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Influence of capillary tube length 
on the performance of domestic 
refrigerator with eco‑friendly 
refrigerant R152a
A. Baskaran1, N. Manikandan1, LetaTesfaye Jule2,3, N. Nagaprasad4, Abel Saka2, 
Bayissa Badassa5, Krishnaraj Ramaswamy3,5,6* & Venkatesh Seenivasan7

The household heating and cooling system often use the capillary device. The use of the helical 
capillary eliminates the need for lightweight refrigeration devices in the system. Capillary pressure is 
noticeably affected by the capillary geometric parameters, such as length, mean diameter, and pitch. 
This paper is concerned with the effects of the capillary length on the performance of the system. 
Three separate length capillary tubes were used in the experiment. The data on R152a were studied 
under various conditions to assess the impact of varying the length. Maximum COP is obtained at an 
evaporator temperature of − 12 °C and capillary length of 3.65 m. The result is drawn that the system 
performance enhances when the capillary length is improved to 3.65 m when compared to 3.35 m and 
3.96 m. As a result, as the capillary length increases up to a specific amount, the system’s performance 
improves. The findings from the experiment were compared with those from the computational fluid 
dynamics (CFD) analysis.

A refrigerator is a cooling appliance comprising a thermally insulated compartment, and a refrigeration system 
is a system that produces a cooling effect in the insulated compartment.As refrigeration is defined as a process 
of removing heat from a space or substance and transferring that heat to another space or substance. Nowadays, 
refrigerators are extensively used to store foods which deteriorate at ambient temperatures; spoilage from bacte-
rial growth and other processes is much slower in the refrigerator that has low temperatures. The refrigerant is 
the working fluid used as a heat absorber or cooling agent in the refrigeration process. The refrigerant collects 
heat by evaporating at low temperatures and pressures and then condenses at higher temperatures and pressures 
to release it. The region appears to cool as the heat is evacuated from the refrigerated chamber. The refrigera-
tion process takes place in a system that includes a compressor, a condenser, a capillary, and an evaporator. The 
refrigerator is the refrigeration plant employed in this study. Refrigerators are widely used around the world, 
and this equipment has become a home need. The performance of a modern refrigerator is quite efficient, but 
research to improve the system is still underway. One main disadvantage of R134a is that it is known to be 
non-toxic but has a very high Global Warming Potential (GWP). R134a, used in domestic refrigerators, was 
incorporated in the Kyoto Protocol of the United Nations Framework Convention on Climate  Change1,2. As a 
consequence, however, R134a use must be significantly  decreased3. From the ecological, fiscal, and health prob-
lems, it is important to find low global warming  refrigerants4. Multiple researches have proven that R152a is an 
ecologically sustainable refrigerant. Mohanraj et al.5 investigated the theoretical feasibility of employing R152a 
and hydrocarbon refrigerants in household refrigerators. Hydrocarbons have been found to be inefficient as 
standalone refrigerants. R152a is more energy-efficient and environmentally friendly than phase-out refriger-
ants. Bolaji et al.6. In a vapour compression refrigerator, the performance of three eco-friendly HFC refrigerants 
was compared. They came to the conclusion that R152a can be employed in vapour compression systems and 
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can be substituted for R134a. R32 has disadvantages such as high pressure and a low coefficient of performance 
(COP). Bolaji et al.7 tested R152a and R32 as replacements for R134a in a residential refrigerator. According to 
the research, R152a has a 4.7 percent higher average COP than R134a.R152a and R134a were tested in a refrig-
eration plant with a hermetic compressor by Cabello et al. 8. R152a was tested in a refrigeration system by Bolaji 
et al.9. They concluded that the R152a was the most energy-efficient, with refrigeration power per tonne of 10.6% 
less than that of the previous R134a. Higher Volumetric refrigeration Capacity and COP were demonstrated 
in R152a. Chavhan et al.10 analyzed the performance of R134a and R152a. In the research of two refrigerants 
investigated, R152a was shown to be the most energy-efficient. R152a has a COP of 3.769 percent greater than 
R134a and can be used as a drop-in substitute. Bolaji et al.11 looked studied various low GWP refrigerants as 
alternatives to R134a in refrigeration systems because they have a low global warming potential. The highest 
energy performance of the refrigerants evaluated was R152a, which used 30.5 percent less electricity per tonne 
of refrigeration than R134a. R161 will need to be redesigned completely before it can be used as a replacement, 
according to the authors. Many researchers conducted various experimental works in the domestic refrigerator 
to enhance the performance of the system with low GWP refrigerants and blend with R134a as a forthcoming 
alternative replacement in the refrigeration  system12–23. Baskaran et al.24–35 examined the performance of several 
eco-friendly refrigerants and combinations with R134a as a prospective alternative replacement in various tests 
on a vapour compression refrigeration system. Tiwari et al.36 used experimental and CFD analysis to compare the 
performance of capillary tubes with different refrigerants and tube diameters. The analysis is carried out using 
the ANSYS CFX software. The best helical coiled design is recommended. Punia et al.16 investigated the effect of 
capillary tube length, diameter, and coil diameter on LPG refrigerant mass flow rate through helical coil tubes. 
Adjusting the capillary length range between 4.5 and 2.5 m boosted the mass flow rate by an average of 25%, 
according to the findings. Söylemez et al.16 used three different turbulence (viscous) models to perform a CFD 
analysis for a fresh food compartment of a domestic refrigerator (DR) to gain insight into not only the cooling 
time rate of the fresh food compartment but also the air and temperature distribution inside the compartment 
when it was loaded. The predictions of the developed CFD model vividly illustrate the airflow and temperature 
fields inside the FFC.

This paper examines the findings of an experimental investigation conducted to establish the performance of 
a residential refrigerator using R152a refrigerant, which is environmentally beneficial and has no risk for ozone 
depression potential (ODP).

In this research, the capillary tube lengths of 3.35 m, 3.65 m, and 3.96 m are selected as test sections. Then 
experiments were conducted with the low global warming refrigerant R152a, and the performance parameters 
were calculated. The refrigerant behaviour in the capillary tube is also analyzed using the CFD software. The 
results of the CFD were compared to the results of the experiments.

Materials and methods
Setup for experiments. As shown in Fig. 1, a photographic representation of a 185-L domestic fridge, 
which is intended for research, is seen. It consists of an evaporator, a hermetically sealed reciprocating compres-
sor, and an air-cooled condenser. At the compressor intake, condenser inlet, and evaporator outlet, there were 
four gauges. To prevent vibration during testing, these gauges were installed on a panel. To read the thermo-
couple temperature, all of the thermocouple wires are connected to the thermocouple scanner. Ten tempera-
ture measures were mounted at the evaporator inlet, compressor suction, compressor discharge, the refrigerator 
compartment and inlet, condenser inlet, freezer, and the condenser outlet. The consumed voltage and current 
were also reported as well. The flow measuring instrument which was attached to the piping link was fixed to 
the wooden panel. Records were stored every 10 s using a Human Machine Interface (HMI) unit. A sight glass is 
used to check the uniformity of a condensed liquid’s flow.

To quantify the power and energy, a Selec MFM384 energy metre with a 100–500 V input voltage was used. 
System service ports were installed on the top of the compressor for charging and recharging the refrigerant. The 
first step was to drain the system of moisture via service ports. To clear the system of any pollutants, it was purged 
with nitrogen gas. The system was charged using a vacuum pump, which evacuated the device to a pressure of 
− 30 mm of mercury. Table 1 shows the technical specifications of the domestic refrigerator test unit, whereas 
Table 2 shows the measured quantities, as well as their range and precision.

The characteristics of refrigerants used in domestic refrigerators and freezers are shown in Table 3.

Test procedure
The tests were carried out in accordance with the ASHRAE handbook 2010 recommendations, under the fol-
lowing conditions:

Freezer Unit: − 19 to − 16 °C
Perishable Unit: 4–6 °C
Ambient temperature: 26–33 °C.

For good measure, furthermore, checks were performed to ensure the repeatability of the results. Temperature, 
pressure, refrigerant flow rate, and energy consumption were collected whilst the working conditions were kept 
in a stable state. Temperature, pressure, energy, power, and flow rate were all measured to determine the system’s 
performance characteristics. Using a given temperature, the refrigeration effect and COP are found for specific 
values of mass flow rate and power.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14460  | https://doi.org/10.1038/s41598-022-18606-w

www.nature.com/scientificreports/

Figure 1.  View of the experimental set.

Table 1.  Technical parameters of a Household refrigerator.

Volume of storage 169 L

Range of current 1.10 max

Range of volt 220–240 V

Range of frequency 50 Hz

Doors 1

Type of refrigerant R134a

Method of defrost system Auto defrost

Amount of charge 140 Grams

length of capillary tube 3.35 m

Inner diameter of capillary tube 0.00078 m

Capacity of cooling 182 Watts

Table 2.  Items measured, together with their range and precision.

Items Range Precision

Temperature − 40 °C to 110 °C + 0.1 °C

Power consumption 0–1000 W 1 W

Voltage 0–240 V 0.1 V

Current 0–10 A 0.1 A

Pressure 0–150 MPa + 0.7 kPa

Refrigerant flow meter 0–100 cc/s 0.1 cc/s
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CFD analysis
Pre‑processing. The influence of capillary length can be easily calculated by utilizing CFD analysis for the 
dual-phase flows inside helically coiled tubes in domestic refrigerators. The CFD analysis makes it simple to 
track the motion of the fluid particles. Using CFD programme FLUENT, the analysis of refrigerant that passes 
through inside the helical coil is performed. The dimensions of the capillary coils are presented in Table 4.

The mesh modeller of the FLUENT software will produce the design structural model and mesh (Figs. 2, 3 
and 4 display the ANSYS Fluent versions.). The pipe fluid volume was used to create the boundary mesh. Here 
is the grid that was used for this investigation.

The CFD model was developed using the ANSYS FLUENT platform. Only the moving fluid universes were 
to be represented, so the flow for each capillary coil was modelled based on the capillary’s diameter.

The GEOMETRY model was imported into the ANSYS MESH programme. The ANSYS is working on pro-
gramme code, in which ANSYS was the model combined and boundary conditions added. Figure 4 shows the 
ANSYS FLUENT Model of Tube-3 (3962.4 mm). More consistency is provided by the tetrahedron element, 
which is shown in Fig. 5. After a master mesh was created, the file was saved as a mesh. The lateral face of the coil 
is known as the inlet, and the opposite side facing the in the outflow. These circular faces remain as pipe walls. 
Fluid media is used to construct the model.

Processing

• The program used to find the solution is FLUENT. This will include the following steps:
• The model is converted to millimetres. The solution of the model’s grid was tested.
• Pressure and length units are converted to Pascal and millimetres.
• The grids and boundary conditions were visually verified by using the Grid Display option.
• The solution was chosen regardless of how the user felt about the amount of pressure, and the 3D options 

were selected. Formulas for generating electricity have been turned on.

Table 3.  The characteristics of refrigerants.

Refrigerant
Molar mass 
(kg/kmol)

Boiling point 
(℃)

Critical temp 
(℃)

Critical 
pressure (Mpa)

Critical density 
(kg/m3)

Latent heat 
(KJ/kg) ODP GWP

R134a 102.03 − 26.074 101.06 4.059 511.9 216.7 0 1370

R152a 66.051 − 24.023 113.26 4.516 368.0 329.5 0 133

Table 4.  Geometrical parameters of capillary coils.

Parameters Coil1 Coil2 Coil3

Coil inner diameter (mm) 0.7874 0.7874 0.7874

Pitch (mm) 5 5 5

Coil mean diameter (mm) 50.4 50.4 50.4

Number of turns 21 23 25

Capillary tube length (mm) 3352.8 3657.6 3962.4

Figure 2.  ANSYS FLUENT model of Tube-1 (3352.8 mm).
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• When the flow is considered chaotic, it is highly non-linear. In order to meet the K-epsilon flow was thus 
chosen.

• If a user-specified alternative is chosen, the medium will be the following: The thermodynamic properties of 
the refrigerant R152a were described. The form properties are stored as database entities.

• Copper was described as the fluid tube wall of the medium.
• The weather patterns were left unchanged. The speed of the inlet, 12.5 bar pressure, was established, and 

45 °C was described.

Figure 3.  ANSYS FLUENT model of Tube-2 (3657.6 mm).

Figure 4.  ANSYS FLUENT model of Tube-3 (3962.4 mm).

Figure 5.  Tetrahedron mesh.
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• The outlet was said to be identified by the outflow.
• The answer is left with their default settings.
• The inlet solution was used as the starting point for the solution’s calculation.
• Tetrahedron mesh and the Fluent Grid model are depicted in Figs. 5 and 6, respectively.
• Finally, in the fifteenth iteration, the solution was tested, and it converged in the fifteenth iteration, as shown 

in Fig. 7.

Post‑processing
It is the method of mapping and analyzing the findings. The contours of the pressure and temperature data are 
plotted using the monitor. After this, the overall pressure and temperature and total temperature parameters were 
determined. This data displays the overall pressure drop for the coils (1, 2 and 3) in Figs. 7, 8 and 9, respectively. 
These findings were extracted from the fluent programme.

Figure 6.  The fluent grid model.

Figure 7.  CFD result for a total pressure of Coil-1 (3352.8 mm).
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Result and discussions
Figure 10 shows the variation of COP vs various evaporation and capillary lengths. The COP increases as the 
evaporating temperature rise, as shown in the graph. When one gets to the 3.65 m and 3.96 m capillary spans, 
the most and least COP acquire. If the capillary length increases to a certain amount, the COP decreases.

Due to different levels of evaporating temperature and capillary lengths, the variation in Refrigeration capac-
ity is represented in Fig. 11. The Capillary Effect causes a reduction in the Refrigeration capacity. The lowest 
Refrigeration capacity is obtained at − 16 °C boiling point. The most Refrigeration capacity is observed in the 
capillary, whose length is about 3.65 m and − 12 °C.

Figure 8.  CFD result for a total pressure of Coil-2 (3657.6 mm).

Figure 9.  CFD result for a total pressure of Coil-3 (3962.4 mm).
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Figure 12 shows the variation of compressor power against Capillary Length and evaporating temperature. 
Furthermore, the graph shows that as the capillary length increases and the evaporation temperature lowers, the 
power decreases. Lower compressor power is obtained in the capillary length from 3.96 m at − 16 °C evaporat-
ing temperature.

Computational fluid dynamics results
For validating the CFD results, existing experimental data are utilized. In this validation, the input parameters 
considered for experimental simulation were applied for CFD simulation. The obtained results are validated 
against the static pressure magnitudes. The obtained results indicate that the static pressure at the outlet of the 
capillary tube was less when compared to the inlet of the tube. The validation result shows that an increment in 
capillary tube length up to a certain limit decreases the pressure drop. Moreover, a decrement in static pressure 
drop between the inlet and outlet of the capillary tube increases the COP of the refrigeration system. The obtained 
CFD results agree well with the existing experimental results. The validation results are shown in Figs. 13, 14, 15 

Figure 10.  Variation of COP against capillary length and evaporating temperature.

Figure 11.  Variation of refrigerating capacity against capillary length and evaporating temperature.
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and 16. In this research, three different lengths of capillary tubes were utilized. The length of the tubes is 3.35 m, 
3.65 m and 3.96 m. It was observed that the static pressure drop between the inlet and outlet of the capillary tube 
is increased when the tube length becomes 3.35 m. moreover, it was noted that the outlet pressure increases in 
the capillary tube when the tube size exists at 3.35 m.

Moreover, when the tube size is increased from 3.35 to 3.65 m, the pressure drop is decreased between the 
capillary tube’s inlet and outlet. It was observed that the outlet pressure of the capillary tube decreased drastically 
at the outlet. Due to this reason, the COP is increased at this length of the capillary tube. Further, an increment 
in the length of the tube from 3.65 to 3.96 m decreases the pressure drop again. It was observed that the pressure 
drop decreased below the optimum level at this length. It decreases the COP of the refrigerator. Therefore, the 
static pressure contours indicate that the 3.65 m length of the capillary tube produces optimum performance in 
the refrigerator. Moreover, an increment in the pressure drop increases the energy consumption.

Conclusions
From the experimental findings, it is clear that refrigerant R152a has a lower refrigerating capacity as the length 
of the tube grows longer. The refrigeration capacity is maximum for the first coil (− 12 °C) and minimum for 
the third coil (− 16 °C). Maximum COP is obtained at an evaporator temperature of − 12 °C and capillary length 

Figure 12.  Variation of compressor power against capillary length and evaporating temperature.

Figure 13.  ANSYS Fluent solution of static pressure for capillary coil 1 (3.35 m).
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of 3.65 m. The compressor power diminishes as the length of the capillary tube grows. The compressor power 
input is maximum at the evaporator temperature of − 12 °C and lowest at − 16 °C. The CFD and outlet pres-
sure readings for capillary length are compared. Thus, it is seen that the circumstances are the same in both 
instances. The result is drawn that the system output enhances when the capillary length is improved to 3.65 m 
when compared to 3.35 m and 3.96 m. As a result, as the capillary length increases up to a specific amount, the 
system’s performance improves.

Constraints necessitate the development of faster, simpler, and less expensive CFD techniques, even though 
the application of CFD in thermal-based industries and power plants will improve our comprehension of the 
dynamics and physics of a thermal analysis operation. This will help us optimize and design existing equipment. 
The advancement of CFD software will make automatic design and optimization a reality, and the creation of a 

Figure 14.  ANSYS Fluent solution of static pressure for capillary coil 2 (3.65 m).

Figure 15.  ANSYS Fluent solution of static pressure for capillary coil 3 (3.96 m).
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web-based CFD will increase accessibility to the technology. All of these advancements will help CFD develop 
into an established field and potent engineering tool. The use of CFD in thermal engineering will therefore 
become more widely and quickly adopted in the future.

Data availability
The data are included within the article.
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