
Powdery Mildew Resistance in Tomato by Impairment of
SlPMR4 and SlDMR1
Robin P. Huibers1, Annelies E. H. M. Loonen1, Dongli Gao1, Guido Van den Ackerveken2,

Richard G. F. Visser1, Yuling Bai1*

1 Laboratory of Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands, 2 Plant-Microbe Interactions, Department of Biology, Utrecht

University, Utrecht, The Netherlands

Abstract

Genetic dissection of disease susceptibility in Arabidopsis to powdery and downy mildew has identified multiple
susceptibility (S) genes whose impairment results in disease resistance. Although several of these S-genes have been cloned
and characterized in more detail it is unknown to which degree their function in disease susceptibility is conserved among
different plant species. Moreover, it is unclear whether impairment of such genes has potential in disease resistance
breeding due to possible fitness costs associated with impaired alleles. Here we show that the Arabidopsis PMR4 and DMR1,
genes encoding a callose synthase and homoserine kinase respectively, have functional orthologs in tomato with respect to
their S-gene function. Silencing of both genes using RNAi resulted in resistance to the tomato powdery mildew fungus
Oidium neolycopersici. Resistance to O. neolycopersici by SlDMR1 silencing was associated with severely reduced plant
growth whereas SlPMR4 silencing was not. SlPMR4 is therefore a suitable candidate gene as target for mutagenesis to obtain
alleles that can be deployed in disease resistance breeding of tomato.
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Introduction

High quality and productive crops are often susceptible to a

multitude of different pathogens and pests. Disease resistant crop

varieties are commonly bred by the introgression of resistance (R)

genes derived from wild crop relatives. Such R-genes often

mediate recognition of race or isolate-specific effector proteins of

the pathogen and the subsequent activation of defense responses in

the plant. However, the frequent appearance of ‘new’ pathogen

races in terms of their effector protein arsenal, renders many

introgressed R-genes quickly ineffective, initiating a new cycle of R-

gene discovery and introgression by breeders. Disease resistance

breeding approaches that could overcome this lack of durability

would therefore be highly advantageous.

Disease resistance can be obtained via several means. EMS

mutagenesis approaches have regularly been used in Arabidopsis

for varying purposes. Researchers working with Arabidopsis have

selected a plethora of mutants showing different kinds of activated

defense response phenotypes, such as cpr mutants (constitutive

expression of PR genes, [1]), agd mutants (aberrant growth and

death phenotypes, [2]), acd mutants (accelerated cell death, [3]), lsd

mutants (lesions simulating disease, [4]), or dnd mutants (defense

no death, [5]). In general, these mutants show race-non-specific

resistance to a broad spectrum of different pathogens. However,

resistance is often associated with severe fitness costs, apparent

from the small size and reduced fertility of these mutants.

Mutant screens which were performed later and aimed at

dissecting the genetic basis of disease susceptibility, identified so

called loss-of-susceptibility mutants showing disease resistance in

absence of severe fitness costs [6–8]. This, together with recent

insights in effector triggered susceptibility by manipulation of host

factors led to a proposed new breeding strategy [9]. Instead of

identifying R-genes in wild relatives and the subsequent introgres-

sion of these genes into elite cultivars, one could inactivate so

called ‘Susceptibility’ (S) genes by mutagenesis. As resistance is not

mediated by race-specific recognition of pathogens but by the

absence of certain host genes, the S-gene approach is expected to

be more durable. This is exemplified by powdery mildew resistant

barley mlo lines, which have been successfully cultivated in

agriculture for over 25 years [10].

Mlo based powdery mildew susceptibility is conserved across

plant species as impairment of barley Mlo orthologs in Arabidopsis

[11], tomato [12] and pea [13–14] all result in resistance to

adapted powdery mildews. For other S-genes it is unclear to which

degree functions are conserved across plant families and whether

impairment of such genes have potential breeding value. Here we

report the functional characterization of tomato (Solanum lycopersi-

cum) orthologs of the Arabidopsis PMR4 and DMR1 genes with

respect to their S-gene function. Powdery Mildew Resistant (PMR) 4

was originally identified in a mutant screen for loss of susceptibility

to Erysiphe cichoracearum [6]. PMR4 encodes a callose synthase

required for callose deposition in papillae. Resistance in pmr4
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mutants, however, was found associated with salicylic acid

accumulation rather than with the absence of callose deposition

[15]. Downy Mildew Resistance (DMR) 1 was identified in a

mutant screen for loss of susceptibility to Hyaloperonospora

arabidopsidis [7]. Several different dmr1 alleles were identified, each

mediating a significant level of resistance to H. arabidopsidis. DMR1

encodes a homoserine kinase catalyzing the phosphorylation of

homoserine to O-phospho-homoserine. Mutant plants accumulate

homoserine and exogenous application of homoserine induces

resistance in wild-type plants [16–17]. We observed reduced

growth and proliferation of Oidium neolycopersici (tomato powdery

mildew) in Arabidopsis dmr1 and pmr4 mutants as well as tomato

plants in which expression of SlDMR1 and SlPMR4 was silenced,

demonstrating that these S-gene functions are conserved between

the two plant species. Resistance to O. neolycopersici is associated

with severe fitness cost for SlDMR1 silencing but not for SlPMR4

silencing, indicating the latter has potential value for powdery

mildew resistance breeding in tomato.

Materials and Methods

Plant Growth and Cultivation
Arabidopsis thaliana mutants pmr4 in Col-0 background and dmr1-

1 to dmr1-6 in Ler eds1-2 background are described in [6,7]. Plants

were grown in plastic pots in potting soil (Horticoop, Lentse

potgrond). Arabidopsis plants were grown in a growth chamber at

21uC and 19uC during the 8 h day and 16 h night periods

respectively, a relative humidity of 70% and a light intensity of

100 W/m2. Tomato plants (S. lycopersicum cv Moneymaker) were

grown in greenhouses at 21uC and 19uC during the 16 h day and

8 h night periods respectively. Relative humidity was around 70%

and light intensity was supplemented with 100 W/m2 when light

intensity dropped below 150 W/m2.

Pathogen Inoculations
The Wageningen isolate of Oidium neolycopersici On-Ne [24] was

maintained on tomato cv Moneymaker (MM) plants. Spore

suspensions were obtained by washing heavily infected MM leaves

in water. For disease assays, Arabidopsis and tomato plants of

about 4 weeks old were sprayed with an inoculum of between 5–

106104 and 2.56104 spores per mL respectively. Fungal growth

was evaluated at 8–14 days post inoculation (dpi). A disease index

(DI) was used where 0 = no sporulation; 1 = slight sporulation, but

less than 5% foliar area affected; 2 = moderate sporulation, 5 to

30% foliar area affected; 3 = abundant sporulation, 30% to 60%

foliar area affected; 4 = heavy sporulation, more than 60% area

affected. Fungal quantification by Q-PCR was performed after 8–

14 dpi (see below).

Identification of Tomato Orthologs
The Arabidopsis thaliana DMR1 (GenBank accession number

AEC06605.1) and PMR4 (GenBank accesssion number

AEE82336.1) amino-acid sequences were used as a query in a

TBLASTN program against the SGN Tomato Combined

database (http://solgenomics.net/tools/blast/) or in a BLASTP

program against an Arabidopsis protein database (http://www.

arabidopsis.org/Blast/index.jsp) to search for homologous se-

quences in tomato and Arabidopsis respectively. All obtained

tomato and Arabidopsis amino-acid sequences were aligned and

phylogenetic trees constructed by using Phylogeny.fr [25]. Tomato

sequences showing a higher level of homology with PMR4 or

DMR1 compared to any other Arabidopsis sequence were

considered orthologs.

Generation of Silencing Lines
For generating the SlPMR4 and SlDMR1 silencing constructs we

ordered pUC57 clones containing a DNA fragment identical to

the first 101 bp of the predicted coding sequence of So-

lyc07g053980 (SlPMR4_h1) or a fragment identical to the first

140 bp of the predicted 39 UTR of Solyc04g008760 (SlDMR1)

flanked by attL sites from the Genscript (USA) company.

Sequences are provided in Figure S1 in File S1. DNA fragments

present in pUC57 were recombined into pHellsgate 8 [26] using

the LR clonase enzyme mix from Invitrogen and transformed to

chemical competent E. coli TOP 10 cells (Invitrogen). Constructs

were subsequently extracted using the Plasmid extracting kit from

Qiagen, sequenced to confirm the presence of the intended inserts

and transformed to Agrobacterium strain AGL1+virG. For tomato

transformation Moneymaker (MM) seeds were sterilized by

incubation in 1% NaOCl for 20 minutes. Afterwards seeds were

rinsed with water and sown on GEM medium (2.2 g MS salts/L,

10 g sucrose/L and 8 g Daishin agar/L; pH 5.8). Cotyledons from

emerging plants were cut in several pieces and incubated for 10–

15 minutes in an Agrobacterium suspension carrying the silencing

constructs (OD600 of 0.125) in MSO (4.3 g MS salts/L, 0.4 mg

thiamine/L, 100 mg Myo-inositol/L and 30 g sucrose/L; pH 5.6)

plus 200 mM acetosyringone. Then the cotyledon pieces were

blotted on sterile filter paper and placed with abaxial side down on

GCF10 medium (4.3 g MS salts/L, 108.7 mg Vitamins Nitsch/L,

30 g sucrose/L, 8 g agar/L, 1.5 mg Zeatine riboside/L and

0.2 mg IAA/L; pH 5.8) plus 200 mM acetosyringone. This was

then incubated in the dark for 48 hours at 25uC before transferring

the explants to plates containing GCF10 medium plus 300 mg/L

timentin and 100 mg/L kanamycin and subsequent incubation at

25uC in the light. After 3 weeks, the medium was refreshed. After

6–8 weeks emerging calli were excised from explants and

transferred to GCF11 medium (4.3 g MS salts/L, 108.7 mg

Vitamins Nitsch/L, 30 g sucrose/L, 8 g agar/L and 1.9 mg

Zeatine riboside/L; pH 5.8) plus 300 mg/L timentin and

100 mg/L kanamycin. Emerging shoots were transferred to

MS30B5 medium (4.3 g MS salts/L, 112 mg Vitamin B5/L,

30 g sucrose/L and 8 g agar/L; pH 5.8) plus 100 mg/L

kanamycin. When proper roots had developed transformants

were brought to the greenhouse. They were transferred to plastic

pots containing potting soil, and kept under a plastic cover for a

few days to achieve higher humidity. After adaptation the plastic

cover was removed. In total, eight RNAi::SlPMR4 and twelve

RNAi::SlDMR1 primary transformants (T1) were grown in the

greenhouse. After gene expression analysis (see below) for each

silencing construct three T1 plants that showed the highest level of

silencing were selected, and allowed to set seed (T2). For SlPMR4-

silenced plants, from each T1 plant 16–20 T2 progeny was grown

in the greenhouse, together with 19 MM plants as control, and

used in a disease assay.

Nucleic Acid Extraction and Q-PCR
To determine presence of the silencing contruct DNA was

isolated from leaf material using the HotSHOT method [27]. A

PCR was performed using NPTII-specific primers NPT3

(TCGGCTATGACTGGGCACAACAGA) and NPT4 (AA-

GAAGGCGATAGAAGGCGATGCG) [28]. For gene expression

analysis, 8–14 days after inoculation of tomato plants with O.

neolycopersici the 3rd or 4th leaf was collected from each T1 or T2

transformant or MM control plant. Total RNA was extracted

using the MagMAX-96 total RNA Isolation kit (Ambion) or the

RNeasy kit from Qiagen (Germany). RNA was treated with

RNAse-free DNase (Qiagen). The quantity of RNA was measured

using a spectrophotometer and 250 ng-1 mg was used to synthesize
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cDNA using the iScript cDNA synthesis kit (Bio-Rad). Relative

transcript levels were determined in two technical replicates using

the iQ SYBR Green supermix (Bio-Rad) and the CFX96 Real-

Time system (Bio-Rad). PCR was performed with 10 ng cDNA

using an annealing temperature of 60uC, and 40 cycles. To check

for DNA contamination samples that had not been treated with

reverse transcriptase were included as a control. Tomato EF1a
(Solyc06g005060) transcript levels were used for normalisation by

the DDCt method. Primers used for determining relative transcript

levels were: Fw- EF1a- ATTGGAAACGGATATGCCCCT; Rv-

EF1a-TCCTTACCTGAACGCCTGTCA; Fw-SlPMR4-

GCCGGCGGCGAGACAAGTTT; Rv-SlPMR4-CAGCGC-

CAGCCAGTCAAGCA; Fw-SlDMR1-TGGGGAGA-

GAATGGTGGAGGCG; Rv-SlDMR1- ACTCGTTTGGAATT-

GAGGCATAGTTGA. Primers to determine expression of the

NPTII gene were: Fw-NPTII-ACTGGGCACAACAGACAATC

and Rv-NPTII-TCGTCCTGCAGTTCATTCAG.

Disease severity was measured by Q-PCR quantification of O.

neolycopersici biomass using the same samples as used for gene

expression analysis. PCR was performed using primer pair Fw-

On-CGCCAAAGACCTAACCAAAA and Rv-On-AGCCAA-

GAGATCCGTTGTTG, designed on ITS sequences specific to

O. neolycopersici (GenBank accession number EU047564). The Fw-

EF1a and Rv-EF1a primer pair was used as reference to

normalize the plant DNA proportion by the DDCt method.

Exogenous Application of Amino-acid Solutions
Amino acids L-homoserine, L-isoleucine, L-leucine, L-threo-

nine and L-valine were obtained from Sigma-Aldrich. 5 mM

solutions were sprayed onto leaves of four-weeks old tomato plants.

The next day plants were inoculated with O. neolycopersici. Three

days after inoculation the plants were sprayed again with the

respective amino acid solution.

Statistical Analysis
For comparisons of means analysis of variance was performed.

When significant differences were found (p,0.05) a Tukey post

hoc test was carried out to detect which means were different.

Results

Arabidopsis pmr4 Mutants are Resistant to O.
neolycopersici

Previously PMR4 was identified as a locus conferring suscep-

tibility to the powdery mildew E. cichoracearum in Arabidopsis

[6,15]. As Arabidopsis can be a host for the tomato powdery

mildew O. neolycopersici [18] we assessed the possible requirement of

PMR4 for this pathogen. Inoculated pmr4 mutants showed reduced

levels of fungal sporulation as compared to Col-0 wild-type plants

(Figure 1A and B), indicating that Arabidopsis PMR4 is a

functional S-gene for tomato powdery mildew.

Powdery Mildew Resistance by Impairment of PMR4 is
Conserved between Arabidopsis and Tomato in Absence
of Severe Fitness Costs

To explore the possible conservation of PMR4 among different

plant species for susceptibility to powdery mildews, putative

tomato orthologs of Arabidopsis PMR4 were identified by

searching the SOL Genomics Network (SGN) database for similar

sequences. Two genes annotated as Solyc07g053980 (SlPMR4_h1)

and Solyc02g078230 (SlPMR4_h2) were found, encoding proteins

having higher sequence identity at the amino acid level with

Figure 1. Impairment of PMR4 in Arabidopsis results in resistance to tomato powdery mildew Oidium neolycopersici. (A and B), Col-0
and pmr4 mutant plants photographed 14 days post inoculation with Oidium neolycopersici. Fungal sporulation is visible as whitish powder on
multiple leaves of Col-0 but not on pmr4 mutants, showing that Arabidopsis PMR4 is a susceptibility (S) gene for O. neolycopersici. (C), Phylogenetic
tree of Arabidopsis PMR4 family members plus tomato PMR4 family orthologs. The protein SlPMR4_h1 encoded by the tomato gene Solyc07g053980
is considered to be the tomato ortholog of AtPMR4.
doi:10.1371/journal.pone.0067467.g001
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AtPMR4 (76% and 67% respectively), than AtPMR4 with any of

its Arabidopsis family members. Phylogeny.fr [25] was used to

construct a phylogenetic tree of the Arabidopsis and tomato

PMR4 family members (Figure 1C). As Solyc07g053980

(SlPMR4_h1) has the highest level of homology with PMR4 it

was considered the tomato gene most likely to have similar

function, and hereafter is referred to as SlPMR4.

To assess the potential involvement of SlPMR4 in powdery

mildew susceptibility, tomato Moneymaker plants were trans-

formed with a silencing construct specifically targeting transcripts

of this gene Solyc07g053980 (SlPMR4_h1). Results on gene

expression showed that with this construct no cross-silencing of

Solyc02g078230 (SlPMR4_h2) occurred (Figure S2 and Table S1 in

File S1). The level of silencing in independent T1 plants was

determined and 3 plants showing .5 fold silencing were allowed

to set seeds (hereafter referred to as T2 family 2, 3 and 4).

Segregation within each T2 family (3 families in total) for the

presence or absence of the silencing construct correlated with the

presence of relatively low or high levels of SlPMR4 transcripts

respectively (Figure 2C and Figure S2 in File S1). T2 families were

inoculated with O. neolycopersici and their level of susceptibility

determined by quantification of the relative ratio between fungal

and plant DNA at 8 dpi. Fungal growth was significantly less

among silenced plants compared to non-silenced plants demon-

strating SlPMR4 is a functional S-gene ortholog of Arabidopsis

PMR4 (Figure 2D). Resistant plants did not show any apparent

reduction in size or altered leaf morphology as compared to

susceptible progeny at the age of five weeks when inoculations

were performed (Figure 2A and B). However, T2 progeny of

family 2 and 3 harbouring a silencing construct showed slightly

reduced growth after 12 weeks in the greenhouse compared to

plants not harbouring a silencing construct (Figure 2E). In

contrast, no significant difference in plant height was found for

progeny of family 4 grown under the same conditions as progenies

of families 2 and 3 (Figure 2E). Moreover, stem diameter at 12

weeks was on average reduced in the SlPMR4-silenced plants

compared to the non-silenced progenies of all 3 families, although

this difference was not statistically significant (Figure 2F). Together

the data suggests that O. neolycopersici resistance by impairment of

SlPMR4 function can be achieved without severe growth

reduction.

Impairment of DMR1 is Associated with O. neolycopersici
Resistance

Previously, Arabidopsis dmr1 mutants were shown to be resistant

to the downy mildew H. arabidopsidis but not to the powdery

mildew Golovinomyces orontii or the bacterial pathogen Pseudomonas

syringae, which suggested DMR1 mediates susceptibility specifically

to downy mildew [7]. However, we observed a significant

reduction of tomato powdery mildew O. neolycopersici sporulation

at 14 dpi on dmr1-1, dmr1-2 and dmr1-5 plants as compared to the

parental line Ler-eds1-2 (Figure 3A–G), suggesting that DMR1 is a

functional S-gene for tomato powdery mildew in Arabidopsis.

All dmr1 mutants except dmr1-3 showed reduced growth

compared to the parental line as evidenced by the lower amount

of fresh weight recorded 5 weeks after sowing (Figure 3H),

suggesting that impairment of DMR1 has fitness costs. Reduction

in growth was lowest in dmr1-3 and dmr1-6, the same lines that did

not show resistance to O. neolycopersici. This suggests that the

Figure 2. Powdery mildew resistance by impairment of PMR4 is
conserved between Arabidopsis and tomato. (A and B), Leaf of
T2 plant 4–5 (A) carrying a RNAi::SlPMR4 silencing construct (+) and of
T2 plant 4–4 (B) without silencing construct (2) at the age of 5 weeks
and 8 days post O. neolycopersici inoculation. (C), Relative SlPMR4
transcript levels in untransformed Moneymaker (MM) plants and
progeny of 3 independent T1 plants transformed with a silencing
construct specifically targeting SlPMR4 (family 2, 3 and 4). T2 progenies
harbouring a silencing construct (RNAi::SlPMR4 (+)) showed significantly
lower transcript levels compared to untransformed Moneymaker plants
and progenies not harbouring a silencing construct (2) as indicated by
asterisks. (D), Quantification of fungal growth of lines mentioned in (C).
SlPMR4 silenced plants show significantly less fungal growth compared
to non-silenced plants as indicated by asterisks, demonstrating that
SlPMR4 is a functional ortholog of PMR4. (E and F), Relative plant
height and stem diameter of 12 week old plants respectively. A slight
reduction (although significant as indicated by asterisks) in plant height
was observed for progenies carrying a RNAi::SlPMR4 construct of
families 2 and 3, but not 4. Stem diameters were somewhat lower
among T1 progenies of all 3 families, but differences were not
statistically significant. For C, D, E and F, data indicate the mean of 3 or
more biological replicates with error bars representing the standard

error. Number of asterisks indicate degree of significance (**p,0.01;
***p,0.001).
doi:10.1371/journal.pone.0067467.g002
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weaker dmr1 alleles do not effectively mediate resistance to tomato

powdery mildew, in contrast to H. arabidopsidis [7].

Pathogen Resistance by Impairment of DMR1 is
Conserved between Arabidopsis and Tomato

Using the AtDMR1 amino acid sequence as a query the SOL

Genomics Network (SGN) database was searched for similar

sequences. A single tomato gene annotated as Solyc04g008760 was

identified encoding a putative homoserine kinase having 71%

sequence identity with AtDMR1. A silencing construct was

generated specifically targeting this gene, hereafter referred to as

SlDMR1, and used to transform tomato MM plants. The relative

transcript level of SlDMR1 was determined in 12 independent

transformants. We only obtained T1 plants showing either less

than 2-fold silencing of SlDMR1 or over 4-fold silencing. Plants

showing over 4-fold silencing were of reduced stature, had light

green leaves (Figure 4C) and in addition, produced no offspring.

Progeny of T1 plants showing less than 2 fold silencing of SlDMR1

did not show reduced growth of O. neolycopersici (data not shown).

As no T2 progeny of T1 plants showing over four fold silencing

could be obtained, multiple cuttings were generated for three T1

plants (Lines 2, 3, and 5) and untransformed MM plants to

perform disease assays with O. neolycopersici. All three SlDMR1

silenced lines (Figure 4A) showed significantly less growth of O.

neolycopersici at 8 dpi (Figure 4B and C) as compared to

untransformed MM plants demonstrating that SlDMR1 is a

functional S-gene in tomato.

Homoserine Induces Powdery Mildew Resistance in
Tomato

Arabidopsis dmr1 mutants accumulate homoserine [16] and

exogenous application of 5 mM L-homoserine was shown to

induce resistance to H. arabidopsidis [16–17]. To explore whether

L-homoserine could trigger O. neolycopersici resistance in tomato,

plants were sprayed with several amino-acid solutions prior to

pathogen inoculation. Spray application of 5 mM of L-homoser-

ine, but not of L-isoleucine, L-leucine, L-threonine or L-valine

reduced infection of tomato leaves with O. neolycopersici (Figure 5A).

In addition, L-homoserine induced necrosis in tomato leaves

independent of powdery mildew infection (Figure 5B and C)

suggesting (high) levels of L-homoserine are toxic to the plant.

Discussion

The potential of knocking-down S-genes for durable disease

resistance breeding in crops has largely been unexplored due to

anticipated fitness costs of impaired S-gene alleles. However,

identification of pathogen resistant mutants with no or minor

associated fitness costs, together with recent insights in pathogen

effector-triggered susceptibility by manipulation of host factors has

brought (renewed) interest to this subject [9]. Here we tested if the

S-gene function of PMR4 and DMR1 is conserved between

Arabidopsis and tomato and explored the potential use of the

tomato orthologs for breeding resistance to tomato powdery

mildew.

We showed that Arabidopsis mutants harboring mutations in

PMR4 or DMR1 are resistant to O. neolycopersici in addition to E.

cichoracearum and H. arabidopsidis respectively, as was previously

described [6–7]. Silencing of the tomato orthologs SlPMR4 and

SlDMR1 resulted in O. neolycopersici resistance in tomato, indicating

that their S-gene functions are conserved across plant species.

Interestingly, no severe fitness costs in terms of reduced growth

were found associated with SlPMR4 silencing (Figure 2A, B, E and

F) making this gene a promising target for mutagenesis to obtain

suitable Slpmr4 alleles for disease resistance breeding in tomato.

Figure 3. Arabidopsis DMR1 is a S-gene for the tomato powdery mildew Oidium neolycopersici. (A–F), Photograph of Ler eds1-2 (A), dmr1-3
(B), dmr1-6 (C), dmr1-1 (D), dmr1-2 (E) and dmr1-5 (F) at 14 days post inoculations (dpi) with O. neolycopersici. (G), Quantification of O. neolycopersici
growth at 14 dpi by Disease Index (DI) score (see M&M). (H), Fresh weight of 5 weeks old Ler eds1-2 and dmr1 mutant plants. Fresh weights are given
as percentage of the parental line Ler eds1-2. For G and H. Data indicate the mean of 3 or more biological replicates with error bars representing the
standard error. Number of asterisks indicate degree of significance (***p,0.001).
doi:10.1371/journal.pone.0067467.g003
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Powdery Mildew is Less Sensitive to dmr1-mediated and
Homoserine- induced Resistance than Downy Mildew

All Arabidopsis dmr1 mutants were identified in a screen for loss

of susceptibility to the oomycete H. arabidopsidis and were shown to

be resistant to this pathogen, including dmr1-3 [16]. No significant

reduction in plant growth was observed for this mutant

(Figure 3H), indicating that H. arabidopsidis resistance can be

obtained by impairment of DMR1 in absence of severe fitness

costs. This might be different for dmr1-mediated resistance to the

ascomycete O. neolycopersici, as dmr1-3 (and dmr1-6) did not show a

significant reduction in fungal growth (Figure 3G). Moreover, O.

neolycopersici resistance in tomato was only observed for RNAi lines

in which transcript levels were over four-fold reduced

(Figure 4A,B). There was, however, a severe negative effect in

the strongly silenced SlDMR1 lines as they showed growth

retardation and did not produce offspring.

Arabidopsis dmr1 mutants accumulate homoserine and exoge-

nous application of homoserine induces pathogen resistance [16–

17]. Of all characterized dmr1 alleles, dmr1-3 encodes a homoserine

kinase with the highest residual enzyme activity and homoserine

accumulation was less in dmr1-3 mutants compared to other dmr1

mutants [16]. As dmr1-3 is resistant to H. arabidopsidis but not to O.

neolycopersici it suggests that the first is more sensitive to homoserine

accumulation in the host than the latter.

Mechanism of dmr1 and pmr4 Mediated Resistance
The mechanism by which impairment of DMR1 mediates

resistance is unclear. Experiments to test direct toxicity showed

that H. arabidopsidis spore germination and germ tube growth is not

inhibited by homoserine [16]. Impairment of DMR1 more

generally perturbs amino acid homeostasis as dmr1 mutants show

changes in their levels of the homoserine-derived amino acids

threonine, isoleucine and methionine [16]. Perturbation of amino

acid homeostasis was also observed in rsp1 and rsp2 mutants that

accumulate lysine, threonine, methionine and isoleucine and are

resistant to H. arabidopsidis but not the powdery mildew G. orontii

[17]. In the study of Stuttmann et al. [17], exogenous application

of threonine appeared to be a more potent inducer of H.

arabidopsidis resistance than homoserine, in contrast to what was

found by Van Damme et al. [16] and what we observed in tomato

(Figure 5A). However, Stuttmann et al. [17] hypothesized that

plants and oomycetes biosynthesize lysine via the diaminopimelate

(DAP) pathway, whereas ascomycetes use the a-aminoadipate

(AAA) pathway. Differences in interference of these biosynthetic

pathways in the pathogen by amino acid perturbations in the host

(or exogenously applied) might underlie the relative vulnerability

of downy mildew (oomycete) as compared to powdery mildew

(ascomycete).

Figure 4. Tomato SlDMR1 is a S-gene for the tomato powdery mildew Oidium neolycopersici. (A), relative transcript abundance of SlDMR1 in
multiple independent cuttings of untransformed Moneymaker (MM) plants or T1 transformants harbouring an RNAi::SlDMR1 construct (Line2, 3 and
5). (B), Quantification of fungal growth at 8 days post inoculation (dpi). SlDMR1 silenced plants support significantly less fungal growth compared to
untransformed plants. (C), Leaves of an untransformed MM and SlDMR1 silenced plant at 8 dpi. Silencing of SlDMR1 results in reduced leaf size and
yellowish colour. For A and B. Data indicate the mean of 3 or more biological replicates with error bars representing the standard error. Number of
asterisks indicate degree of significance (***p,0.001).
doi:10.1371/journal.pone.0067467.g004
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There is no evidence for the activation of plant defence

responses in the dmr1 mutants or in homoserine-treated plants that

are resistant to H. arabidopsidis. The SA-dependent defence marker

gene PR-1 was not induced in dmr1 mutants, nor was homoserine-

induced resistance impaired in a large collection of Arabidopsis

defence-signalling mutants [16]. In contrast, the Arabidopsis pmr4

mutants show constitutive activation of SA-dependent defences

[15]. Resistance in pmr4 mutants was lost in double mutants in

which the SA pathway is impaired [15]. This result indicated that

SA accumulation rather than lack of pathogen-induced PMR4

callose synthase activity is the cause of resistance in pmr4 mutants

to adapted powdery mildews. Recently, it was shown that

overexpression of PMR4 resulted in elevated early callose

deposition, leading to complete penetration resistance to both

nonadapted and adapted powdery mildews. Further, overexpres-

sion of PMR4 did not influence SA and jasmonate-related

pathways [29]. Therefore, PMR4 not only has an enzymatic

function (callose synthase activity) but also plays a regulatory role

(such as a negative regulator of SA pathway).

We expect that the resistance found in our SlPMR4-silenced

tomato lines may be due to the regulatory role of the PMR4 gene

on defence-related pathways. As to the resistance shown in

SlDMR1-silenced tomato lines, we expect that the direct toxicity of

homoserine may be the cause, although we cannot exclude the

possibility that the activation of plant defence responses may play a

role. Further experiments are on-going to monitor the fungal

growth, callose deposition and marker genes for defence pathways

in SlPMR4- and SlDMR1-silenced lines. In addition, these RNAi

lines are being crossed with tomato mutants defective in SA,

jasmonic acid and ethylene pathways to verify whether the

impairment of certain pathways compromises the resistance

resulting from the disruption of SlPMR4 or SlDMR1. The obtained

results will clarify whether different mechanisms and/or cross-talk

between the defence-related pathways are associated with the

silencing of SlPMR4 or SlDMR1.

Perspective for Breeding
Making use of impaired S-gene alleles to obtain durable disease

resistance was recently proposed as a new breeding strategy [9].

Valuable S-gene alleles mediating a high level of resistance with a

minimum of associated fitness costs are expected to be rare.

However, state-of-the-art mutagenesis techniques [19–23] allow

the creation and or detection of such rare alleles once S-genes have

been identified in a particular crop species. Here we have shown

that the S-gene functions of DMR1 and PMR4 are conserved

between Arabidopsis and tomato, and therefore expected to be

functional in other plant species as well. Silencing of SlPMR4 did

not result in severe fitness costs (reduced growth) suggesting that

loss-of-function or hypomorphic alleles could mediate powdery

mildew resistance with a minimum of fitness costs in tomato.

SlDMR1 silencing was strongly associated with severe fitness costs

in tomato and sldmr1 alleles conferring a high level of resistance in

absence of severe effects on growth (and yield) might therefore be

more difficult to obtain. However, the existence of the Arabidopsis

dmr1-3 mutant that is resistant to downy mildew [7] without severe

fitness costs (Figure 3H) suggests that similar alleles can be

identified in at least some plant species. Identification of new S-

genes in model and crop species will contribute to future disease

resistance breeding.

For many crop species genome sequences are or will soon

become available, which will facilitate the identification of

orthologs of S-genes in other plant species. Assuming that their

function in disease susceptibility is conserved among different plant

species, as is the case for MLO [11–14], PMR4 and DMR1,

desired mutations can easily be obtained by (targeted) mutagenesis

approaches [19–23] and applied in breeding crops with durable

resistance. Thus this study presents a proof-of-concept research on

the potential exploitation of orthologs of Arabidopsis S-genes in

resistance breeding in crop species.
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Figure 5. Exogenous application of L-homoserine induced
Oidium neolycopersici resistance and necrosis in tomato. (A),
Quantification of fungal growth, 8 days post inoculations of Money-
maker (MM) plants sprayed with different amino-acid solutions prior to
pathogen inoculations. Spray application of L-homoserine reduces
fungal growth significantly compared to spray application of H2O or
isoleucine, leucine, threonine or valine. Data indicate the mean of 3 or
more biological replicates with error bars representing the standard
error. Number of asterisks indicate degree of significance (***p,0.001).
(B–C), Spray application of L-homoserine induces cell death in MM
plants whereas the H2O control does not.
doi:10.1371/journal.pone.0067467.g005
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