (=Byrrhoidea minus Byrrhidae). The latter is

defined by a unique rearrangement of tRNA gene order

(Timmermans and Vogler 2012), which is confirmed here

for all members of this clade, but the position of Byrrhidae

(Byrrhoidea) and Dascilloidea remains ambiguous (supple-

mentary table S4, Supplementary Material online).

The Staphyliniformia occupying the next node is composed

of three major groups (Histeroidea, Hydrophiloidea,

Staphylinoidea) and also includes the Scarabaeiformia

(Scarabaeoidea), which should no longer be considered at

the rank of an infraorder. The staphylinoid families

Leiodidae + Agyrtidae were repeatedly recovered as sister

to Histeroidea, which interfered with the expected sister re-

lationship of Histeroidea and Hydrophiloidea (McKenna,

Wild, et al. 2015) recovered only in the PhyML analyses or

when excluding the heterogeneous loci in PhyloBayes.

Bostrichiformia were split into two clades composed of

Anobiidae (Anobiinae) + Ptiniidae and Dermestidae, and

were the sister of Cucujiformia (except in some RAxML

and nhPhyML).

Cucujiformia, the infraorder encompassing about half of all

species of beetles, was always monophyletic and consists of

sequential nodes defining major lineages including Cleroidea,

Cerylonid series (Cucujoidea), Lymexyloidea + Tenebrionoidea,

remaining Cucujoidea, Chrysomeloidea, and Curculionoidea.

The Tenebrionoidea were found as sister to Lymexyloidea

(Timmermans et al. 2010; Bocak et al. 2014; Gunter et al.

2014). The Cucujoidea can no longer be considered a valid

taxonomic group (Hunt et al. 2007; Marvaldi et al. 2009).

The mitogenomes now confirm that the Cerylonid series

(Robertson et al. 2008) is only distantly related to the other

cucujoid lineages, which include sets of families referred to

as Nitidulid, Erotylid, and Cucujid series by Hunt et al.

(2007). These groups cluster closely in the tree, either as

an unresolved grade at the base of, or as sister to,

the Curculionoidea + Chrysomeloidea. Only the PhyloBayes

analysis recovers the reciprocal monophyly of

Curculionoidea + Chrysomeloidea, which was partly interdigi-

tated in all other analyses, but the monophyly of

Chrysomeloidea is supported by the unique GCU tRNALys an-

ticodon (fig. 1).

Conclusion

The possibilities for rapid sequencing of mitochondrial ge-

nomes have brought a new perspective to the phyloge-

netics of Coleoptera. Although compositional

heterogeneity is pervasive in these data sets, the study

joins others (Talavera and Vila 2011; Li et al. 2015) in

suggesting the power of the CAT model that produced

highly satisfactory trees. Partitioned likelihood models

with the RAxML software were not much worse, but

missed a few critical relationships apparently affected by

different rates of molecular change. The problem of com-

positional heterogeneity has been considered to be a

major driver of long-branch attraction, and is frequently

thought to be reduced by RY coding and removal of 3rd

codon positions, or by using the translated protein se-

quence. Here we show that these strategies cannot

remove compositional heterogeneity completely, and

that heterogeneity is not uniformly distributed among

the various mitochondrial genes. Although removing

and recoding of codon or gene partitions may reduce het-

erogeneity, tree resolution and support are diminished. As

it has become possible to sequence mitochondrial ge-

nomes very rapidly (Gillett et al. 2014; Tang et al. 2015),

the challenge is to have implementations of the Bayesian

mixture models that can be used at the much larger scale

required for future studies.
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FIG. 3.—Schematic representation of the basal relationships from mitogenome sequences. The tree is based on the PhyloBayes analysis of figure 1, with

outgroups removed. Key nodes were scored for nine trees obtained in various analyses described in table 3.
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Supplementary tables S1–S5 and figures S1–S4 are available

at Genome Biology and Evolution online (http:// www.gbe.

oxfordjournals.org/).
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