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Abstract
Radiomics allows the extraction of quantitative features from medical images such as CT, MRI, or PET, thereby pro-
viding additional, potentially relevant diagnostic information for clinical decision-making. Because the computation 
of these features is performed highly automated on medical images acquired during routine follow-up, radiomics 
offers this information at low cost. Further, the radiomics features can be used alone or combined with other clinical 
or histomolecular parameters to generate predictive or prognostic mathematical models. These models can then be 
applied for various important diagnostic indications in neuro-oncology, for example, to noninvasively predict rele-
vant biomarkers in glioma patients, to differentiate between treatment-related changes and local brain tumor relapse, 
or to predict treatment response. In recent years, amino acid PET has become an important diagnostic tool in patients 
with brain tumors. Therefore, the number of studies in patients with brain tumors investigating the potential of PET 
radiomics or combined PET/MRI radiomics is steadily increasing. This review summarizes current research regarding 
feature-based PET as well as combined PET/MRI radiomics in neuro-oncology.

Key Points

	•	 Radiomics allows extraction of quantitative imaging parameters from routine imaging 
data.

	•	 PET and combined PET/MRI radiomics provide essential diagnostic information in 
neuro-oncology.

Machine learning is a widely used term that summarizes ad-
vanced statistical methods that can be used for the high-
throughput extraction of quantitative features from medical 
images such as MRI or PET. These imaging features are usually 
beyond visual perception and not accessible through conven-
tional visual image interpretation.1 The conversion of medical 
images into data that can be combined with clinical data such 

as histomolecular findings or survival data subsequently to 
generate mathematical models is termed Radiomics.1–3 These 
models can be used to estimate the prognosis or derive cru-
cial biomarkers noninvasively. Importantly, radiomics allows 
the automated extraction of additional, potentially relevant in-
formation for clinical decision-making from imaging data at low 
cost, because these images are already acquired during routine 
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follow-up. Because imaging is particularly important in pa-
tients with brain tumors, the number of studies evaluating 
this method’s benefit in neuro-oncology has been rapidly 
growing in recent years. Currently, the majority of studies 
applying radiomics are based on structural or advanced 
MRI techniques such as perfusion-weighted or diffusion-
weighted imaging.

PET uses a variety of radiotracers and targets molec-
ular and metabolic processes with a high specificity.4,5 In 
addition to the structural information obtained from con-
ventional MRI, PET imaging provides information about 
tumor metabolism. This additional information often en-
ables an improved diagnosis and treatment management. 
Accordingly, the Response Assessment in Neuro-Oncology 
(RANO) Working Group and the European Association of 
Neuro-Oncology (EANO) recommend the use of PET im-
aging in patients with brain tumors in addition to MRI at all 
stages of the disease.6,7

A variety of radiotracers are available for patients with 
brain tumors such as 2-[18F]-fluoro-2-deoxy-D-glucose 
(FDG) for assessment of glucose metabolism, [18F]-3′-
deoxy-3′-fluorothymidine (FLT) for evaluation of the pro-
liferative activity of tumor cells, [18F]-fluoromisonidazole 
(FMISO) for detection of hypoxia, and amino acid PET 
tracers such as [11C]-methyl-L-methionine (MET), O-(2-[18F]-
fluoroethyl)-L-tyrosine (FET), 3,4-dihydroxy-6-[18F]-fluoro-
L-phenylalanine (FDOPA), or [18F]-fluciclovine (FACBC) 
targeting the overexpression of L-type amino acid trans-
porter (LAT) system subtypes LAT1 and LAT2. In particular, 
the diagnostic value of amino acid PET tracers has been 
extensively validated over the past years in patients with 
brain tumors.5–9 Consequently, the number of studies in 
patients with brain tumors investigating the potential of 
PET radiomics or combined PET/MRI radiomics based on 
radiolabeled amino acids is steadily increasing.

This review summarizes current research about feature-
based PET as well as combined PET/MRI radiomics in 
neuro-oncology. The discussed studies and the key results 
are also summarized in Table 1.

PET/MRI Radiomics in Neuro-oncology

Determination of Tumor Proliferation in Gliomas

Knowledge about the proliferative activity of brain tumor 
tissue may be of value for the neuropathological differen-
tial diagnoses and the treatment management in patients 
with gliomas. For example, the proliferative activity of tu-
mors can be assessed by immunohistochemistry using 
the marker Ki-67. Since to date the assessment of Ki-67 re-
quires tissue samples, the noninvasive determination of 
the tumor proliferation is under investigation.

The potential of radiomics for predicting the Ki-67 ex-
pression levels was investigated by Kong et al. using the 
tracer FDG.10 More than 1500 radiomics features were ex-
tracted from unfiltered and filtered FDG PET scans from 
123 patients with primary glioma using the open-source 
PyRadiomics package in python (https://github.com/
Radiomics/pyradiomics).11 Before model generation, the 
patient cohort was randomly assigned to a training cohort 

(n = 82), and a test cohort (n = 41). After feature selection 
using the Wilcoxon rank-sum test followed by multivariate 
logistic regression with least absolute shrinkage and selec-
tion operator (LASSO) regularization, 9 radiomics features 
were used for the final model constructed by a kernel-
based support vector machine. The radiomics model 
achieved a moderate diagnostic accuracy for the prediction 
of the Ki-67 expression levels of 82% in the training cohort, 
and 73% in the test cohort.

Mitamura et al. used the nucleoside analog FLT for the 
evaluation of the proliferative activity in 37 patients with 
newly diagnosed gliomas.12 Two conventional PET param-
eters and 5 textural features were extracted, and linear 
regression analysis was used to compare the parameters 
with the proliferative activity determined by the Ki-67 
index. The textural features kurtosis (r  =  0.49; P  =  .003), 
entropy (r = 0.73; P < .001), and uniformity (r = −0.62; P < 
.001) showed the highest correlation with the Ki-67 index, 
outperforming conventional parameters such as the mean 
tumor-to-brain ratio (r  =  0.39; P  =  .02) or the metabolic 
tumor volume (r = 0.40; P = .02).

Differentiation of WHO Tumor Grades and the 
Prediction of Prognosis in Gliomas

Since the publication of the revised World Health 
Organization (WHO) Classification of Tumors of the Central 
Nervous System in 2016,13 the glioma genotypes’ charac-
terization has become increasingly important. At present, 
for the determination of the genotype, the acquisition of 
tissue samples is indispensable.

Pyka et al. evaluated whether PET radiomics using the 
amino acid tracer FET may contribute to the classifica-
tion of gliomas.14 A large group of 113 patients with WHO 
grade III or IV gliomas was retrospectively analyzed. Mean 
and maximum tumor-to-brain ratios, as well as textural 
features, were obtained from FET PET. The value of these 
parameters for the differentiation between WHO grade III 
and IV gliomas was assessed by receiver operating char-
acteristic (ROC) and discriminant function analyses. The 
combination of textural features and metabolic tumor 
volume resulted in the highest discriminatory power with 
an area under the ROC curve (AUC) of 0.83. Furthermore, 
textural features derived from FET PET correlated with the 
prognosis of the patients in terms of progression-free and 
overall survival.14

Papp et al. used the amino acid tracer MET for survival 
prediction in a group of 70 patients with newly diagnosed 
glioma.15 Clinical patient data, histomolecular characteris-
tics, and radiomics features were combined and resulted 
in a total number of 56 features for each patient. After rel-
evant features were identified by feature selection, mathe-
matical models for predicting overall survival of more than 
36  months were generated. The model which combined 
patient characteristics, histomolecular, and radiomics fea-
tures yielded the highest diagnostic accuracy based on 
the Monte Carlo cross-validation (AUC, 0.90) for survival 
prediction.

Another study by Muzi et  al. used the hypoxia PET 
tracer FMISO to examine the potential of maximum or 
mean tracer uptake combined with radiomics features to 
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prognosticate the overall survival.16 In a group of 72 pa-
tients with 69 glioblastomas, 86 radiomics features were 
extracted from FMISO PET using the Medical Image 
Analysis toolkit implemented in R.17 For model generation, 
clinical and standard PET parameters were added to the 
radiomics features. After feature selection, the additional 
prognostic benefit of radiomics features was assessed and 
led to an increase of the concordance indices from 72% 
to 77%.

The tracer FDG was also evaluated for the prediction of 
prognosis in 127 glioma patients.18 Before evaluation, the 
patient cohort was randomly subdivided into a training 
cohort (n = 84), and a test cohort (n = 43). Radiomics fea-
tures were calculated using PyRadiomics.11 A total of 1561 
features were extracted from unfiltered (99 features) and 
filtered images (1462 features). After feature selection, the 
best performing model generated by multivariable logistic 
regression consisted of 11 radiomics features and 2 clinical 
features and stratified patients according to overall sur-
vival differences. Again, the combination of radiomics fea-
tures with clinical parameters yielded the best diagnostic 
performance for predicting prognosis.

Prediction of Molecular Markers in Gliomas

As mentioned previously, molecular markers are an essen-
tial part of the revised WHO classification of brain tumors 
of 2016. The clinically most relevant biomarkers are muta-
tions of the isocitrate dehydrogenase (IDH) genotype or the 
loss of heterozygosity of the 1p/19q chromosome arms, but 
determination necessitates tissue samples.19–21 Although 
not part of the current WHO classification of brain tumors, 
the O6-methylguanine-DNA-methyltransferase (MGMT) 
promoter methylation status is also clinically relevant as it 
allows to predict the response to alkylating chemotherapy 
in glioma patients.22 Reliable methods for a noninvasive 
determination of molecular markers would, therefore, 
be of high clinical relevance. Accordingly, several studies 
have addressed the value of PET radiogenomics for prog-
nosticating these molecular markers.

Li et al. evaluated the potential of FDG PET radiomics for 
the assessment of the IDH genotype in 127 patients with 
gliomas. The final model combined 11 radiomics features 
and 2 clinical features and achieved high diagnostic ac-
curacy for IDH genotype prediction in the training cohort 
(AUC, 0.91) and the test cohort (AUC, 0.90).

Besides FDG, also amino acid PET radiomics was inves-
tigated for the noninvasive prediction of the IDH genotype. 
Lohmann et al. performed a radiomics analysis based on 
the amino acid PET tracer FET for the prediction of the IDH 
genotype in 84 glioma patients.23 In total, 39 features were 
calculated using the software LIFEx (https://lifexsoft.org).24 
After feature selection using the Fisher score, a 2-parameter 
logistic regression model achieved the highest diagnostic 
accuracy of 80% after 10-fold cross-validation. A subgroup 
analysis of patients investigated on a high-resolution ded-
icated BrainPET scanner revealed an increased diagnostic 
accuracy of 86% after 10-fold cross-validation. The model’s 
better performance in the subgroup of patients examined 
on the BrainPET scanner is likely due to its higher spatial 
resolution and sensitivity.
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Several studies investigated the potential of PET 
radiogenomics for the diagnosis of other molecular 
markers. Haubold et  al. used FET PET/MRI radiomics 
to predict the IDH genotype, the 1p/19q codeletion, the 
MGMT promoter methylation status, and the alpha thal-
assemia/mental retardation syndrome X-linked (ATRX) 
genotype in 42 glioma patients.25 A  total of 19 284 fea-
tures were extracted from unfiltered and filtered images 
using PyRadiomics.11 After feature selection, the models 
were generated using linear support vector machines and 
random forest classifier. The best performing models pre-
dicted the MGMT status, the ATRX mutation, the IDH gen-
otype, and the 1p/19q codeletion with a relatively high 
accuracy (AUC range, 0.76–0.98). It should be noted that 
all final radiomics signatures included only radiomics fea-
tures extracted from MRI. Limitations of this study, how-
ever, are the small number of patients in combination with 
the large number of features, and the fact that PET features 
were not integrated into the final models. As suggested by 
the authors, this topic should be further investigated with a 
higher number of patients.

Radiomics features extracted from MET PET images 
were used by Yu et al. to predict the MGMT promoter meth-
ylation status.26 MET uptake values, and histogram and 
texture features were computed in a group of 75 glioma 
patients. Because only individual features were compared 
for classification, neither feature selection nor model gen-
eration was performed. The authors only reported that 
the histogram features skewness and kurtosis had signif-
icantly higher values in patients with methylated MGMT 
promoter.

Besides amino acid PET tracers, FDG was also used for 
radiomics-based prediction of the MGMT promoter methyl-
ation status. Kong et al. calculated 1561 radiomics features 
from FDG PET scans of 107 patients with newly diagnosed 
glioma.27 The patient cohort was randomly assigned to a 
training cohort (n = 71), and a test cohort (n = 36). The most 
relevant features were selected by the sequential appli-
cation of the Wilcoxon rank-sum test and logistic regres-
sion with LASSO regularization. The final model included 
5 features, and the final support vector machine classifier 
model achieved an AUC of 0.94 in the training and 0.86 in 
the test dataset.

Differentiation of Brain Tumor Relapse from 
Treatment-Related Changes

In patients with brain cancer, the early differentiation be-
tween tumor relapse and treatment-related changes such 
as pseudoprogression or radiation necrosis is of utmost 
clinical importance.5,28–30 Because conventional MRI alone 
cannot reliably differentiate between treatment-related 
changes and tumor recurrence, several studies have inves-
tigated the potential value of PET/MRI radiomics for this 
clinically challenging task.

Wang et al. used FDG PET, MET PET, and structural MRI 
images from 160 glioma patients for the development of 
a model to reliably diagnose tumor recurrence.31 Before 
further processing, the patient cohort was divided into 
a training cohort (n = 112) and a test cohort (n = 48). The 
LASSO regression model was used for feature selection, 

and the model for predicting tumor recurrence was built 
using multivariable logistic regression analysis. The best 
performing model comprised 15 features from all 3 im-
aging modalities and had an AUC of 0.91 in the test dataset.

Hotta et al. used MET PET radiomics for distinguishing 
recurrent brain tumor from radiation necrosis in 41 patients 
with 44 brain tumors (gliomas, n = 23; metastatic brain tu-
mors, n = 21).32 Forty-two features were extracted, and the 
Gini index was used for the assessment of the most impor-
tant features for classification. The random forest classifier 
was used for model generation, and the performance was 
evaluated by 10-fold cross-validation and achieved an AUC 
of 0.98 for the differentiation of recurrent brain tumor from 
radiation necrosis.

Lohmann et  al. evaluated the potential of a combined 
analysis of FET PET and MRI radiomics for distinguishing 
brain metastases recurrence from treatment-related 
changes in a group of 52 patients.33 Diagnoses were deter-
mined histologically in 19 patients or clinicoradiologically 
in the remaining 33 patients. Forty-two textural features 
were extracted from filtered and unfiltered MRI images as 
well as from FET PET, resulting in 168 radiomics features 
for each patient. After feature selection using the Wilcoxon 
rank-sum test, the best performing generalized linear 
model using logistic regression was generated by applying 
the Akaike information criterion. The highest diagnostic ac-
curacy was achieved by a 5-parameter model combining 
features extracted from FET PET and MRI with an accuracy 
of 89%. Consequently, the combined evaluation of PET and 
MRI radiomics yields more diagnostic information than ei-
ther modality alone.

Conclusions

Feature-based PET and PET/MRI radiomics offers great po-
tential to contribute to an improved diagnosis and treat-
ment management in neuro-oncology. Nevertheless, a 
few obstacles should be overcome before this method can 
be successfully integrated into clinical routine. Studies in 
neuro-oncology using PET and PET/MRI radiomics should 
pay more attention to the importance of the independent 
evaluation of the developed model in a test dataset that 
was not part of the model generation. Furthermore, for a 
successful translation of radiomics into clinical routine, 
model validation in large-scale cross-institutional datasets 
is of eminent significance. This obstacle could be over-
come by multicenter cooperation and large-scale data sets 
from phase II or III clinical trials.

The reproducibility and transferability of the developed 
models and the underlying radiomics features should also 
be improved. These parameters often depend on many dif-
ferent factors, such as the image quality and the pre- and 
postprocessing steps. To overcome these shortcomings, 
Traverso et  al. identified radiomics features from large-
scale datasets that were reproducible.34 For example, 
first-order features, that is, features extracted from the 
image histogram, were more reproducible than shape 
features or textural features. These efforts are of signif-
icant importance toward an improved standardization 
of radiomics and result comparability. Additionally, the 
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Image Biomarker Standardization Initiative (IBSI) provides 
benchmark datasets for workflow standardization between 
different research groups and radiomics feature nomencla-
ture, definitions, and reporting guidelines.35 The frequently 
used open-source radiomics packages PyRadiomics11 and 
LIFEx24 are in line with these guidelines. Besides the im-
portance of adhering to the IBSI guidelines, future studies 
should particularly investigate features that have already 
been shown to be of value in other studies to identify a 
common set of particularly useful parameters for MRI or 
PET radiomics in neuro-oncology.

The interpretability of the extracted features is another 
factor that may hamper the widespread clinical use of the 
extracted features and generated models because they 
are mostly perceived abstractly. To improve the interpret-
ability of feature-based radiomics, various methods, such 
as graph-based approaches, have been developed.36 On 
the other hand, initial studies impressively show that a 
successful implementation of radiomics into clinical rou-
tine is feasible.37 These studies should serve as motivation 
to overcome the described limitations. Importantly, future 
research has to address the question how much added 
value to radiomics does PET provide over the routinely ac-
quired MRI, particularly if radiomics approaches continue 
to improve for both imaging modalities. Similarly, further 
studies should additionally investigate the synergistic po-
tential of MRI and PET radiomics to improve the diagnostic 
accuracy.

In summary, feature-based PET/MRI radiomics has 
demonstrated its potential in the field of neuro-oncology. 
Of note, radiomics should not be solely considered as 
a stand-alone method but rather as an additional source 
of diagnostic information that can be automatically ex-
tracted from routinely acquired imaging data, thereby 
allowing an additional data evaluation at low cost. 
Furthermore, feature-based PET radiomics, combined with 
other imaging modalities such as MRI and clinical and 
histomolecular parameters, has a great potential to con-
tribute significantly to improved diagnosis and treatment 
of patients with brain tumors.
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