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Calcareous stones have been widely used in artworks and buildings by almost all
human cultures. Now, more than ever, the increased environmental pollution and
global warming are threatening the stone cultural heritage. Weathering due to physical,
chemical and biological factors results in monumental calcareous stone deterioration.
These agents induce a progressive dissolution of the mineral matrix, increase porosity,
and lead to structural weakening. Bacterial Calcium Carbonate Mineralization is a
widespread naturally occurring process which in the last decades was proposed as an
environmentally friendly tool to protect monumental and ornamental calcareous stones.
The advantage of this treatment is that it mimics the natural process responsible for
stone formation, producing a mineral product similar to the stone substrate. This mini
review highlights the milestones of the biomineralization approaches with focus on
in situ stone artworks protection. The strategies explored to date are based on three
main approaches: (i) the use of allochthonous and (ii) autochthonous alive cells that,
due to the bacterial metabolism, foster biomineralization; (iii) the cell-free approach
which uses fractionated cellular components inducing biomineralization. We discuss
the challenging aspects of all these techniques, focusing on in situ applications and
suggesting perspectives based on recent advances.

Keywords: calcite biomineralization, biodeposition, bioremediation, stone conservation, stone microbiota,
cultural heritage

INTRODUCTION

Bacterial Calcium Carbonate Mineralization (BCCM) is a widespread natural process of many
bacterial taxonomic groups in different environments, ranging from microscopic crystals to large
geological formations (Boquet et al., 1973; Ehrlich, 2002; Zavarzin, 2002; Dupraz et al., 2009; Perito
and Mastromei, 2011).

According to Hammes and Verstraete (2002), BCCM is regulated by four key factors: calcium
concentration, concentration of dissolved inorganic carbon (DIC), pH, and the availability of
nucleation sites. Bacteria can foster an alkaline environment and increase DIC through different
autotrophic and heterotrophic metabolic pathways (Castanier et al., 1999; Dhami et al., 2014;
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Zhu and Dittrich, 2016). If calcium ions and nucleation sites are
available in the environment, BCCM then occurs.

Bacterial surfaces such as cell walls or esopolymeric substances
(EPS), due to their metal binding properties, serve as nucleation
sites and constitute particularly favorable templates for
heterogeneous nucleation and crystal growth (Fortin et al., 1997;
Douglas and Beveridge, 1998). The EPS act as matrix templates
influencing CaCO3 crystal morphology, polymorphism, spatial
position and growth (Braissant et al., 2003; Tourney and
Ngwenya, 2009; Ercole et al., 2012; Oppenheimer-Shaanan et al.,
2016). CaCO3 crystals usually grow on bacterial cell surfaces
(Rivadeneyra et al., 1998; Castanier et al., 1999). The polymorph
produced (mainly calcite, aragonite and vaterite) depends both
on environmental conditions and bacterial strains (Ben Omar
et al., 1997; Rivadeneyra et al., 1998; Brennan et al., 2004).

During the last decades, BCCM application was proposed
as an environmentally friendly tool for conservation and
reinforcement of monumental and ornamental calcareous
stones (Orial et al., 1993). Weathering by physical, chemical
and biological factors increases the porosity and dissolution
of the mineral matrix thus progressively weakening the
structure (Tiano et al., 1999). Organic products used to reduce
monument deterioration present several drawbacks related to
incompatibility with the stone, while inorganic consolidants show
poor performance (De Muynck et al., 2010). The advantage
of a BCCM-mediated treatment is that it mimics the natural
process responsible for stone formation, producing a mineral
product similar to the stone substrate. The aim is dual: to
provide a coherent CaCO3 layer on the surface of deteriorated
stone, protecting against the intake of water or chemicals, and to
consolidate the inner, weakened structure. In literature a number
of comprehensive reviews are available about biodeposition
of CaCO3 on stone and building materials, highlighting
mechanisms, limitations, challenges, and perspectives of this
technology (De Muynck et al., 2010; Dhami et al., 2014; Anbu
et al., 2016; Nazel, 2016; Zhu and Dittrich, 2016; Castro-Alonso
et al., 2019). In this mini review, we fill a literature gap, by
focusing on current BCCM technologies for in situ cultural
stone conservation. We highlight the typology of interventions
and recent improvements of in situ applications and provide
viewpoints based on recent advances.

BCCM-Based Approaches for Cultural
Stone Conservation

Living Cells, Single Selected Bacterial
Strain
The application of BCCM for cultural heritage conservation was
proposed by a pioneer French group that developed the so-
called Calcite Bioconcept technology, covered by a now expired
patent (Adolphe et al., 1990). This methodology was based on
the application of cultures of selected bio-calcifying strains by
spraying them on the stone surface and then feeding them
by applications of a nutrient medium. The result was the
formation of a new calcareous coating layer called biocalcin.

This few µm thick layer was coherent to stone and made of
encrusted bacterial bodies mixed with CaCO3 (Figures 1A,B).
A preliminary screening of bacteria isolated from natural
carbonate environments allowed the selection of a Bacillus cereus
strain exhibiting the highest precipitation performance via the
ammonification of amino acids (Table 1; Castanier et al., 2000).
After testing it on limestone specimens, the technology was
transferred to in situ applications (Le Métayer-Levrel et al.,
1999). The first application was made in 1993, testing an area
of 50 m2 of the tower of the Saint Médard Church in Thouars.
Evaluation of the treatment was carried out 6 months and
1 year after the application (Table 1). The treatment had no
influence on the color or other aesthetical features and the water
absorption rate was up to five times less. Following this approach,
a number of façades of French historic and private buildings
were treated by the Calcite Bioconcept Company (Castanier
et al., 2000; Anne et al., 2010; De Muynck et al., 2010). No
scientific reports can be found about these treatments. At the
same time, several groups have worked to improve this system
by isolating and testing different microorganisms, exploring
different metabolic pathways and application conditions mainly
in laboratory settings, showing, in many cases, similar results
(reviewed by Nazel, 2016).

Over the last 20 years, a Spanish group of Granada made
efforts to further develop this technology. They promoted
the use of Mixococcus xanthus, a Gram-negative, non-
pathogenic soil bacterium, to overcome drawbacks of previous
treatments: the thin layer of the new formed bio-cement,
the possible formation of endospores, and uncontrolled
biofilm by Bacillus clogging stone pores. In an in vitro
model, sterilized calcarenite slabs were immersed in a liquid
medium containing M. xanthus and nutrients activating the
ammonification of amino acids (Rodriguez-Navarro et al.,
2003). Newly formed coherent carbonate cement of calcite
grains was deposited into the pores without plugging them to
a depth ≥500 µm. No myxospore formation was found in the
tested culture media.

Living Cells, Microbial Community of
Stone
A further step in the development of this technology proposed by
Jimenez-Lopez et al. (2007) was bio-precipitation fostered by the
microbial community inhabiting the stone. The advantage was
that it supported the autochthonous CaCO3 producing-bacteria
without introducing exogenous microorganisms. Initially, quarry
porous limestone slabs were immersed in a M-3P nutritive
buffered solution with/without M. xanthus (Jimenez-Lopez
et al., 2008). Treated stones showed newly precipitated CaCO3
overgrowth without pore plugging and, accordingly, weight
increase, regardless of the presence or absence of M. xanthus.
In comparison to sterilized slabs used as controls, the
treated slabs maintained their original pore size distribution
and were more resistant to mechanical stress. The M-3P
medium, stimulating heterotrophic carbonatogenic bacteria via
the ammonification of amino acids (Table 1), was patented
(González-Muñoz et al., 2008).
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FIGURE 1 | Examples of CaCO3 precipitation on limestone by different BCCM strategies. Panels (A,B) SEM micrographs of “biocalcin” formed by allochthonous
alive cells on Saint Maxim (SM) limestone: (A) Untreated surface of SM limestone; (B) Pores filled with the superficial bacterial coating (arrows). Panels (C–E) SEM
micrographs of calcite (determined by XRD) formed by autochthonous alive cells on calcarenite: (C) Untreated calcarenite. Chemically precipitated calcite crystals
(Cc) in a control stone show dissolution pits and NaCl crystals; (D) In the treated stone, bacterial calcite (BCc) are organized in nanogranular structure surrounded by
EPS; (E) Magnification of the nanogranular structure of calcite biocement. Panels (F,G) CaCO3 induced by cellular fraction: (F) SEM micrograph of calcite crystals
(determined by XRD) induced by BCF in CaCl2 solution; (G) Representative thin section made from cores taken from stone slabs of the Angera Cathedral stained
with Alizarine red (optical microscope, 400×). The metabolic pathway of allochthonous and autochthonous alive bacteria promoting BCCM (panels A–E) is the
oxidative deamination of amino acids present in the nutrient medium. As a result, calcifying bacteria produce CO2 and NH3 creating an alkaline microenvironment
and shifting the HCO3

− = CO3
2− + H+ equilibrium toward the right. In the presence of Ca2+, supplied in the nutrient medium, precipitation occurs via the reaction

Ca2+ CO3
2−
= CaCO3 preferentially on the bacterial cell surface in a microenvironment highly supersaturated with respect to CaCO3 (e.g., bacterial biofilm;

Jroundi et al., 2017) (With permission from: Le Métayer-Levrel et al., 1999 for Panels A,B.; Jroundi et al., 2017 for Panels C–E; and Perito et al., 2014 for Panels F,G).

The M-3P treatment was then tested in situ, with and
without M. xanthus, on selected areas of decayed calcarenite
stone of three historic buildings in Granada: San Jeronimo
Monastery, Hospital Real and Royal Chapel (Jroundi et al.,
2010; Rodriguez-Navarro et al., 2015). The evaluation
included both the technical efficacy and, for the first time,
the monitoring of the bacterial community of the decayed
stone by culture-dependent and independent techniques
(Table 1). Medium/long-term efficacy and detrimental
side-effects were monitored up to 4 years after treatments
(Rodriguez-Navarro et al., 2015). In all the three cases, the
newly formed CaCO3 (mostly calcite) created a cement that
consolidated the deteriorated calcarenite with a significant
surface strengthening neither plugging pores nor causing
aesthetical changes. The efficacy of the treatment in situ was
independent of the presence of M. xanthus. The carbonatogenic
bacterial population initially increased after treatment
applications, but over time reached values close to those
observed before treatment.

In those cases where the stone microbiota was altered
and/or suppressed (e.g., application of biocides), the
same authors proposed a bioconsolidation treatment with
carbonatogenic bacteria selected from calcareous stones
as inoculants (Jroundi et al., 2012). Bacteria were isolated
from altered calcarenite stone slabs by the application of
M-3P medium, then precipitating bacteria belonging to
Actinobacteria, Gamma-proteobacteria and Firmicutes were
selected and single strains were tested for bio-consolidation
capability in vitro, with and without M. xanthus. They found
that Acinetobacter spp. strains were the most appropriate
candidate bacteria.

To test the self-inoculation biotreatment in situ, an indigenous
community was recovered by cultivation from salt damaged
carbonate stone in a historic building (San Jeronimo Monastery),
activated via M-3P, and applied back onto the same stone
(Jroundi et al., 2017). Firmicutes was the dominant phylum in
the inoculum (∼79%). Test evaluation methods are reported in
Table 1. The effective consolidation was due to the formation of
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an abundant and exceptionally strong hybrid cement consisting
of nanostructured CaCO3 and bacterial EPS covering the
substrate (Figures 1C–E). After 5 months, the viable titer
of culturable microbiota increased and then after 24 months
dropped back to about pre-treatment values.

Cell Components
An Italian team of Florence investigated and assessed CaCO3
mineralization on stone induced by a bacteria-mediated system
in absence of viable cells (Perito et al., 2014). This investigation
used the Bacillus subtilis strain 168 to identify bacterial structures
or molecules inducing precipitation. The precipitation capability
of bacterial dead cells was tested in a CaCl2 solution as calcium
source and with the sublimation of ammonium carbonate for
alkalization. Dead cells were able to promote calcite formation,
then cell fractions were tested and a bacterial cell fraction (BCF)
containing the cell wall induced CaCO3 formation (Figure 1F).
Interestingly, the system was specific in generating crystal
polymorphisms, since only calcite was found by X-ray diffraction.

Apparently, dead cells as well as BCF acted as crystallization
nuclei in liquid medium. This hypothesis is supported by the
capacity of cell walls to uptake cations such as Ca2+, as previously
demonstrated for isolated B. subtilis walls (Beveridge and Murray,
1980), and fostering heterogeneous nucleation (Fortin et al.,
1997). According to Dupraz et al. (2009), this process can be
referred to biologically influenced mineralization.

BCF was stored as easy-to use lyophilized preparations,
maintained a long-lasting activity and showed heat resistance.
BCF treatment was tested on slab stones and then in situ on
selected areas of the main façade of the Angera Cathedral, a 6th
century monumental site in Italy (Perito et al., 2014). Lyophilized
BCF was dissolved in a CaCl2 solution, then sprayed on stone
surface with a supersaturated calcium bicarbonate Ca(HCO3)2
solution (Super C solution) for supplying calcium ions and
CO2. The solution was supplemented with calcite nanoparticles
to maintain supersaturation in the pore and increase calcium
ions. Field evaluation tests after treatment showed that BCF
treated areas had negligible color changes (Table 1). New crystals
formed inside stone pores (Figure 1G) and, accordingly, there
was a significant decrease in water absorption (up to 6.8%). The
cohesion profiles were significantly increased in the first 3 mm
(if compared with the control area treated with Super C alone).
These results show that this application has potential, even if the
authors concluded that further testing was needed to fully assess
the treatment conditions for in situ applications.

Perspectives: From Cell Components to
the Microbial Community
BCCM biotechnology could be an ecological alternative to
chemical treatments due to the low environmental impact and
the production of a layer of CaCO3 compatible with and
coherent to the stone. A common point of improvement for
the BCCM technologies is the consolidation performance, not
yet comparable to that of synthetic polymers. The appropriate
selection of stone types before application is important
because pore structure affects penetration depth and treatment
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performance (De Muynck et al., 2011). Nanomechanical
properties of CaCO3 polymorphs can also be improved by
a better understanding of the bio-geo-chemical processes
governing the formation of biominerals with high mechanical
performance in natural environments (Dhami et al., 2018).

While the literature shows the potential in the laboratory
of different bacterial applications to promote CaCO3
mineralization, very few attempts have been made to test
the technology in situ (Table 1). Based on these few studies,
some companies have developed biomineralization products
for cultural heritage by using cultures of selected strains
(Amonit, France1) or media stimulating stone microbiota
(KBYO Biological, Spain2). Nevertheless, the translation of other
promising results obtained in vitro into practical bioremediation
applications on heritage stone in situ remains the challenge for
the immediate future (Webster and May, 2006); as examples,
the well documented biocalcite production by bacterial urease
or carbonic anhydrase (Castro-Alonso et al., 2019). Scaling up
will be needed in order to develop this technology (Figure 1,
box perspectives). In situ applications always have additional
problems when compared with the in vitro conditions, especially
concerning heterogeneity and conservation state of the stone,
delivery systems, outdoor or indoor environmental conditions,
type of feasible evaluation tests and the value of the artwork.
For this reason, preliminary in situ small-scale testing should
adopt treatment conditions mimicking those to the follow in
larger-scale applications.

Another general comment concerns the heterogeneity of the
treatment evaluation tests (Table 1). Although the choice of the
monitoring methods sometimes depends on the experimental
set-up, evaluating methods must be rapidly standardized for
comparing results and for metadata analyses. Standard methods
should consider the effectiveness of the treatment in terms of
both consolidation and safety of stone (impact on structural and
aesthetical features as well as on resident microbiota).

Living bacteria require the application of nutrient media on
the stone. The possibility of undesirable side-effects on stone is
controversial and it needs to be carefully evaluated (González-
Muñoz, 2008; Nazel, 2016). The metabolic pathway activated
in situ is the oxidative deamination of amino acids (Table 1),
which increases the alkalinity by production of ammonia
(Castanier et al., 1999; Lee and Park, 2019). The convenience
of obtaining byproducts as ammonia and using spore-forming
bacteria as Bacillus on stone has been recently discussed
(Dhami et al., 2014; Zhu and Dittrich, 2016). More generally,
promotion of undesired microbial growth can produce mineral
changes or appearance of stained patches on stone, as found by
Tiano et al. (1999). Such drawbacks may be encountered both
in case of activating allochthonous or autochthonous strains.
While aesthetical changes can be easily evaluated, growth of
unwanted microorganisms and/or changes in the autochthonous
community structure affecting the original ecological niche
is harder to analyze. Microbes can strongly contribute to
stone deterioration (Pinna, 2017) and the application of new

1http://www.amonit.fr/fr/calcite__1
2http://kbyobiological.com/en/

biotechnologies by conservators requires knowledge about the
risk factors, in particular on the long-term effects (Webster
and May, 2006; De Muynck et al., 2010). In this respect,
the work about the long-term monitoring of stone microbiota
carried by Ettenauer et al. (2011) and Jroundi et al. (2017) is
remarkable. However, knowledge about microbial communities
inhabiting heritage stone mainly comes from cultivation studies
(Scheerer et al., 2009). Microbial communities of stone were
only recently investigated using Next Generation Sequencing
and omics techniques (Perito and Cavalieri, 2018; Marvasi
et al., 2019). The latest studies suggest that natural community
structure detected by metagenomics is quite different from that
of enriched communities cultivated from calcareous stone in
precipitating media where Firmicutes are dominant (Dhami et al.,
2018; Li et al., 2018).

Meta-omics techniques as a whole (metagenomics,
metatranscriptomics and metabolomics) will promote a
further step to improving BCCM technology, because they
provide a wider view of the microbial community structure,
fluctuations and metabolic potential (Marvasi et al., 2019). In
regard to the cultivation bias (Hardoim et al., 2014), omics
technologies will provide a better understanding of the stone
microbial community structure to allow treatment monitoring
as well as the identification of the community components
with biomineralization potential. Chimienti et al. (2016) used
metagenomics to identify the presence of microorganisms
known as carbonatogenic (i.e., Arthrobacter) within the overall
microbial community from stone slabs of a medieval church.
Zanardini et al. (2019) reconstructed the carbon, nitrogen and
sulfur cycles and their biodeterioration potential within the
prokaryotic community of decayed sandstone of a medieval
castle by 16S rRNA and functional gene analyses. Using a similar
approach, the carbonatogenic potential of metabolic pathways
linked to these biogeochemical cycles could be inferred. On the
other hand, cultivation is more valuable than ever in the omics
era (Gutleben et al., 2018) because it is needed to confirm the
predicted carbonatogenic ability of stone populations as well as
for other applications. But then again, meta-omics techniques
can also provide useful information to improve cultivation
strategies for the isolation of potential calcinogenic bacterial
populations from calcareous environments.

The cell-free approach offers several advantages: the cellular
components act as mineral nucleation and growth sites in the
absence of nutrients, components smaller than cells penetrate
more in depth into pores and microcracks, interventions on
the chemical environment governing precipitation are easier
(Hammes and Verstraete, 2002). Alkaline buffering or different
supersaturated calcium solutions should be further developed
and compared to that used by Perito et al. (2014). However, the
preparation of the BCF product is more complex compared to
alive cellular strategies but could have as target calcareous objects
where minimum change in their chemistry is required (Perito
et al., 2014). A cell-free approach has not been explored further.

Very little is still known about the molecular basis of the
calcium biomineralization process (Perito and Mastromei, 2011).
B. subtilis laboratory strain 168 was used to identify cellular
fractions as well as genes and molecules with key roles in inducing
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precipitation (Barabesi et al., 2007), as found for mollusks
(Falini et al., 1996). Characterization of B. subtilis mutants
impaired in CaCO3 precipitation suggested a link between
biomineralization, redox reactions of fatty acid metabolism,
changes in phospholipids membrane composition and surface
properties (Barabesi et al., 2007; Marvasi et al., 2010, 2016;
Frandi et al., 2011; Perito et al., 2018a). In Lysinibacillus, CaCO3
precipitation can modify membrane rigidity by upregulating
the branched chain fatty acid synthesis (Lee and Park, 2019).
We speculate that intervention on these metabolic switches
could help in the search for bacterial molecules fostering
precipitation and, at the same time, improving precipitation
performance by bacteria.

On the other hand, it is well known that bacterial
macromolecules, like the EPS, act as matrices which promote
mineralization and are trapped in the growing calcite (Decho,
2010; Marvasi et al., 2012; Perito et al., 2018b). According to
Jroundi et al. (2017), the hybrid cement due to the incorporation
of organisms and EPS within the nanostructured CaCO3 in
the self-inoculation biotreatment was responsible for the high

consolidation effectiveness. Further studies are needed in order
to identify and test different EPS or to design bacteria-
based biomimetic matrices promoting calcite growth on stone.
This would represent a further advancement of the cell-free
technology since it would reduce the complexity of organic
matter to apply, increasing its penetration inside stone.

Concluding, in our opinion all the different approaches
explored in this mini review are worth further development for
in situ applications, even if two of them are already available on
the market. Fascinating challenges for the future include advances
in exploitation of bacterial pathways, cell components and single
(macro)molecules.
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