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Abstract: This study aimed to investigate which of the two frequently adopted perfusion models
better describes the contrast enhanced ultrasound (CEUS) perfusion signal in order to produce
meaningful imaging markers with the goal of developing a machine-learning model that can classify
perfusion curves as benign or malignant in breast cancer data. Twenty-five patients with high
suspicion of breast cancer were analyzed with exponentially modified Gaussian (EMG) and gamma
variate functions (GVF). The adjusted R2 metric was the criterion for assessing model performance.
Various classifiers were trained on the quantified perfusion curves in order to classify the curves
as benign or malignant on a voxel basis. Sensitivity, specificity, geometric mean, and AUROC were
the validation metrics. The best quantification model was EMG with an adjusted R2 of 0.60 ± 0.26
compared to 0.56 ± 0.25 for GVF. Logistic regression was the classifier with the highest performance
(sensitivity, specificity, Gmean, and AUROC = 89.2 ± 10.7, 70.0 ± 18.5, 77.1 ± 8.6, and 91.0 ± 6.6,
respectively). This classification method obtained similar results that are consistent with the current
literature. Breast cancer patients can benefit from early detection and characterization prior to biopsy.

Keywords: perfusion/models; breast carcinoma; contrast enhanced ultrasonography; prognostic
factors; quantitative analysis

1. Introduction

Breast cancer constitutes the most common neoplasm in women and accounts for 30%
of all recently diagnosed cancer in women [1]. Early detection and treatment are the most
significant factors for reducing mortality and improving quality of life [2]. Mammography
is the modality of choice for screening, which has been proven to reduce mortality due to
breast cancer [3,4]. However, it exhibits low sensitivity (30–48%) in dense breasts [3], result-
ing in misdiagnosis and a high rate of false negative cases [5]. In addition, mammography
exhibits limited diagnostic sensitivity (65.2%) for small lesions (≤1.0 cm) compared to ul-
trasound (85.1%), regardless of breast density [6]. Consequently, the majority of cancer-free
women pay a high price in terms of false positive results, especially in the United States [7].

On the contrary, contrast enhanced ultrasound (CEUS) has been found to improve
diagnostic efficacy compared to mammography or unenhanced ultrasound [8–10] because it
also evaluates blood perfusion from tumor-induced neovascularity [11]. Published studies
have shown that CEUS increases accuracy in distinguishing benign from malignant breast
lesions having both qualitative [12] and quantitative [13] features. Furthermore, CEUS can
improve the diagnosis of breast cancer in early stages because it can accurately differentiate
benign from malignant lesions [14], and it can help to prevent unnecessary biopsies because
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of its high negative predictive value (100% on BIRADS III and 89.2% on BIRADS IV) [15].
Moreover, a recent systematic review of 51 studies with 4875 patients reported an high
overall sensitivity reaching 88%.

Aside from CEUS and mammography, dynamic contrast-enhanced MRI (DCE-MRI)
is a popular and important tool for breast lesion characterization [16]. The large number
of freely accessible breast cancer datasets led to an increase in studies on breast lesion
classifications [17–22], which exhibit high accuracy and AUROC (above 80%) [23–25]. Ad-
ditionally, in a recent radiomic analysis including contrast enhanced mammography data,
the authors presented a high AUROC varying from 89% to 96% for classifying benign and
malignant breast lesions [26]. By conducting bibliography research on computed tomogra-
phy (CT), it is evident that no efforts have been devoted to breast lesion classification but
only to breast tissue classification (i.e., fatty, glandular, or dense) [27].

CEUS is a perfusion imaging technique that uses perflubutane as a contrast agent.
Vascular perfusion can be visualized in real time through the contrast effect of 2–3 µm
perflubutane microbubbles [28,29]. Therefore, the dynamic scan can produce parametric
maps of hemodynamic parameters via pharmacokinetic modeling. Hemodynamic parame-
ters or parametric maps are limited because of the high cost of the commercially available
products and the lack of freely accessible quantification software. Therefore, the majority
of studies aiming to classify breast lesions as benign or malignant utilized qualitative or
semantic tumor characteristics such as the shape, diameter, and boundaries, as presented
in a recent systematic review [11].

The aim of this study was two-fold. Firstly, we investigated which semi-quantitative
perfusion model better described the behavior of CEUS curves. Secondly, we built a
machine-learning framework that used quantitative and statistical characteristics of each
CEUS curve to classify breast lesions as benign or malignant. To the best of our knowledge,
we are the first to develop a classification model directly from perfusion curves with the
aim of characterizing each image voxel as benign or malignant.

2. Materials and Methods
2.1. Study Population

From June 2019 to May 2021, we performed CEUS on a total of 27 breast lesions
(BI-RADS IV) in 27 women at our local hospital. However, 2 patients were excluded
due to patient motion during dynamic contrast enhanced ultrasound examination. Thus,
25 patients were included in the study. After each patient underwent ultrasound-guided
biopsy, we determined that 14 had histopathologically proven breast cancer and the rest
had benign lesions, mainly fibroadenomas. Patient characteristics can be found in Table 1.

Table 1. Patient characteristics.

Characteristics n

Total patients 25
Women 25
Age (in years)
Mean 52.3
Median 50
Range 28–79
Histopathological grades
BIRADS IV 25
Benign lesions 14
Malignant lesions 11
Number of benign voxels 22,446
Number of malignant voxels 65,762

The inclusion criteria were women who underwent conventional US for (a) a screening
procedure or (b) the characterization of a known palpable lesion or (c) a detectable finding
from the US that required biopsy. The exclusion criteria were women with (a) known
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metastatic breast cancer diagnosed by biopsy or (b) US findings that had not been confirmed
by biopsy.

2.2. Imaging Protocol

This study was conducted at the US department of “Venizeleio” General Hospital with
an iU22 Ultrasound System (Philips, Bothell, WA, USA). A CEUS study was performed
involving women with a suspicious ultrasound breast finding, for which a biopsy was
required. The sample was sent for pathological examination, and the result were compared
to the contrast enhancement pattern of the lesion. The pathology report served as the
ground truth for the development of the CEUS classification model.

2.3. Data Pre-Processing

As raw DICOM CEUS data are usually stored in a multi-channel video format, the
first step was to convert videos into grayscale using the luminance algorithm [30]. The
next step was to extract B-mode and CEUS sequences with automated video-cropping
techniques using the DICOM tag “SequenceOfUltrasoundRegions”. Subsequently, videos
were temporally sub-sampled to 1 s resolution to facilitate the quantitative model-fitting
process. In order to avoid motion artifacts, videos were registered in the temporal domain
using the pyStackReg library https://pypi.org/project/pystackreg (accessed date: 10 Octo-
ber 2021) for Python [31]. Lastly, a clinical expert delineated the suspicious regions from
which dynamic signal curves were extracted. The pre-processing steps are summarized in
Figure 1.
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2.4. CEUS Quantification, Parametric Mapping

In order to extract quantitative voxel-by-voxel markers from the perfusion curves, two
functions were used to fit each curve. The first was the exponentially modified Gaussian

https://pypi.org/project/pystackreg


Diagnostics 2022, 12, 425 4 of 11

(EMG) function, presented in Equation (1), and the second was the Gamma variate function
(GVF), presented in Equation (2):

F(t) =
ac
√

2π

2d
exp

(
b− t

d
+

c2

2d2

)[
d
|d| − er f

(
b− t√

2c
+

c√
2d

)]
(1)

where er f (t) is the Gaussian error function, er f (t) =
∫ t
−t e−x2

dx.

G(t) = A ta exp
(
− t

b

)
(2)

In both equations, the unknown parameters a, b, c, and d for Equation (1) and A, a, and
b for Equation (2) do not have physiological meaning; thus, optimization was performed in
the range of real numbers using the Levenberg–Marquardt algorithm [32].

After fitting Equations (1) and (2) to the perfusion curves per voxel, a variety of semi-
quantitative parameters could be computed using the first derivative of each of the functions
such as: wash-in, wash-out, time to peak (TTP), and time to maximal slope (TMSP).
More precisely, wash-in and wash-out describe the rate of change of contrast’s agent
inflow and outflow, respectively. Mathematically, this is described as the maximum and
minimum value of the derivative, respectively. TTP is the time required for Equations (1)
and (2) to reach their maximum value. TMSP reflects the time point of maximum wash-in.
Computationally, TMSP is the time required for the first derivative of Equation (1) to reach
its maximum value. These equations have been used to describe the dispersion of a bolus as
it passes through a series of compartments, mainly for perfusion modeling [33–36]. Further
information and graphical representation of the quantitative markers for EMG can be found
in [37,38].

Aside from the aforementioned imaging markers (wash-in, wash-out, TTP, and TMSP),
we calculated the area under the perfusion curve (AUC) and the mean slope of increase
(MSI). Assuming Ct(t) to be the perfusion curve and t0 to be the final time of the baseline,
MSI was computed by the following formula:

MSI =
1
N

tN=TTP

∑
t1=t0

Ct(ti+1)− Ct(ti) (3)

2.5. Goodness of Fit

The criterion chosen to assess the goodness of fit between model function and data
(CEUS curves) was the adjusted R2 (R2), a generalized metric that is based on R-squared(

R2). This metric is suitable for the purpose of this study since it accounts for both the
number of temporal points of the curve (N) and the number of explanatory variables (p) of
the model [39]. R2 is given in Equation (4) and its values range from 0 to 1.

R2
= 1−

(
1− R2

) N − 1
N − p− 1

(4)

2.6. Machine-Learning Pipeline
2.6.1. Feature Extraction

Since our dataset was limited in the number of enrolled patients, classification anal-
ysis was performed on a voxel-by-voxel basis using the perfusion curves from each ROI
delineated by the expert. For the differentiation between benign and malignant tissue types
from each ROI, two sets of features depending on the fitting equation were extracted. The
first feature set (EMG set) included both statistical features and semi-quantitative metrics
stemming from the EMG-fitted curve, as previously described. Thus, the first set of features
(EMG set) included wash-in, wash-out, TTP, TMSP, AUC, MSI, mean, median, max, and
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standard deviation(SD). The GVF set was the same as the first and differed only in that the
first 6 features were computed from the fitted GVF function on CEUS curves.

2.6.2. Feature Selection

In order to make our model more robust and reliable, the minimum redundancy
maximum relevance feature-selection algorithm from the pymrmr library [40] was used to
identify the most relevant patterns in the training set.

Minimum redundancy maximum relevance (MRMR) is a supervised feature-selection
algorithm (i.e., uses both the input features and output class labels). The aim of MRMR
is to find the set of features that best matches the output class labels while minimizing
redundancy among selected features. In order to find the best match between the features
and the output labels, MRMR usually deploys the mutual-information framework. Further
information can be found in [40].

2.6.3. Classification

Differentiation between benign and malignant breast lesions was achieved using a va-
riety of classifiers obtained from the scikit-learn library [41] such as: quadratic discriminant
analysis (QDA), Gaussian naïve Bayes (GaussianNB), AdaBoost, random forest, k-nearest
neighbors (KNeighbors; k = 3), and logistic regression. We used a support vector machine
(SVM) with the radial basis function kernel (RBF).

In the context of perfusion curves differentiation (benign or malignant), all classifiers
were trained in a 10-fold cross-validation scheme on the extracted curve features. Data
stratification was applied on a patient basis across folds, avoiding sample selection bias
and overfitting of models.

2.6.4. Model Evaluation Metrics

In order to evaluate the classification performance, the standard deviations of several
metrics (for each fold) were calculated on the unseen testing sets. The metrics assessing
performance included sensitivity = TP

TP+FN , speci f icity = TN
FP+TN , and geometric mean

Gmean =
√

sensitivity× speci f icity. TP, TN, FP, and FN stand for true positive, true nega-
tive, false positive, and false negative, respectively. The geometric mean aggregates both
sensitivity and specificity, and it is suitable for imbalanced datasets. Moreover, the area
under the receiver operating characteristic (ROC) curve (AUROC) was calculated. The
ROC curve is a two-dimensional graph in which the y-axis indicates the true-positive rate
and the x-axis indicates the false-positive rate. It has been extensively used to evaluate
medical decision-making and machine-learning systems. Please note that AUROC differs
from AUC, which is the area under the perfusion curve.

3. Results
3.1. Goodness of Fit

The mean value ± the standard deviation of the goodness of fit metric R2 calcu-
lated from all voxels inside the suspicious areas for the two models, EMG and GVF, was
0.60 ± 0.26 and 0.56 ± 0.25, respectively.

Wash-in- and AUC-produced parametric maps after voxel-by-voxel fitting to the CEUS
perfusion data using Equations (1) and (2) are presented in Figures 2 and 3. The parametric
maps of a benign fibroadenoma patient are shown in Figures 4 and 5.
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3.2. Machine Learning
3.2.1. Feature Selection

The best selected features from the EMG feature set were wash-in, AUC, SD, max, TTP,
and mean. In addition, the best selected features from the GVF set were WIN, AUC, SD,
Max, mean and wash-out.

3.2.2. Classification Results

The metrics for the classification for benign and malignant tissue types are summarized
in Table 2 for the EMG feature set and in Table 3 for the GVF feature set.

Table 2. Classification metrics ± standard deviation per classifier using EMG feature set.

Classifiers Sensitivity Specificity Gmean AUROC

QDA 69.7 ± 20.8 88.5 ± 12.0 76.8 ± 10.9 89.7 ± 5.4
GaussianNB 69.0 ± 22.1 90.7 ± 11.2 77.2 ± 12.5 89.8 ± 7.4

AdaBoost 87.4 ± 11.9 62.6 ± 21.5 72.2 ± 11.4 87.9 ± 9.7
Random forest 88.3 ± 11.8 70.3 ± 17.5 77.6 ± 9.2 87.1 ± 9.8

KNeighbors 85.4 ± 11.5 55.6 ± 15.1 67.9 ± 9.1 76.7 ± 9.2
Logistic regression 89.2 ± 10.7 70.0 ± 18.5 77.1 ± 8.6 91.0 ± 6.6

SVM 88.1 ± 11.4 68.6 ± 18.6 76.7 ± 11.1 87.9 ± 10.8

Table 3. Classification metrics ± standard deviation per classifier using GVF feature set.

Classifiers Sensitivity Specificity Gmean AUROC

QDA 70.4 ± 21.5 83.8 ± 18.6 74.2 ± 12.5 87.6 ± 7.1
GaussianNB 67.8 ± 23.0 87.6 ± 19.3 74.2 ± 14.4 88.8 ± 6.6

AdaBoost 89.2 ± 11.3 57.1 ± 20.1 69.5 ± 10.6 86.6 ± 9.8
Random forest 90.4 ± 10.1 60.8 ± 25.8 71.9 ± 14.3 86.5 ± 11.8

KNeighbors 86.6 ± 9.8 52.9 ± 15.8 66.3 ± 8.7 76.1 ± 7.5
Logistic regression 88.5 ± 13.3 66.3 ± 22.4 74.6 ± 11.8 89.0 ± 11.0

SVM 89.2 ± 10.3 56.2 ± 25.1 68.1 ± 15.9 85.8 ± 9.2

4. Discussion

In this work, two functions were used to quantify CEUS perfusion signals into mean-
ingful imaging markers with the goal of building a machine-learning model that can classify
the perfusion curves as benign or malignant.

Concerning the quantification of the CEUS curves, the model that better described
CEUS perfusion was found to be the exponentially modified Gaussian function (EMG)
according to the adjusted R2 criterion. This is a logical outcome since the EMG function
has more degrees of freedom (four parameters) in fitting the CEUS data than the gamma
variate function (three parameters). In addition, GVF model was found to be more sensitive
to noise compared to EMG as it failed to quantify a non-negligible number of voxels.
This could be attributed either to high level of noise in the temporal data or to numerical
errors in the computation of the derivative, which is prerequisite for obtaining the wash-in
parameter. This can be easily observed in the wash-in values (Figures 2C,E and 4C,E) where
several voxels appear without color.

Quantitative models aim to describe physiology and use appropriate simplifications
such as the number of compartments to derive a mathematical model. On the contrary,
semi-quantitative methods are data-driven and do not attempt to model the underlying
physiology. The major advantage of using semi-quantitative models for breast perfusion
evaluation is the exclusion of the arterial input function (AIF). In addition, semi-quantitative
models are less prone to numerical errors, having a one-step process as opposed to a more
complex workflow [38]. In such acquisitions where the imaging field of view is focused on
the lesion, and the area of the artery is frequently non-visible. This is a different approach
from the widely used perfusion models such as the extended Tofts model, Patlak’s model,
etc. [42,43], where the AIF is mandatory for quantification.
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Regarding the classification analysis, the EMG feature set (Table 2) expectedly per-
formed better than the GVF feature set (Table 3) according to the AUROC metric. This
metric was preferred over the others because it is indicative of the separability between
classes because it takes into account sensitivity and specificity. Keeping that in mind, the
logistic regression classifier exhibited the best performance with both feature sets. The geo-
metric mean was incorporated in our study since it is a more suitable metric for handling
unbalanced datasets [44,45]. Our machine-learning method is based on training classifiers
with features obtained from every voxel inside the breast lesion, with 22,446 benign and
65,762 malignant voxels.

CEUS has the potential to improve the diagnostic efficacy of mammography. Notably,
the results of our study on breast cancer classification are in line with a recent review of
51 CEUS-based studies that reported a mean sensitivity of 0.88. and a mean AUROC of
0.91 [11].

To the best of our knowledge, this is the first study to distinguish benign and malignant
tissue types using CEUS perfusion curves on a voxel-by-voxel basis. A similar approach
was investigated by Ta et al., who reported an ACC of 100% in a cohort of 10 rat tumors [46].
As a result, our study lacks a point of comparison. There are similar studies, such as those
on region-based quantitative classification analysis; Kapetas et al. reported an AUROC of
0.812% in a cohort of 65 patients [47], Janu et al. reported an AUROC of 78% in a cohort of
230 patients [48], and Park et al. reported an AUROC of 0.841 in a cohort of 98 patients [49].

Although this study exhibited promising results, there is room for improvement. For
example, a larger patient cohort would make our analysis more statistically robust. In
addition to the dynamic data that were used, a larger patient cohort would introduce more
spatial and textural information to the model such as radiomics.

5. Conclusions

In conclusion, we presented a novel approach based on dynamic CEUS signal curves
for the classification of benign and malignant breast lesions. The EMG feature set exhibited
the highest performance (AUROC 91%) in distinguishing malignant and benign lesions on
a voxel-by-voxel basis. This framework has the potential to evolve into an objective diag-
nostic support tool using the dynamic signal characteristic of CEUS, reducing unnecessary
biopsies in breast cancer screening programs.
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