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Abstract: We study a quantity T defined as the energy U, stored in non-equilibrium steady states
(NESS) over its value in equilibrium U0, ∆U = U −U0 divided by the heat flow JU going out of the
system. A recent study suggests that T is minimized in steady states (Phys.Rev.E.99, 042118 (2019)).
We evaluate this hypothesis using an ideal gas system with three methods of energy delivery: from
a uniformly distributed energy source, from an external heat flow through the surface, and from
an external matter flow. By introducing internal constraints into the system, we determine T with
and without constraints and find that T is the smallest for unconstrained NESS. We find that the
form of the internal energy in the studied NESS follows U = U0 ∗ f (JU). In this context, we discuss
natural variables for NESS, define the embedded energy (an analog of Helmholtz free energy for
NESS), and provide its interpretation.

Keywords: non-equilibrium stationary states; energy fluxes; internal energy; ideal gas; heat transfer

1. Introduction

The basis of equilibrium thermodynamics relies on the existence of the equilibrium state.
The equilibrium state can be characterized by a set of appropriate parameters and some kind of
energy-based function of these parameters and internal constraints. The constraints allow comparing
this function in the state of equilibrium with states of constrained equilibrium [1]. For a monoatomic
system, the internal energy U(S, V, N) is a function of three parameters of state, namely entropy S,
volume V, and the number of particles N, which fully characterize all thermodynamics changes that
can occur in the system. For an unconstrained isolated system, S(U, V, N) is maximized at constant
U, V, N with respect to all states obtained by internal constraints.

A prerequisite for any system to become non-equilibrium is a continuous energy flow.
This macroscopic flow of energy leads to an increase of the system energy up to the point when
the energy flow into the system matches exactly the flow out of the system. At this point,
the non-equilibrium steady state is reached. Two parameters characterize the NESS: the flow JU
and the internal energy U. We show that U = U0 ∗ f (JU), where U0 is the energy at equilibrium.
We make three case studies: (i) a system internally heated between two parallel walls of the same
temperature; (ii) a heat flow between two parallel plates of different temperature; and (iii) a Poisseulle
flow between two parallel plates.

Non-equilibrium states are ubiquitous in nature and truly equilibrium states are exceptions.
However, despite many decades of study, we have not reached the same status of understanding of
non-equilibrium states as we have for equilibrium ones. There is no systematic approach for dealing
with NESS. Attempts to create such approaches include: minimum/maximum entropy production
principle [2], steady state thermodynamics [3], and driven lattice gas systems [4]. The heat flowing
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into the system is recognized as a source of entropy increase in [5–7]. In information theoretical
techniques and extended thermodynamics, the heat flow appears as a natural thermodynamic variable
in non-equilibrium steady states. The entropy of some ideal systems such as ideal gases, photons,
phonons, and ideal harmonic chains, among others, in the presence of a heat flow is studied in [8–12].
However, the energy that has to be stored in NESS has not been recognized as potentially a function of
state, from which in principle we could derive all properties of NESS [13].

In this paper, we attempt to address the latter issues. In a recent paper, a quantity

T =
U −U0

JU
(1)

is shown to be minimized in steady states for three different systems [13]. This quantity has the
dimension of time. In [13], T is shown to coincide with the characteristic time scale of the system energy
dissipation immediately after the shutdown of external energy flow. The minimization is demonstrated
through introducing a constraint into the system and showing that T for the unconstrained system
is always less than in the constrained system. In this paper, we analyze energy storage and T in
Systems (i)–(iii) defined above (these systems are different from the ones in [13]) and we arrive at the
same conclusions as in [13]. Moreover, we introduce the embedded energy, which is an analog of the
Helmholtz free energy for NESS, and provide its interpretation.

We point out that, in this paper, we extensively use the temperature profile to obtain the stored
energy U − U0. The local temperature is defined from the ideal gas law. It would be interesting,
however, to consider using effective temperature in non-equilibrium systems and to study their role in
energy storage [14,15].

2. Models and Results

We consider an ideal gas driven out-of-equilibrium by three different ways of energy delivery
that are common in physical realizations. In Case (i) the energy is delivered through a homogeneous
energy source, in Case (ii) by an external heat flow, and in Case (iii) by an external matter flow.

In steady states, the local energy does not change in time. Therefore, from local energy conservation,
we have

∇ ·~J = −k∇2T(~r) = σE(~r), (2)

where σE(~r) is the local energy source at the position~r. Here, we assume the Fourier’s law for the local
heat flux,

~J(~r) = −k∇T(~r), (3)

where k is the heat conductivity and T(~r) is the local temperature. We further assume that in the
NESS the ideal gas law is fulfilled locally and that the pressure (and hence the energy density) is
constant. From these assumptions, we obtain the following relation between the energy density ε and
the temperature profile,

ε =
ε0

T0

V∫
V

d3r
T(~r)

, (4)

where V is the volume of the system and ε0 and T0 are the energy density and temperature at
equilibrium, respectively. In this paper, we denote the corresponding equilibrium value of a variable
with a subscript 0. We show the derivation of Equation (4) in Appendix A. From ε, we define the
stored energy as

∆U = U −U0 = (ε− ε0)V. (5)

Without performing work (as is the case for our systems), all out-going energy flow Ėout is in the
form of heat, which we denote as Φout,
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Φout =
∫ ∫

S
~J · n̂dS, (6)

where S is the area through which the heat flows out and n̂ is the unit normal vector. In the steady state,
the total energy flow into the system equals the total energy flow out of the system Ėss

in = Ėss
out = Φss

out.
In the following, we denote the out-going energy flow in the steady state by JU ≡ Φss

out.
By introducing geometrical constraints, the system is partitioned into two subsystems.

These constraints do not change the local expressions for~J(~r) and T(~r). In addition, for each subsystem,
definitions of the stored energy Ui, i = 1, 2 and the out-going heat flow JUi , i = 1, 2 remain the same.
On the other hand, the subsystem energy density depends on the constrain in general. However,
in all three cases, the number of particles in each subsystem is kept proportional to the volume of the
system, i.e., Ni/Vi = N/V = n0. As a result, the expression of εi has the same form as Equation (4)
(see Appendix A). For the constrained system, we define the stored energy as

∆Utot = ∆(U1 + U2) = ∑
i

εiVi − ε0V, (7)

and the total out-going heat flow as Jtot ≡ JU1 + JU2 . For every case studied in this paper, we compare
the ratio T1|2 for the constrained system,

T1|2 =
∆Utot

Jtot
, (8)

with the ratio T (see Equation (1)) for the unconstrained system.

2.1. Energy Source

In Case (i), we consider a three-dimensional ideal gas placed between two diathermal walls of
area A (A → ∞). The walls are kept at temperature T0 and are fixed at x = ±L. The energy source
is distributed homogeneously over the system with σE(~r) = λ. As internal constraints, we choose a
diathermal wall and fix it at x1 ∈ (−L, L). This wall separates the system into two subsystems 1 and 2
with volumes V1 = A(L + x1) and V2 = A(L− x1), respectively. A scheme of the system is shown in
Figure 1.

(a)

0-L L x

(b)

0-L L xx1

Figure 1. Schemes of (a) unconstrained and (b) constrained ideal gas model under an external energy
supply. The two diathermal walls of area A and temperature T0 are positioned at x = ±L. An external
energy is supplied homogeneously to the bulk with a density λ. The heat flux 2~J leaves the system
through boundaries. In (b), the vertical plane at x = x1 represents the internal constraint, which is a
diathermal wall.

Consider first the unconstrained system. As the coordinates y and z do not influence the
temperature profile, it is sufficient to consider x−dependence. The temperature profile T(x) is
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obtained by solving Equation (2), which now has the form −k∂2
xT = λ. Using dimensionless variables

λ̃ = λL2/kT0, T̃(x) = T(x)/T0 and normalizing x to x̃ = x/L, we obtain

T̃(x̃) = − λ̃

2
x̃2 + 1 +

λ̃

2
. (9)

Using Equation (4), we find the energy density to be

ε =
ε0

√
λ̃(λ̃ + 2)

2 Arctanh(
√

λ̃/(λ̃ + 2))
. (10)

As stated above, the out-going heat flow equals the in-coming energy flow, Ėin = 2LAλ = JU .
Combining with Equation (10), we find

∆U
JU

=
ε− ε0

λ
. (11)

In the presence of the diathermal wall, the boundary conditions at the constraint are T1(x1) =

T2(x1) and dT1(x)/dx|x1 = dT2(x)/dx|x1 . Solving for the subsystem temperature profile with
corresponding boundary conditions, we find that Ti(x) is not changed by the constraint, i.e., T1(x) =
T2(x) = T(x), in their respective domains. Therefore, we obtain the energy densities as

ε1 =
ε0(1 + x̃1)

√
λ̃(λ̃ + 2)

2 Arctanh
(√

λ̃/(λ̃ + 2)
)
+ 2 Arctanh

(
x̃1

√
λ̃/(λ̃ + 2)

) , (12)

ε2 =
ε0(1− x̃1)

√
λ̃(λ̃ + 2)

2 Arctanh
(√

λ̃/(λ̃ + 2)
)
− 2 Arctanh

(
x̃1

√
λ̃/(λ̃ + 2)

) . (13)

As the total energy source does not change, the out-going heat flow is not changed either,
JU1 + JU2 = JU = 2LAλ. Together with Equation (12) and (13), we have

T1|2 ≡
∆Utot

Jtot
=

∆Utot

JU
=

ε1(1 + x̃1) + ε2(1− x̃1)− 2ε0

2λ
. (14)

Now, we compare Equations (11) and (14). The relation reduces to

ε ∼ ε1(1 + x̃1)

2
+

ε2(1− x̃1)

2
. (15)

Dividing both sides of Equation (15) by ε gives

1 ∼ (1 + x̃1)
2

2 + 2a
+

(1− x̃1)
2

2− 2a
, (16)

where a = Arctanh(x̃1

√
λ̃/(λ̃ + 2))/ Arctanh(

√
λ̃/(λ̃ + 2)). For x̃1 ∈ (−1, 1), a ∈ (−1, 1) and

(2 + 2a)(2− 2a) ≥ 0. We multiply this by both sides of Equation (16) and rearrange the terms to obtain

0 ∼ (a− x̃1)
2. (17)

Since (a− x̃1)
2 ≥ 0, we have verified for this model

T ≤ T1|2. (18)
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2.2. Heat Flow

In Case (ii), an ideal gas is in contact with two walls at different temperatures T1 ≥ T0. The walls
are of a large area A = H × Z (with height H and width Z) and are placed at x = 0 and x = L
(see Figure 2). The steady state is driven by a constant heat flow through the system with no bulk
energy supply, i.e., σE(~r) = 0. For the constraints, we choose an adiabatic wall. We consider two
situations. In the first, the wall extends from left to right in a zigzag manner. Its position is given
by w1(x) = h/2− hH(x− L/2) whereH(x) is the Heaviside function. We refer to this constraint as
vertical (Figure 2b). In the second, the wall is a straight line with a slope k, i.e., w2(x) = k(x− L/2).
We refer to this constraint as linear (Figure 2c). Both constraints are fixed at x = L/2, so that the
subsystems are symmetric in shape. Furthermore, they are chosen to ensure a non-zero heat flow in
each subsystem. In other words, each subsystem is always in contact with both boundaries.

x

y

L0

A A

Z

z

Figure 2. Schemes of (a) unconstrained, (b) and (c) constrained ideal gas systems with an external heat
flow. Two diathermal walls at temperatures T1 and T0 are placed at x = 0 and L, respectively. In (b,c),
the black surface inside the system represents the constraint, which is an adiabatic wall. In (b), the
constraint has a height h and extends from (0, h/2) to (L/2, h/2) to (L/2,−h/2) to (L,−h/2). In (c),
the constraint has a slope k and it stretches from (0,−kL/2) to (L, kL/2). The red arrows denote the
heat flux.

For the unconstrained case, the temperature profile only depends on x. Solving Equation (2)
(which is now ∂2

xT(x) = 0) with boundary conditions T(x = 0) = T1 and T(x = L) = T0, we have

T(x) =
T0 − T1

L
x + T1. (19)

The energy density is then

ε = ε0
T̃1 − 1
ln T̃1

. (20)

Since we choose T1 ≥ T0, the heat flow passes through the system from left to right. The unit
normal vector of the left (right) boundary is n̂ = (−1, 0) (n̂ = (1, 0)). The local heat flux is ~J(~r) =

−k(∂xT(~r), ∂yT(~r)). Hence, the heat flow going through the system can be calculated using either of
the following expressions,

Φin = k
∫

Z
dz
∫

Y
∂xT(x, y) |x=0 dy,

Φout = k
∫

Z
dz
∫

Y
∂xT(x, y) |x=L dy,

(21)

which gives,

JU =
kAT0

L
(T̃1 − 1). (22)
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For the constrained system, the temperature profile depends also on the y-coordinate. It satisfies
the equation ∇2T(x, y) = 0 with the following boundary conditions,


T1(0, y) = T1, T2(0, y) = T1,

T1(L, y) = T0, T2(L, y) = T0,

∂n̂T1(x, y) |y=w(x)= 0, ∂n̂T2(x, y) |y=w(x)= 0,

∂yT1(x, y) |y=−H/2= 0, ∂yT2(x, y) |y=H/2= 0.

(23)

At x = 0 and L, the system is in contact with the plates. This is represented by the Dirichlet
boundary conditions. In addition, since the constraint is an adiabatic wall, we have Neumann boundary
conditions at wi(x), i = 1, 2. Finally, at the boundaries far away from the constraint, we expect the
effect of the constraint to diminish. In other words, at y = ±H/2, we assume that the heat fluxes are
parallel to the x-axis. To ensure this, we need to set H/2� wi(L) and H/2� wi(0) for i = 1, 2.

The temperature profiles are obtained numerically using the finite element method. In this
method, the system is separated into small domains called mesh and the function is approximated
using polynomials [16]. Examples of the contour plot of temperature profiles are shown in Figure 3.
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Figure 3. Contour plots of temperature profiles: (a) results of a vertical constraint; and (b) results of a
linear constraint. In both figures, the temperatures at the boundaries are T1 = 10, T0 = 2. The size of
the system is L = 10 and H = 60. For the vertical constraint, the height of the wall is h = 10. For the
linear constraint, the slope of the wall is k = 1.

After obtaining temperature profiles, the stored energy density is calculated using Equation (4).
The total heat flow is obtained using either the left or right boundary according to Equation (21),

Jtot = JU1 + JU2 = kZ
∫ y∗

−H/2
∂xT1(x, y) |x=0 dy + kZ

∫ H/2

y∗
∂xT2(x, y) |x=0 dy, (24)

where y∗ = w1(x = 0) (w2(x = 0)) for the vertical (linear) constraint.
For both constraints, we study ∆Utot/V, Jtot/A and T1|2 at different parameters h and k with

different system sizes (see Figure 4). In all cases, we find T1|2(h) ≥ T1|2(0) and T1|2(k) ≥ T1|2(0).
If h = 0 and k = 0, the system is separated into identical subsystems and T1|2(0) = T . Hence, T ≤ T1|2
for all these systems.



Entropy 2020, 22, 557 7 of 11

0 50 100
h

3

3.5

4

∆
U

to
t/V

10x60
10x80
10x100
10x200
10x400
10x600

(a)

0 1 2 3 4 5 6 7 8
k

2.8

3

3.2

∆
U

to
t/V

10x60
10x80
10x100
10x200
10x400
10x600

(b)

0 50 100
h

0

0.2

0.4

J
to

t/A

10x60
10x80
10x100
10x200
10x400
10x600

(c)

0 2 4 6 8
k

0.2

0.4

0.6

0.8

J
to

t/A
10x60
10x80
10x100
10x200
10x400
10x600

(d)

0 50 100
h

0

1500

3000

∆
U

to
t/J

to
t

10x60
10x80
10x100
10x200
10x400
10x600

(e)

0 2 4 6 8
k

50

100

150

∆
U

to
t/J

to
t

10x60
10x80
10x100
10x200
10x400
10x600

(f)

Figure 4. Plots of total energy storage per volume ∆Utot/V = ∆(U1 +U2)/V, total out-going heat flow
per area Jtot/A = (JU1 + JU2 )/A and their ratio T1|2 = ∆Utot/Jtot = ∆(U1 + U2)/(JU1 + JU2 ): results
for vertical constraints (a,c,e); and results for linear constraints (b,d,f). Each panel is evaluated for six
different system sizes of a fixed L = 10 and H = 60, 80, 100, 200, 400 and 600.

2.3. Matter Flow

In Case (iii), the ideal gas is flowing between two parallel walls located at y = ±h (see Figure 5).
The flow is assumed to be laminar and the fluid incompressible. It is driven by a constant pressure
gradient along the x-axis, ∂xP(x) = −P. Such a flow is known as the Poiseuille flow [17]. Both walls
are kept at temperature T0. An adiabatic slip wall is introduced as the constraint into the system. It is
placed at y = y1 with 0 ≤ y1 ≤ 1.

In the steady state, the velocity profile and the temperature profile can be obtained from the
Navier–Stokes equation. We note that, due to the presence of the external pressure gradient and since
the mass density of the incompressible fluid is homogeneous ρ = ρ0, the energy density is not constant
throughout the system. We first obtain the velocity profile ~v = (v(y), 0) from

∂2v(y)
∂y2 = −P

µ
, (25)
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(a)

x

y

0

J

J
-h

h

P(x)

A

A

T0

T0 y

0

J

J
-h

h

P

T0
A

A

Figure 5. Schemes of (a) unconstrained and (b) constrained Poiseuille flow. The system is bounded
by two plates with a fixed temperature T0 and area A that are placed at y = ±h. A constant pressure
gradient is applied across the system. In (b), the system is divided by an adiabatic slip wall placed at
y = y1.

where µ is the viscosity. Given the non-slip conditions at the boundaries v(±h) = 0, we find

v(y) =
P
2µ

(h2 − y2). (26)

Secondly, from the momentum equation, we obtain the dissipation density function φ =

µ(∂yv)2 = P2y2/µ. The dissipation density function governs the rate at which the mechanical energy
of the flow is converted to heat. The out-going heat flow JU is given by,

JU = A
∫ h

−h
φdy = V

P2h2

3µ
, (27)

where A is the area of the plates and V = A× 2h is the volume of the system. Moreover, we assume
that the heat transfer obeys the Fourier’s law. From (Equation (2)),

− k
∂2T
∂y2 = φ, (28)

together with boundary conditions T±h = T0, we obtain the temperature profile,

T(y) =
P2

12µk
(h4 − y4) + T0. (29)

Finally, we assume that the internal energy locally obeys the ideal gas law given by Equation (A4).
The total energy of the system consists of the kinetic energy and the internal energy,

Ek =
ρ0 A

2

∫ h

−h
v2(y)dy = V

ρ0P2h4

15µ2 , (30)

Eu =
3
2

An0kB

∫ h

−h
T(y)dy = V

n0kBP2h4

10µk
+

3
2

Vn0kBT0, (31)

where the number density n0 = ρ0/m, with m the mass of a single atom or molecule. Combining
Equations (27), (30) and (31), we obtain

T =
∆U
JU

=
Ek + Eu − Eu0

JU
= n0h2

(
m
5µ

+
3kB
10k

)
. (32)
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For the constrained system, additional boundary conditions are dv1/dy |y=y1= 0, dv2/dy |y=y1= 0,
dT1/dy |y=y1= 0 and dT2/dy |y=y1= 0. Following the same method, we find the velocity profiles as

v1 =
P
2µ

(
(h− y1)

2 − (y− y1)
2), (33)

v2 =
P
2µ

(
(h + y1)

2 − (y− y1)
2), (34)

and the temperature profiles as

T1(y) =
P2

12µk
(
(h− y1)

4 − (y− y1)
4)+ T0, (35)

T2(y) =
P2

12µk
(
(h + y1)

4 − (y− y1)
4)+ T0. (36)

From these equations, we obtain

T1|2 ≡
∆(U1 + U2)

(JU1 + JU2)
= n0

(
(h− y1)

5 + (h + y1)
5)(

(h− y1)3 + (h + y1)3
) ( m

5µ
+

3kB
10k

)
. (37)

Comparing T and T1|2, the relation reduces to

h2 ∼
(
(h− y1)

5 + (h + y1)
5)(

(h− y1)3 + (h + y1)3
) . (38)

Analysis shows that T ≤ T1|2.

2.4. Energy Density as Function of Heat Flow

It is interesting to note that, for all the above studied models, the steady state energy density ε is a
product of the equilibrium energy density ε0 and a dimensionless function of the heat flow JU . For the
ideal gas system with a homogeneous energy supply, where JU = 2LAλ, ε can be written as (compare
Equation (10))

ε =

ε0

√
L

AkT0
JU

(
L

AkT0
JU + 4

)

4 Arctanh(

√
L

AkT0
JU/

(
L

AkT0
JU + 4

) . (39)

Next, for the heat flow model, with JU = (T1− T0)Ak/L (compare Equation (22)), the steady state
energy density can be expressed as

ε =
ε0

L
AkT0

JU

ln
( L

AkT0
JU + 1

) . (40)

Lastly, for the matter flow model, with JU = 2AP2h3/3µ (compare Equation (27)), the steady state
internal energy density can be expressed as (compare Equation (31)),

ε = ε0 +
1

10
JUh

AkT0
× 3

2
n0kBT0 = ε0(1 +

1
10
· h

AkT0
JU). (41)

Thus, in all studied steady states, we find U = U0 ∗ f (JU L/(AkT0)).
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3. Conclusions

We use the ideal gas model with three different energy delivery methods to test the hypothesis
that ∆U/JU is minimized in steady states. The results in all models confirm that ∆U/JU ≤ ∆(U1 +

U2)/(JU1 + JU2).
Further, in all studied steady states, we find U = U0 ∗ f (JU L/(AkT0)) and therefore JU is a

parameter of NESS. By making a Legendre transform of U with respect to JU , we get an analog of
the Helmholtz free energy for NESS, especially since JU/T0 is the entropy flow leaving the system
through the wall at temperature T0. We introduce a quantity U − (dU/dJU)JU = U∗, which we call
the embedded energy, since it is the stored energy minus the outflow of energy in the characteristic time
τ = dU/dJU . Thus, U∗ represents the part of the energy that must stay in the system for all times to
keep the outflow of energy, while τ JU is the energy that constantly flows through the system in time τ.
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Appendix A

Here, we provide the calculation of the energy density ε from the temperature profile T(~r) with
~r = (x, y, z).

The system has a fixed number of particles N and a fixed volume V. It obeys the ideal gas law,

P = nkBT, (A1)

ε =
3
2

nkBT, (A2)

where P is the pressure, n = N/V is the particle number density, kB is the Boltzmann constant, and ε

is the (internal) energy density. For steady states in Cases (i) and (ii), we assume that the pressure (and
hence the energy density) is homogeneous across the system, that is,

P = n(~r)kBT(~r), (A3)

ε =
3
2

n(~r)kBT(~r). (A4)

The energy density can be obtained by observing that

ε
∫

V

d3r
T(~r)

=
3
2

kB

∫
V

d3rn(~r) =
3
2

kBN =
ε0

T0
V, (A5)

where n0 is the number density at equilibrium and we used n0V =
∫

V d3rn(~r) = N. We denote the
equilibrium variables with subscript 0. The energy density is thus

ε =
ε0

T0

V∫
V

d3r
T(~r)

. (A6)
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When introducing the constraints, the subsystems are separated in such a way that Ni/Vi = n0.
For each subsystem, we have

∫
Vi

d3rni(~r) = Ni and, thus,

εi

∫
Vi

d3r
Ti(~r)

=
3
2

kB

∫
Vi

d3rn(~r) =
3
2

kBNi =
ε0

T0
Vi. (A7)

Therefore, the expression for εi is of the same form as ε,

εi =
ε0

T0

Vi∫
Vi

d3r
Ti(~r)

. (A8)
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