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NEDDylation promotes stress granule assembly
Aravinth Kumar Jayabalan1, Anthony Sanchez2, Ra Young Park1, Sang Pil Yoon3, Gum-Yong Kang4,

Je-Hyun Baek4, Paul Anderson5, Younghoon Kee2 & Takbum Ohn1

Stress granules (SGs) harbour translationally stalled messenger ribonucleoproteins and play

important roles in regulating gene expression and cell fate. Here we show that neddylation

promotes SG assembly in response to arsenite-induced oxidative stress. Inhibition or

depletion of key components of the neddylation machinery concomitantly inhibits

stress-induced polysome disassembly and SG assembly. Affinity purification and subsequent

mass-spectrometric analysis of Nedd8-conjugated proteins from translationally stalled

ribosomal fractions identified ribosomal proteins, translation factors and RNA-binding

proteins (RBPs), including SRSF3, a previously known SG regulator. We show that SRSF3 is

selectively neddylated at Lys85 in response to arsenite. A non-neddylatable SRSF3 (K85R)

mutant do not prevent arsenite-induced polysome disassembly, but fails to support the SG

assembly, suggesting that the neddylation pathway plays an important role in SG assembly.
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S
tress granules (SGs) are non-membranous, cytoplasmic
aggregates at which translationally stalled messenger ribo-
nucleoprotein (mRNP) complexes are localized in response

to various cellular stresses1. In cells exposed to adverse conditions,
activation of the integrated stress response (ISR) leads to
translational arrest, polysome disassembly and SG assembly2,3.
By these mechanisms, the translation of mRNAs encoding
housekeeping genes is repressed while translation of mRNAs
encoding cytoprotective stress-responsive genes is preserved to
enhance cell survival4. The signature constituents of SGs are non-
canonical 48S preinitiation complexes harbouring non-translating
mRNAs bound to small ribosomal proteins, 50-cap (7-methyl
guanosine, m7G) proximal initiation factors eIF4E, eIF4G, eIF4A,
eIF3s and poly(A)-binding protein (PABP)5,6. SGs also contain
numerous RNA-binding proteins (RBPs) that regulate mRNA
translation (for example, TIA-1, TIAR, serine/arginine (SR)-rich
splicing factor 3 (SRSF3), hnRNPs, TDP-43) and decay (for
example, Argonautes and XRN1), as well as signal transducers
(for example, TRAF2, G3BP1, RACK1 and TORC1) that modulate
various cellular events such as cell growth and apoptosis7–13.

Several signalling pathways and their associated post-
translational protein modifications have been shown to modulate
SG assembly and disassembly. The phosphorylation of eIF2a
through the ISR is a key initial step to stimulate SG assembly,
although inhibition of eIF4A using drugs or lipid mediators
have been reported to initiate SG assembly independently of
phospho-eIF2a14,15. In response to stress, stress-responsive
serine/threonine kinases (heme-regulated initiation factor 2a
kinase (HRI); protein kinase RNA-activated (PKR); PKR-like
endoplasmic reticulum (ER) kinase (PERK); general control non-
derepressible 2 (GCN2) are auto-activated and phosphorylate
eIF2a at Serine 51, leading to reduced levels of the
eIF2–GTP–tRNAiMet ternary complex that causes the inhibition
of translation initiation that precedes polysome disassembly and
SG assembly4,16. Phosphorylation of Ras-Gap Binding protein 3
(G3BP) at Serine 149 has been reported to regulate SG
assembly17,18. During heat shock, focal adhesion kinase (FAK)
also modulates SG assembly through targeting growth factor
receptor-bound protein 7 (Grb7). Dual specificity tyrosine-
phosphorylation-regulated kinase 3 (DYRK3) has recently shown
to modulate SG dynamics through possibly targeting RBPs and
proteins downstream of mTORC1 signalling19. O-GlcNAc
modification of ribosomal proteins is known to regulate SG
aggregation but not stress-induced translation inhibition and
polysome disassembly20. Stress-responsive poly(ADP) ribosylation
of SG components has also been implicated in SG aggregation via a
potential scaffolding function21. Although relevant targets and
associated mechanisms are unknown, ubiquitination and
acetylation likely have important roles in SG assembly22. These
previous studies suggest that multiple signalling pathways and
related molecular targets are crucial to coordinate SG dynamics in
cells exposed to various stresses.

NEDD8 (neural precursor cell expressed developmentally
downregulated protein 8) is a small ubiquitin-like protein
(UBL) that is covalently conjugated to Lys residues on protein
substrates in a manner similar to ubiquitin. The NEDD8
conjugation system consists of a single E1-activating enzyme
(NEDD8-activating E1 enzyme (NAE)), a heterodimer of
amyloid-b precursor protein-binding protein 1 (APPBP1) and
ubiquitin-activating enzyme 3 (UBA3), and two E2s, UBE2M
(also known as UBC12) and UBE2F. NEDD8-specific E3 ligases
are not well-understood and all currently reported E3s can also
function in the ubiquitination system23. Neddylation primarily
targets Cullin components of Cullin-RING Ligases (CRLs),
although there are other known targets of Nedd8, including
p53 and Histone H4 (refs 24–26).

In the present study, we show that protein neddylation is a
modulator of SG assembly. We show that knockdown or
inhibition of key components of the neddylation pathway
impairs stress-induced polysome disassembly and SG assembly.
Proteomic analysis utilizing in vivo biotinylation identifies
translation factors, RBPs and ribosomal proteins as potential
targets for neddylation. Because SRSF3 (also known as SRp20)
was recently reported to be required for SG assembly7, we focused
our attention on this target. We find that SRSF3 is neddylated
on Lys85 in response to arsenite-induced oxidative stress and
that a non-neddylatable SRSF3 (K85R) mutant is impaired in
interacting with 50-cap proximal translation initiation factors and
the promotion SG assembly. Altogether, these results suggest
that neddylation plays a critical role in the SG assembly, and that
the neddylation of SRSF3 is at least one important event required
for SG aggregation.

Results
Neddylation pathway regulates SG assembly. In our previous
RNAi screen (B7,300 genes) designed to identify genes whose
expression is required for arsenite-induced SG assembly, the E2
conjugating enzyme UBE2M was a ‘hit’20. We confirmed that
UBE2M knockdown significantly impairs the arsenite-induced
SG assembly (Fig. 1a). To confirm this result, we knocked
down UBE2M with different siRNA sequences (siUBE2M-1,
siUBE2M-2) and monitored SG assembly kinetics using eIF3b
as a SG marker (Fig. 1b,c; Supplementary Fig. 1a–c). The
time-course experiment shows that cells treated with siUBE2M
display significant defect in SG assembly under arsenite stress,
compared with the cells treated with control siRNA (siCONT).
The siUBE2M effectively depleted endogenous UBE2M
expression as shown in western blot analysis (Fig. 1d).

Since UBE2M mediates protein neddylation, we hypothesized
that the neddylation pathway might regulate SG assembly.
To test this, we performed NEDD8 knockdown experiments
using two different siRNAs (siNEDD8-1, siNEDD8-2). As shown
in Fig. 1e–g and Supplementary Fig. 1, cells depleted of NEDD8
protein have a significant defect in eIF3b-positive SG assembly,
similar to UBE2M knockdown. In addition, knockdown of
both UBE2M and NEDD8 by combining siUBE2M and siNEDD8
shows a similar effect on the inhibition of SG formation
(Fig. 1e–g). The inhibitory effect on SG assembly was confirmed
by using different SG markers including TIA-1, eIF4G, G3BP or
O-GlcNAc (Supplementary Fig. 2).

To further explore the impact of neddylation on SG assembly,
we utilized MLN4924 (pevonedistat), a small molecule inhibitor of
NAE, to block the cellular neddylation pathway27. In a dose–
response analysis (Supplementary Fig. 3), inhibition of SG
assembly was observed at a minimum concentration of 1mM. A
time-course analysis at this concentration revealed MLN4924-
mediated inhibition of SG assembly was similar in magnitude to
that observed following UBE2M and NEDD8 knockdown
(Fig. 1h,i). These results were confirmed using HeLa and U2OS-
derived EGFP–G3BP stable cell lines (Supplementary Fig. 4).

Arsenite-induced phosphorylation of eIF2a causes
translational arrest, polysome disassembly and SG assembly2.
We used sucrose gradient analysis to compare polysome profiles
in cells expressing reduced levels of UBE2M and NEDD8. In
siCONT-transfected cells, arsenite-induced translational arrest
results in the collapse of polysome profiles and accumulation of
monosomes and individual ribosomal subunits (Supplementary
Fig. 5a, upper panels). Knockdown of both NEDD8 and UBE2M
modestly increases the accumulation of non-translating
ribosomal peaks but largely have no effect on polysomal peaks
in the absence of stress (Supplementary Fig. 5a, lower left panel).
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Figure 1 | Neddylation pathway regulates SG assembly. (a) Images from siRNA screen plates with RDG3 stable cells showing knockdown effect of

UBE2M on SG assembly. (b) U2OS cells transfected with siCONT or siUBE2M for 72 h were cultured in the absence or presence of arsenite (0.2 mM) for

indicated time points, and then immunostained against SG marker eIF3b (green), PB marker RCK (red). Nuclei (Blue) are counterstained with

bisbenzamide. (c) Bar graph representing the percentage of cells bearing SGs. Error bars indicate s.e.m. (n¼4). **Po0.01, ***Po0.001, Student’s t-test.

(d) UBE2M knockdown efficiency was assessed using western blot analysis. (e) U2OS cells transfected with siCONT, siNEDD8 or mixture of siNEDD8 and

siUBE2M were treated with 0.2 mM arsenite for indicated time points prior to processing for immunofluorescence microscopy using anti-eIF3b and

anti-RCK antibodies. (f) Statistical graph showing percentage of cells bearing SGs. Error bars indicate s.e.m. (n¼4). **Po0.01, ***Po0.001, Student’s

t-test. (g) Western analysis for knockdown efficiency of NEDD8 and UBE2M. (h) U2OS cells pretreated with DMSO or 1 mM ML4924 for 18 h were treated

with 0.2 mM arsenite for indicated time points and stained against eIF3b and RCK. (i) Statistical data showing percentage of cells bearing SGs. Error bars

indicate s.e.m. (n¼ 3). **Po0.01, ***Po0.001, Student’s t-test. Scale bar, 10mm.
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In contrast, arsenite-induced polysome disassembly is partially
inhibited in stressed cells with reduced NEDD8 and UBE2M
expression (Supplementary Fig. 5a, lower right panel). The
phosphorylation of eIF2a is indicative of polysome collapse and
translation repression28. Interestingly, the basal levels of
eIF2a phosphorylation in a non-stressed condition are
marginally increased in NEDD8 or UBE2M knockdown cells
that are likely reflected by marginally increased 80S monosome
peaks. However, this marginal increase of eIF2a phosphorylation
is not sufficient to induce polysome disassembly and SG assembly
(Supplementary Fig. 5b,c). The extent of arsenite-induced
phosphorylation of eIF2a in NEDD8 or UBE2M knockdown
cells are comparable to that of control knockdown cells,
suggesting that the neddylation pathway acts downstream of
eIF2a phosphorylation (Supplementary Fig. 5c). Similarly, a
time-course analysis of polysome profiles in cells treated with or
without MLN4924 reveals a delay in arsenite-induced polysome
disassembly (Supplementary Fig. 5d). These results argue that
neddylation promotes polysome disassembly after ISR-induced
translational arrest.

UBE2M and NEDD8 are integral components of SG. Because
altered expression of SG components generally affects SG
dynamics, we next examined whether UBE2M and NEDD8
are present in SGs induced with arsenite (oxidative stress),
clotrimazole (mitochondrial stress) or thapsigargin (ER stress)
by employing indirect immunofluorescence microscopy using
antibodies against UBE2M and NEDD8. In unstressed cells,
UBE2M is diffusely distributed throughout the cell (Fig. 2a),
while NEDD8 is concentrated in the nucleus (Fig. 2e). In stressed
cells, spots of both UBE2M and NEDD8 became visible in
SGs that are positive with eIF3b (Fig. 2b–d) and G3BP-containing
SGs (Fig. 2f–h), respectively. Thus, we conclude that UBE2M
and NEDD8 are integral components of SGs. Knockdown of
NEDD8 or UBE2M also strongly inhibited clotrimazole or
thapsigargin-induced SG formation (Supplementary Fig. 6),
suggesting that the role of the neddylation system is not limited to
the arsenite-induced stress.

Inhibition of the neddylation does not affect PB assembly.
P-bodies (PB) are a second class of cytoplasmic RNA granule
whose composition and function are distinct from SGs29,30.
To test whether perturbation of the neddylation pathway affects
the PB assembly, PBs were visualized using antibodies reactive
with RCK (DDX6) and S6K1 in cells treated with control,
UBE2M and NEDD8 targeting siRNAs. As shown in
Supplementary Fig. 7, neither UBE2M nor NEDD8 are required
for constitutive or arsenite-induced PB assembly. MLN4924
treatment also does not alter the kinetics of PB assembly (Fig. 1h,
Supplementary Fig. 3). These results suggest that neddylation
pathway is required for the efficient assembly of SG, but not PB.

Proteomics identifies neddylated proteins. In light of the above
findings, we sought to identify proteins whose neddylation is
required for SG assembly. To identify specific neddylated proteins
involved in SG assembly, we first analysed sucrose gradient
fractions obtained from control versus arsenite-treated cells
(Fig. 3a). Interestingly, western blotting with an anti-NEDD8
antibody reveals the arsenite-induced neddylation of low-
molecular-mass (10–40 kDa) proteins that sediment together
with monosomes and untranslated mRNPs (Fig. 3a boxed region
and Fig. 3b for western blotting with selected fractions).
To affinity-purify those proteins, we employed an in vivo
biotinylation system31 that has been successfully used in previous
studies32. For the first step, bacterial biotin ligase (Bir-A) was

stably expressed in U2OS cells and clonal selection was
performed using G418 (Fig. 3c). Next, Flag–biopeptide- (FB-)
tagged NEDD8 was stably expressed in Bir-A stable cells and
clonal selection was performed using puromycin (see Methods).
Of the four clones selected, we chose clone #2 which expresses a
low level of FB–NEDD8 compared with endogenous NEDD8 for
affinity purification (Fig. 3c, right western blot panel). The
morphology and growth phenotype of FB–NEDD8 stable cells are
similar to those of parental U2OS (Fig. 3c). More importantly, the
level of arsenite-induced SG assembly in FB–NEDD8 stable cells
is similar to that of U2OS parental cells (Supplementary Fig. 8).
Western blotting of arsenite-treated ribosomal fraction samples
with streptavidin–HRP conjugate displays similar pattern to that
of immunoblot detected with NEDD8 antibody (compare boxed
regions in Fig. 3a,d). These fractions were precipitated with
acetone, boiled in 1% SDS to disrupt protein or mRNP complexes
completely, then diluted and affinity-purified with streptavidin
beads (Fig. 3e, see Methods for details). Neddylated proteins
resolved on PAGE were revealed by staining with Coomasie blue
(Fig. 3f); A total of 17 distinct bands were excised and subjected
to mass-spectrometry (see Methods), which identified a large
number of ribosomal proteins that are previously known
neddylation targets33. Interestingly, eukaryotic translation
initiation (eIF2a, eIF3g, eIF3m, eIF3i, eIF3h, eIF4AII, eIF6,
CTIF) and elongation (eEF1a) factors were identified—many of
these proteins are previously identified but unconfirmed
neddylation targets34. In addition, many heterogeneous nuclear
ribonucleoproteins (hnRNPs) and two SRSFs (SRSF1, SRSF3)
that function in a wide range of RNA processing and regulation
events were identified. The ribosome-associated protein RACK1
that was identified as an O-GlcNAc modification target is also in
the list (Supplementary Data 1). Because translation factors and
RBPs are well-known regulators of SG assembly, these findings
suggest that neddylation of these proteins might promote SG
assembly.

It was interesting for us to find SRSF3 from the proteomic
study, because we recently reported that SRSF3 is a novel and
necessary SG component and when depleted SGs are potently
disrupted7,20. The knockdown effect of SRSF3 on SG assembly
was confirmed with different siRNAs in U2OS cells
(Supplementary Fig. 9a–c). Endogenous and Flag-tagged SRSF3
staining also revealed its presence in SGs (Supplementary
Fig. 9d,e). Based on this evidence, we selected SRSF3 to explore
the possible mechanistic link between the neddylation pathway
and SG assembly.

SRSF3 is neddylated in cells subjected to arsenite stress. To
confirm whether SRSF3 is indeed neddylated, we undertook a
neddylation assay under denaturing conditions using HEK293T
cells35. Flag–SRSF3 was transfected with either His-NEDD8 or
His-NEDD8DGG (a non-conjugatable NEDD8), then mock or
arsenite-treated cells were harvested under denaturing conditions,
and affinity pull-down assay was performed followed by western
blotting analysis (see Methods). We detected neddylated
Flag–SRSF3 at B40 kDa consistent with di-neddylation in cells
treated with arsenite (Fig. 4a). None of the experiments utilizing
empty vector or His-NEDD8DGG display the corresponding
band, suggesting that SRSF3 is conjugated with NEDD8 in
response to stress. We also confirmed that endogenous NEDD8 is
conjugated to Flag–SRSF3 under arsenite stress (Fig. 4b). The
stress-induced neddylation of SRSF3 is dose- and time-dependent
(Fig. 4c,d) and the effect of arsenite is reversible; the neddylated
species disappear on recovery from arsenite (Fig. 4e). The
neddylation of SRSF3 was dependent on neddylating enzymes
NAE1 and UBE2M, as inhibition of NAE1 by treatment of
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MLN4924, or knockdown of UBE2M effectively inhibited the
formation of Nedd8–SRSF3 (Fig. 4f,g).

Overexpressing a catalytically inactive UBE2M (C111S), but
not the wild type (WT), led to a decrease in the NEDD8–SRSF3

species, implying its dominant negative effect (Fig. 4h).
Co-immunoprecipitation analysis suggests that Flag–SRSF3
interacts with UBE2M, particularly when cells were treated with
arsenite (Fig. 4i). Finally, to further confirm if the stress-induced
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Figure 2 | UBE2M and NEDD8 are integral components of SGs. (a–d) UBE2M is a component of SGs. U2OS cells grown on coverslips were either

(a) untreated (mock) or treated with (b) 0.5 mM arsenite (c) 20mM clotrimazole (d) 1mM thapsigargin for 1 h. Samples were processed and

immunostained against eIF3b (green) and UBE2M (red). (e–h) NEDD8 is a component of SGs. U2OS cells either (e) untreated or treated with (f) 0.5 mM
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upshifted Flag–SRSF3 is indeed NEDD8-conjugated form,
NEDP1 (also known as DEN1 or SENP8), a NEDD8-specific
Cys protease, was co-expressed. As shown in Fig. 4j, while
expression of Flag–SRSF3 in the presence of His-NEDD8 results
in appearance of modified Flag–SRSF3 species, these species were

not detected when haemagglutanin (HA)–NEDP1 is co-expressed
(Fig. 4j, compare lane 4 and 6). We also found that the SG
formation is effectively inhibited when the HA–UBE2M mutant
(C111S) or HA–NEDP1 is overexpressed (Supplementary
Fig. 10), which is consistent with our model that the neddylation
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Figure 3 | Identification of neddylated target proteins associated with translation machinery. (a) Arsenite-induced neddylated proteins are enriched in
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of SRSF3 is necessary for the SG formation. Collectively, these
data strongly support that neddylation of SRSF3 is induced by
arsenite stress through NAE–UBE2M axis of neddylation system
and this may lead to SG formation.

SRSF3 is neddylated at Lys85. SRSF3 is the smallest member of
the highly conserved SRSF family and is composed of one
structured RNA recognition motif (RRM) at the N terminus and
one disordered RS domain at the C terminus36. The protein is
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Figure 4 | SRSF3 is a novel target for stress-induced neddylation in vivo. (a) HEK293T cells were transiently co-transfected with indicated plasmids. After

36 h, cells were treated with either mock or arsenite, lysed under denaturing condition and affinity-purified using Ni2þ -NTA agarose beads (see Methods).

The precipitates were then blotted against anti-Flag antibody. (b) HEK293T cells transfected with empty vector or Flag–SRSF3 were treated with arsenite,

lysed under denaturing condition (1% SDS) and immunoprecipitated using Flag beads (see Methods). (c) In vivo neddylation assay was carried out for cells

treated with arsenite in a dose-dependent manner (0.15 to 1 mM) for 1 h. (d) In vivo neddylation assay was performed for cells treated with 0.2 mM arsenite at

different time points (0–60 min) as indicated. (e) HEK293T cells transfected with indicated plasmids were treated with 0.2 mM arsenite in lane 3 and 4 for
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fresh medium for 90 min (lane 5) and 180 min (lane 6) and subjected to neddylation assay. (f) NAE inhibitor MLN4924 significantly attenuates SRSF3

neddylation. HEK293T cells pretreated with DMSO, MLN4924 (1mM) for 18 h or MLN4924 (3mM) for 1 h prior to arsenite treatment were subjected to

neddylation assay. (g) SiRNA mediated knockdown of UBE2M reduces SRSF3 neddylation. In vivo neddylation assay was performed for HEK293T cells

transfected with siCONT or siUBE2M under arsenite stress. (h) Ectopic expression of UBE2M-C111S displays dominant negative effect on SRSF3 neddylation.

HEK293T cells co-transfected with indicated plasmids were treated with arsenite and subjected to neddylation assay. (i) UBE2M interacts with SRSF3 under
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The precipitates were subjected to western analysis using anti-UBE2M antibody. (j) NEDP1 overexpression inhibits SRSF3 neddylation. HEK293T cells

transfected with indicated plasmids were treated with arsenite and affinity purified using Ni2þ -NTA agarose beads.
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composed of 164 amino acids, about half of which belong to the
RS domain (Fig. 5a). There are five lysine residues that may be
targeted for neddylation: two reside in the RRM domain, two in
the RS domain and one in between.

To identify residue(s) that are neddylated in response to
arsenite, we constructed a series of K-R mutants (K11R, K23R,
K85R, K146R, K164R; double mutants, K11/23R, K23/85R,
K146/164R; all lysine mutant, KO). In vivo neddylation assays
with these mutants revealed that mutants with K85R selectively
lack arsenite-induced SRSF3 neddylation (Fig. 5b).

SRSF3 K85R mutation impairs arsenite-induced SG assembly.
To test the physiological role of neddylation of SRSF3 at K85, we
stably expressed either WT or SRSF3 (K85R) in U2OS cells and
monitored the dynamics of SG assembly. Interestingly, we
observed that Flag–SRSF3–K85R-expressing cells display a
significant delay in SG assembly that phenocopies knockdown or
inhibition of neddylation components, whereas Flag-SRSF3-WT
cells exhibit normal SG assembly (Supplementary Fig. 11; note
that the nuclei of Flag–SRSF3 transfected cells are stained red).
To convincingly show the overexpression effects on SG assembly
in Flag–SRSF3–WT or Flag–SRSF3–K85R stable cells, we
depleted endogenous SRSF3 utilizing siRNA targeting 30

untranslated region (UTR) of SRSF3 mRNA and monitored SG
dynamics in cells expressing WT or K85R protein over time.

In siCONT-transfected cells, the results of SG assembly dynamics
are similar to those in Supplementary Fig. 11 (Fig. 6a,b). In
siSRSF3-30UTR transfected cells, SG assembly is normally rescued
only in cells expressing Flag–SRSF3–WT, but not in cells
expressing Flag–SRSF3–K85R that displays a slightly more
inhibitory effect on SG assembly when compared with those
transfected with siCONT (Fig. 6b,c). Knockdown of endogenous
SRSF3 and overexpressed exogenous Flag–SRSF3–WT and –
K85R proteins were confirmed with western analysis (Fig. 6d).
Interestingly, the impairment of Flag–SRSF3–K85R localization
to SG was not observed under different stresses such as
clotrimazole and thapsigargin. Moreover, the neddylation of
Flag–SRSF3 could not be detected under those stresses, suggesting
that the promotion of SG formation through SRSF3 neddylation
is arsenite-specific event (Supplementary Fig. 12). We also
checked the effects of other single or double lysine mutants on
SG assembly and found that those are comparable to that of
WT except that K146/164R mutations led to marginal inhibitory
effects (Supplementary Fig. 13). The slight inhibitory effect of
K146/164R mutant is possibly due to its location in unstructured
RS domain, which is correlated with recent findings
that unstructured peptide sequences such as prion-like or
low-complexity domains are crucial for mRNP aggregation4.

Given that knockdown of SRSF3 abrogate both SG and PB
assembly, we tested whether expressing the SRSF3–K85R mutant
has an impact on PB assembly using S6K1 as a PB marker.
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As shown in Supplementary Fig. 14, both WT and K85R mutant
display a comparable PB assembly pattern in the presence or
absence of arsenite, indicating that the arsenite-induced SRSF3
neddylation selectively modulates SG assembly.

SRSF3 K85R has defects in association with SG components.
Recently, we reported that SRSF3 functions as a translation
repressor of PDCD4 mRNA by binding its 50-UTR region37.
In line with this study, we identified interacting proteins that
are mechanistically relevant to its translational regulatory
function using proteomic analysis of SRSF3 immuno-
precipitates. Several translation factors including nuclear
cap-binding protein (NCBP1), eukaryotic translation initiation
factor 2A (EIF2A), eukaryotic translation initiation factor 2
subunit 3 (EIF2S3), eukaryotic initiation factor 4A-1 (EIF4A1)

and polyadenylate-binding protein 1 (PABP1) were found to
interact with SRSF3. To determine whether SRSF3 neddylation
modulates the interaction with these factors, we compared the
ability of WT and mutant (K85R) SRSF3 to immunoprecipitate
translation factors from lysates prepared from cells cultured in
the absence or presence of arsenite. Interestingly, while WT and
the K85R mutant are associated with PABP at a similar level, the
levels of eIF4E, eIF4G and eIF3 associated with the K85R mutant
is noticeably lower compared with WT (Fig. 7a). It has been
well-characterized that several proteins such as TIA-1 and
G3BP1, which contain the aggregation prone domain, mediate
the SG aggregation and overexpression of these causes abnormal
SG formation17,38. Hence, we assessed if the SRSF3–K85R mutant
also have defects in associating with these proteins under mock or
arsenite stressed condition. As shown in Fig. 7b, association of
TIA-1 with the K85R mutant is much reduced compared with the
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WT under arsenite stress while G3BP1 displays a comparable
association compared with WT. The association defect seen
only in the arsenite condition may imply that mRNP remodelling
for the SG aggregation is defective with the K85R mutant.
Consistently, the recruitment of TIA-1 in SG under arsenite stress
is strongly abrogated in cells expressing the K85R mutant,
whereas the SRSF3-WT-expressing cells display TIA-1-positive
SGs that is colocalized with Flag–SRSF3–WT (Fig. 7c). These
results indeed support that the neddylation of SRSF3 is critical for
interacting with and facilitating the recruitment of TIA-1 to SG.

Finally, because inhibiting neddylation delays stress-induced
polysome disassembly (Supplementary Fig. 5), we wanted to
determine to what extent the SRSF3 neddylation is responsible for
this phenotype. Polysome profiles of cells expressing the WT or
the K85R SRSF3 showed similar pattern (Supplementary
Fig. 15a). This result suggests that delayed polysome disassembly
shown in the cells defective in neddylation is not due to an
inhibition of the SRSF3 neddylation, rather it could be caused
by neddylation of unknown proteins. Because eIF2a phos-
phorylation is prerequisite for arsenite-induced polysome
disassembly, we additionally tested whether knockdown of
HRI, the kinase responsible for the arsenite-induced eIF2a
phosphorylation28, dampen the neddylation of SRSF3. We
found that knockdown of HRI effectively inhibited the eIF2a
phosphorylation under arsenite as previously reported, but this
does not affect the arsenite-induced neddylation of SRSF3
(Supplementary Fig. 15b). This observation suggests that the
neddylation of SRSF3 at K85 is important for the aggregation
process of SG, which is a separate event from the eIF2a
phosphorylation and polysome disassembly.

Discussion
Here we report that neddylation of SRSF3 is required for it to
promote SG assembly. Our results reveal that: (1) SRSF3
neddylation is induced by arsenite stress, (2) the neddylation
and deneddylation of SRSF3 following the application
and removal of stress stimuli correlates with the assembly
and disassembly of SGs (Fig. 4c–e), (3) MLN4924 inhibits
stress-induced neddylation of SRSF3 in a dose-dependent
manner, (4) knockdown of UBE2M dampens stress-induced
neddylation of SRSF3, (5) UBE2M and NEDD8 are integral
components of SGs, (6) SRSF3 associates with UBE2M in
response to arsenite, and (7) SRSF3 neddylation at Lys85
promotes SG assembly likely at the aggregation stage. The latter
conclusion is based on the observation that the K85R-expressing
cells show similar stress-induced polysome disassembly when
compared with WT (Supplementary Fig. 15), whereas blocking
neddylation pathway inhibits polysome disassembly. This implies
that neddylation of other targets (for example, ribosomal
proteins, eEF1a) might be necessary for the disassembly of
polysome (see working model in Fig. 7d).

It is unclear whether the neddylation functions upstream or
downstream of the eIF2a phosphorylation, a well-established,
critical event in the SG assembly. We found that inhibition of the
neddylation pathway does not affect the arsenite-induced eIF2a
phosphorylation, indicating that it acts independently and might
have roles in polysome disassembly and/or mRNP remodelling
for SG aggregation. In fact, the polysome profiling analyses
revealed that arsenite-induced ribosome run-off process is
significantly reduced in the cells defective in neddylation
(Supplementary Fig. 5), similar to the phenotypes seen in the
cells deficient in translation initiation factor 5A (eIF5A)39. This
suggests that the neddylation pathway may be necessary for
ribosome transit under normal and/or stress condition. Indeed,
our proteomic screen identifies elongation factor 1-alpha (eEF1a)

as a candidate for neddylation. It would be interesting in future
research to investigate functional link between neddylation and
translation elongation process.

We do understand the concern of possible artificial conjugation
of overexpressed Nedd8 (ref. 40). Our analyses show that
expression of FB–Nedd8 is lower than the endogenous level of
Nedd8 (Fig. 3c), and that expressing FB–Nedd8 does not
noticeably alter the polysome profile (Fig. 3d).

Also, FB–Nedd8-conjugated proteins are visible in the
non-translating monosome fractions by streptavidin–HRP
western blot and the pattern is similar to that of anti-Nedd8
western blot (compare Fig. 3a,d boxed regions). Most
importantly, we showed that Flag–SRSF3 is conjugated with
endogenous NEDD8 under arsenite stress (Fig. 4b) and SRSF3
neddylation is effectively inhibited by MLN4924 treatment
(Fig. 4f), arguing that SRSF3 is a bona fide target41.

Unlike other post-translational modification pathways such as
O-GlcNAcylation and ubiquitination that are dramatically
increased on arsenite stress42,43, global upregulation of
neddylation is not observed under these conditions. However,
sucrose gradient ribosome fractionation uncovers likely
stress-induced neddylated protein species sized 10–40 kDa that
mostly reside in stalled 80S monosome fractions (Fig. 3a). The
biotin–streptavidin pull-down strategy using those concentrated
fractions allowed us to identify several novel neddylation targets
that function in RNA metabolism, mostly in the translation
process. Among the identified proteins, ribosomal proteins are
most prevalent, consistent with previous findings33. Additional
neddylated proteins that function in translation initiation (eIF2a,
eIF4AII, components of eIF3 complex (i, g, h, m), and eIF6) and
elongation (eEF1a) were discovered. EIF3g and eIF3i are strong
hits from our previous RNAi screen and it is possible that
neddylation of these proteins might play key roles in modulating
translation in stressed cells. The ribosome-associated protein
RACK1, a known O-GlcNAcylation target20, was also identified
as a potential target of stress-induced neddylation. RACK1 has
key roles related to ribosome activation and the cellular stress
response. First, it associates with protein kinase C (PKC) and
stimulates the joining of 40 and 60S subunits by promoting eIF6
phosphorylation, thereby activating translation44. Second, it
serves as a scaffold protein required for stress-activation of JNK
MAPK (SAPK) pathways, which promote apoptosis in response
to genotoxic stresses which do not cause SG assembly11. In cells
subjected to arsenite stress, RACK1 is sequestered in SGs, thereby
inactivating the SAPK apoptotic response. Given these two
separate observations and our findings here, we propose that
RACK1 neddylation under arsenite stress might prevent
monosome joining to inhibit global translation and inactivate
the SAPK pathway.

Recently, several studies have identified pathological SGs
related to many types of neuro-degenerative diseases such as
Alzheimer’s dementia, Multi-system proteinopathy (MSP),
amyotropic lateral sclerosis (ALS) and frontotemporal lobar
degeneration45,46. Most of these disease symptoms are likely
mediated through mutated RBPs that produce stabilized SG-like
aggregates, insoluble inclusion bodies, pathological fibril
formation8 or defects of autophagic system, which is required
for SG clearance during stress recovery47. Hence, unravelling the
molecular mechanisms involved in the dynamic assembly and
disassembly of SGs may lead to an improved understanding of the
pathology of the SG-related neurological disorders. An interesting
study has recently identified a pathogenic mutation in hnRNP
A2B1 and A1 which potentially causes inherited MSP and ALS8.
Notably, these mutations reside in a prion-like domain, which
promote excessive SG aggregation and cytoplasmic inclusions.
Our identification of hnRNPs in the proteomic screen for
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neddylation (Supplementary Data 1) could add another layer of
complexity to the role of hnRNP aggregates in these disease
syndromes. It will be important to determine the functional
implications of hnRNP neddylation in the assembly of SGs.

Previous study showed that Ube1, a ubiquitin E1 enzyme,
mediates conjugation of NEDD8 under diverse stress
conditions48. Interestingly, treatment of PYR-41, an ubiquitin
E1 enzyme inhibitor, strongly inhibited the neddylation of
SRSF3 to a similar degree with MLN4924 (Supplementary
Fig. 16a). Knockdown of Ube1 also dampen the arsenite-
induced neddylation of Flag–SRSF3 (Supplementary Fig. 16b).
To compare the effects of UBE2M-mediated canonical and
Ube1-mediated atypical neddylation pathways on SG formation
under arsenite stress, we transfected U2OS cells with siCONT,
siUbe1 and siUBE2M and SGs were visualized using eIF3b, TIA-1
and G3BP. Unexpectedly, Ube1-knockdown cells display a slight
decrease (B20%) while UBE2M knockdown cells display an
outstanding decrease (B60%) in SG formation, suggesting that
the canonical pathway is more essential for the SG formation
(Supplementary Fig. 16c–f).

Consistent with a previous report that the K85 residue of
SRSF3 is ubiquitinated49, we found that SRSF3 indeed is
ubiquitinated in both conditions (Supplementary Fig. 16g).
These observations suggest that the K85 residue of SRSF3 may
be subjected to mixed modification of ubiquitin and NEDD8, or it
is possible that distinct pools of ubiquitin and NEDD8-modified
SRSF3 may exist under arsenite stress. Interestingly, a recent
study found that NEDD8 can form mixed chain with ubiquitin
where NEDD8 acts as a chain terminator50. Further studies are
needed to define whether SRSF3 is modified with ubiquitin/nedd8
dipeptide chain and if so, what the physiological significance of
this complex modification is.

The responsible E3 ligase for SRSF3 neddylation remains to be
determined. So far, the best-characterized NEDD8 E3 ligases are
RBX1 and RBX2, which work with UBE2M and UBE2F,
respectively51,52. While knockdown of RBX2 had no effect on
SG assembly kinetics, RBX1 knockdown produced a slight delay
in SG assembly at early time points (Supplementary Fig. 17a–c),
suggesting that RBX1 or RBX2 are not major players in
stress-inducible SG assembly. Supporting this conclusion is the
fact that; (1) neither these E3 ligases nor Cullin components were
identified in our RNAi screen for SG assembly, and (2) RBX1 or
RBX2 are not detected in SG (Supplementary Fig. 17d,e).
Hence, we conclude that the inhibitory effect of SG
formation on blocking neddylation is cullin-independent.
Based on the observation that Flag–SRSF3 physically
interacts with UBE2M (Fig. 4i), it is possible that UBE2M
may act directly on SRSF3 for Nedd8 conjugation. Further
studies are needed to validate this result or possibly identify
additional E3 ligases.

Methods
Cell culture and transfection. U2OS (human osteosarcoma), HeLa and HEK293T
cells were obtained from ATCC and maintained in DMEM medium (Welgene)
supplemented with 10% inactivated FBS (Welgene), 1% (v/v) penicillin and
streptomycin (Lonza) at 37 �C in 5% CO2. Transfection of siRNAs were performed
using Lipofectamine 2000 (Invitrogen) at 40 nM final concentration, all siRNA
sequences used in this study are listed in Supplementary Table 1. All DNA
plasmids were transfected using either PEI (Polysciences) or Fugene 6
(Promega, Madison, WI) as per manufacture’s protocol.

Cloning. Human NEDD8 cDNA was subcloned into pEFa1-FB vector. The human
SRSF3 cDNA was subcloned into pCI-Neo-Flag vector. The human UBE2M,
UBE2M-C111S and NEDP1 were subcloned into pcDNA3.1-HA vector. SRSF3
single (11, 23, 85, 146, 164), double (11/23, 23/85, 146/164) and KO mutants
(all lysine) were created by PCR-directed mutagenesis and subcloned into
pCI-neo-Flag vector. Primers used for cloning are listed in Supplementary Table 2.

Immunofluorescence analysis. Cells grown on coverslips were mock treated
or treated with indicated drugs, rinsed twice with PBS (pH 7.4), fixed with
paraformaldehyde for 15 min, permeabilized with cold methanol for 10 min and
then blocked in 5% normal horse serum in PBS containing 0.02% sodium azide for
1 h. Primary antibodies diluted in blocking solution were added and incubated
either at room temperature (RT) for 1 h or overnight at 4 �C. Cells were then
washed with PBS (three times, 10 min each) and incubated with respective
secondary antibodies (Jackson Immunoresearch ML grade) for 1 h at RT. After
incubation, samples were washed thrice with PBS (10 min each) and mounted in
polyvinyl medium. All images were taken using a Nikon Eclipse 80i fluorescence
microscope, processed in Image J and compiled using Adobe Photoshop CS5.
Knockdown or overexpression effects on SGs and PBs were assessed by quantifying
the number of cells out of at least 100 cells from different fields as percentage.

Immunoprecipitation. Cells were harvested and lysed in IP buffer (50 mM Tris-Cl
(pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% Trition X-100) supplemented with
proteinase inhibitors 1 mM PMSF, 10 mg ml� 1 aprotonin, 5 mg ml� 1 leupeptin,
0.5 mg ml� 1 pepstatin and 5 mM NaF on ice for 20 min, centrifuged at high
speed for 15 min and the supernatants were collected in fresh tube. For
immunoprecipitation, 1–2 mg lysate was incubated with 20–30 ml Flag agarose
beads overnight at 4 �C. The resulting immunoprecipitates were washed at least
three times in IP buffer, before boiling with SDS sample buffer. The resulting
eluates were blotted against indicated antibodies.

Immunoblot analysis. Cells were lysed in RIPA buffer (50 mM Tris-Cl (pH 8.0),
150 mM NaCl, 0.1% SDS, 1% NP-40, 1 mM EDTA, 1% Sodium deoxycholate,
containing proteinase inhibitors 5 mM NaF, 1 mM PMSF) for 15 min in ice and
centrifuged at 13,000 r.p.m. for 15 min. Proteins were quantified using Bradford
reagent. Total proteins (20–50 mg) were subjected to SDS–PAGE, transferred to
nitrocellulose membranes and detected with respective antibodies. western
blot was performed using ECL detection system. Uncropped blots are shown in
Supplementary Fig. 18. All antibodies used are listed in Supplementary Table 3.

Polysome profiling analysis. U2OS cells grown at B90% confluency were treated
with indicated time and concentration of sodium arsenite. After treatment,
10 mg ml� 1 cycloheximide was added and incubated for 5 min at RT, washed with
cold PBS, then lysed with 1 ml of polysome lysis buffer (20 mM HEPES pH 7.6,
5 mM MgCl2, 125 mM KCl, 1% NP-40, 2 mM DTT) supplemented with
100 mg ml� 1 cycloheximide (Sigma), protease inhibitor cocktail (EDTA-free;
Pierce) and RNAsin (Ambion) at cold room. Cell lysates were tumbled for 15 min
at 4 �C and centrifuged at 13,000 r.p.m. for 15 min. The supernatants were frac-
tionated in 17.5–50% linear sucrose gradients by ultracentrifugation (35,000 r.p.m.
for 2 h 40 min) in a Beckman ultracentrifuge using SW40-Ti rotor. Gradients were
eluted with a gradient fractionator (Brandel) and monitored with a UA-5 detector
(ISCO). Fractions were acetone precipitated at � 20 �C for overnight and
processed for further analysis.

Immunopurification of nedd8-modified proteins. U2OS cells stably expressing
Bir-A or FB–NEDD8 (6� 150-mm dish) treated with 0.5 mM arsenite for 1 h were
harvested in polysome lysis buffer and subjected to sucrose gradient as described
earlier. To purify nedd8-modified proteins, fraction numbers 7 and 8 (which are
enriched with neddylated proteins) were pooled, acetone precipitated overnight at
� 20 �C, centrifuged at high speed for 15 min and the pellets were air-dried.
Air-dried pellets were resuspended in 100 ml denaturing buffer (50 mM Tris-Cl pH
7.6, 2 mM EDTA, 1% SDS), boiled at 60 �C for 10 min and diluted to 1 ml using
dilution buffer (50 mM Tris-Cl(pH 7.6), 2 mM EDTA, 150 mM NaCl, 0.1% NP-40)
containing protease inhibitor cocktail, 5 mM NaF and 10 mM IAA (Sigma).
Denatured total proteins were incubated with streptavidin agarose beads at 4 �C
overnight. The beads were washed extensively for four times using dilution buffer
including 0.1% SDS, and the proteins were eluted by boiling with SDS
sample buffer for 10 min. The eluted proteins were either resolved in 12%
SDS–PAGE for immunoblotting or stained with Commassie to reveal
nedd8-modified proteins.

Enzymatic in-gel digestion. The proteins separated by SDS–PAGE were excised
from the gel and the gel pieces containing protein were destained with 50%
acetonitrile (ACN) containing 50 mM NH4HCO3 and vortexed until CBB was
completely removed. These gel pieces were then dehydrated in 100% ACN and
vacuum-dried for 20 min with SpeedVac. For the digestion, gel pieces were reduced
using 10 mM DTT in 50 mM NH4HCO3 for 45 min at 56 �C, followed by alkylation
of cysteines with 55 mM iodoacetamide in 50 mM NH4HCO3 for 30 min in dark.
Finally, each gel pieces were treated with 12.5 ng ml� 1 sequencing grade modified
trypsin (Promega) in 50 mM NH4HCO3 buffer (pH 7.8) at 37 �C for overnight.
Following digestion, tryptic peptides were extracted with 5% formic acid in 50%
ACN solution at room temperature for 20 min. The supernatants were collected
and dried with SpeedVac. Resuspended samples in 0.1% formic acid were purified
and concentrated using C18 ZipTips (Millipore, MA) before MS analysis.
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Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS). The
tryptic peptides were loaded onto a fused silica microcapillary column
(12 cm� 75 mm) packed with C18 reversed phase resin (5 mm, 200 Å). LC
separation was conducted under a linear gradient as follows: a 3–40% solvent B
(ACN containing 0.1% formic acid) gradient (solvent A; DW containing 0.1%
formic acid), with a flow rate of 250 nl min� 1, for 60 min. The column was directly
connected to LTQ linear ion-trap mass spectrometer (Finnigan, CA) equipped with
a nano-electrospray ion source. The electrospray voltage was set at 1.95 kV, and the
threshold for switching from MS to MS/MS was 500. The normalized collision
energy for MS/MS was 35% of main radio frequency amplitude (RF) and the
duration of activation was 30 ms. All spectra were acquired in data-dependent scan
mode. Each full MS scan was followed by five MS/MS scan corresponding from the
most intense to the fifth intense peaks of full MS scan.

Database searching and validation. The acquired LC-ESI-MS/MS fragment
spectra was searched in the BioWorksBrowser (version Rev. 3.3.1 SP1, Thermo
Fisher Scientific Inc., CA) with the SEQUEST search engines against National
Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) Homo
Sapiens database. The searching conditions were trypsin enzyme specificity, a
permissible level for two missed cleavages, peptide tolerance; ±2 a.m.u., a
mass error of ±1 a.m.u. on fragment ions and variable modifications of
carbamidomethylation of cysteine (þ 57 Da) and oxidation of methionine
(þ 16 Da) residues. The delta CN was 0.1; the Xcorr values were 1.8
(þ 1 charge state), 2.3 (þ 2), 3.5 (þ 3); and the consensus score was 10.15 for the
SEQUEST criteria.

In vivo neddylation assay. Identification of neddylated proteins were performed
as previously described35 with little modification. Briefly, HEK293T cells
co-transfected with indicated plasmids for 36–40 h were mock treated or treated
with indicated drugs, washed twice with PBS and scraped using 1 ml PBS. About
10% of cell suspension was centrifuged and the cell pellet was lysed in RIPA buffer
for western blot analysis. The remaining cell suspension was directly added to 6 ml
Guanidinium buffer (6 M guanidinium-HCl, 0.1 M Na2HPO4/NaH2PO4, 0.01 M
Tris-Hcl, pH 8.0) containing 5 mM imidazole, 0.1% Triton X-100 and 10 mM
b-mercaptoethanol and lysed for 20 min. About 50 ml of Ni-NTA agarose beads
were then added directly and the lysates were incubated for 4 h at RT. After
incubation, beads were washed once with 800 ml of Guanidinium buffer containing
5 mM imidazole, 0.1% Triton X-100 and 10 mM b-mercaptoethanol, once with
800ml of Urea buffer A (8 M Urea, 0.1 M Na2HPO4/NaH2PO4, 0.01 M Tris-HCl
pH 8.0) containing 5 mM imidazole, 0.1% Triton X-100 and 10 mM b-
mercaptoethanol and thrice with 900 ml of Urea buffer B (8 M Urea, 0.1 M
Na2HPO4/NaH2PO4, 0.01 M Tris-HCl pH 6.3) containing 5 mM imidazole, 0.1%
Triton X-100 and 10 mM b-mercaptoethanol. His-tagged proteins were eluted by
incubating the beads in 50 ml elution buffer (5% SDS, 200 mM imidazole, 0.15 M
Tris-Cl pH 6.7, 30% glycerol, 0.72 M b-mercaptoethanol, 0.01% Bromophenol
Blue) for 20 min. The eluted proteins were directly resolved in SDS–PAGE and
blotted to reveal Nedd8 conjugates. For in vivo neddylation assay targeting
endogenous NEDD8, immunoprecipitation was performed as described in the
previous report48 with little modification. Briefly, cells transfected with indicated
plasmids for 36 h were lysed in denaturing lysis buffer (1% SDS, 20 mM Tris-HCl
pH 8.0, 5 mM EDTA, 10 mM iodoacetamide, 250 U ml� 1 Benzonase (Santa Cruz),
protease inhibitors), boiled for 5 min at 90 �C and diluted 10-fold with dilution
buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% NP-40 and protease inhibitors).
Cell lysates were then immunoprecipitated using Flag agarose beads (Sigma) and
the precipitates were blotted against anti-NEDD8 antibody.

Generation of FB–NEDD8 stable cells. U2OS cells transfected with pEF1a-Bir-A
were maintained in G418 (neomycin) at 0.5 mg ml� 1 concentration for several
days until cells in parental U2OS cells (U2OS cells without transfection) were
completely dead. Medium was changed for every 40 h to remove dead cells, as well
as replenish drug sensitivity. Drug-resistant cells were trypsinized, diluted, single
clone was selected and the expression level was analysed by immunoblot.
The selected U2OS cell line stably expressing Bir-A was transfected with
pEF1a-FB–NEDD8 (puromycin-resistant vector) for 40 h before being maintained
in a medium containing puromycin at 2 mg ml� 1 concentration. Non-transfected
U2OS cells stably expressing Bir-A were used as control to monitor puromycin
drug resistance. A single clone stably expressing FB–NEDD8 similar to endogenous
NEDD8 was selected and used for further experiments.

Generation of sub-stable SRSF3–WT/K85R stable cells. U2OS cells transfected
with either flag-tagged pCI-neo-Flag plasmid (empty vector), Flag–SRSF3 WT or
Flag–SRSF3–K85R mutant were maintained in G418 (neomycin) at 0.5 mg ml� 1

concentration along with non-transfected parental U2OS cells. Non-transfected
U2OS cells were used as a positive control to check G418 drug sensitivity and
expression of Flag-tagged proteins were confirmed and used for further
experiments. The stable cell lines were maintained in G418 (at 0.5 mg ml� 1

concentration) for 48 h at 4-week interval.

Statistical analysis. All data are means±s.e.m. of at least three independent
experiments. Statistical analyses were performed with two-tailed, unpaired
Student’s t-test. P valueo0.05 was considered statistically significant.

Data availability. The mass-spectrometry proteomics raw data have been
deposited to the ProteomeXchange Consortium via the PRIDE partner repository
with the data set identifier PXD004139.

The authors declare that the data supporting the findings of this study are
available within the article and its Supplementary Information files.
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