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Dose–response modeling in mental health
using stein-like estimators with
instrumental variables
Cedric E. Ginestet,a*† Richard Emsleyb,c and Sabine Landaua

A mental health trial is analyzed using a dose–response model, in which the number of sessions attended by the
patients is deemed indicative of the dose of psychotherapeutic treatment. Here, the parameter of interest is the
difference in causal treatment effects between the subpopulations that take part in different numbers of therapy
sessions. For this data set, interactions between random treatment allocation and prognostic baseline variables
provide the requisite instrumental variables. While the corresponding two-stage least squares (TSLS) estimator
tends to have smaller bias than the ordinary least squares (OLS) estimator; the TSLS suffers from larger variance.
It is therefore appealing to combine the desirable properties of the OLS and TSLS estimators. Such a trade-off
is achieved through an affine combination of these two estimators, using mean squared error as a criterion. This
produces the semi-parametric Stein-like (SPSL) estimator as introduced by Judge and Mittelhammer (2004). The
SPSL estimator is used in conjunction with multiple imputation with chained equations, to provide an estimator
that can exploit all available information. Simulated data are also generated to illustrate the superiority of the
SPSL estimator over its OLS and TSLS counterparts. A package entitled SteinIV implementing these methods
has been made available through the R platform. © 2017 The Authors. Statistics in Medicine Published by John
Wiley & Sons Ltd.
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1. Introduction

The use of instrumental variables (IVs) techniques has become increasingly popular in mental health
trials to estimate causal treatment effects. Firstly, patients’ non-adherence with the psychotherapeutic
treatment under offer may lead to selection bias. In the presence of such protocol violations, IV meth-
ods have often been used to estimate the complier average causal effect (CACE) [1,2]. Secondly, mental
health researchers are typically interested in understanding treatment effect heterogeneity due to differ-
ences in therapeutic experience [3]. We refer to variables that measure heterogeneity of treatment as
process variables. Typical examples are the number of sessions of therapy, and the therapeutic alliance or
the fidelity of the treatment delivery. Importantly, therapeutic process variables are post-randomization
variables that might be predicted by prognostic baseline variables, leading to such variables becoming
endogenous with respect to linear models for mental health outcomes. (A predictor is said to be exoge-
nous, if it is not correlated with the error term in the model. Otherwise, it is referred to as an endogenous
predictor.) This issue has been addressed through the use of IV methods [4–6].

While the asymptotic properties of IV estimators such as the two-stage least squares (TSLS) are well
understood; in practice, it is not always clear whether or not using an IV estimator over a simpler ordinary
least squares (OLS) estimator is necessarily beneficial. Intuitively, because every IV is a random variable,
its inclusion in the analysis tends to increase the variance of the resulting estimator. Variance inflation
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is inversely proportional to the predictive power of the IVs for explaining variability in the endogenous
variable. Poor or weak instruments are variables that are weakly predictive of the endogenous variables
in the analysis model. Thus, although the use of an IV estimator is likely to lead to a significant decrease
in the bias of the OLS estimator, it will also yield a more variable estimator. Because the true value of the
parameters of interest is unknown in practice, it is generally not possible to evaluate whether the benefit of
using a given set of instruments outweighs the cost in variance of incorporating them into the analysis. In
addition, the use of weak instruments can also lead to a substantial amount of finite sample bias. Indeed,
the use of weak instruments has been studied by [7], and these authors have shown that the inclusion of
instruments with only weak linear relationships with the endogenous variables tends to inflate the bias of
the IV estimator, eventually producing an estimator as biased as the original OLS estimator.

In this paper, we address this issue by utilizing a semi-parametric Stein-like (SPSL) estimator, orig-
inally introduced by [8], which combines the OLS and TSLS estimators in an affine fashion. In this
framework, a sample estimate of the mean squared error (MSE) of the estimators under consideration is
constructed. Because the MSE can be decomposed into a bias and a variance component, it provides a
natural criterion for combining the OLS and TSLS estimators. The shrinkage parameter weighting the
relative contributions of the two candidate estimators is adaptive, in the sense that it depends on the prop-
erties of the data, and takes into account the strength of the instruments. The idea of combining the OLS
and TSLS estimators has been previously discussed in the literature [9]. In particular, [10] has proposed
an ‘almost unbiased estimator’ for simultaneous equations systems, which strikes a balance between two
different k-class estimators by weighting their relative contributions using the sample size and the number
of variables in the model. Moreover, [9] has given an interpretation of the limited information maximum
likelihood estimator as a combination estimator, which relies on a weighting of the OLS and TSLS esti-
mators. Such combined estimators, however, do not attempt to estimate the respective contributions of
each estimator using the data, as was performed by [8] and [11]. An information-theoretical argument is
also used by [12] to justify this approach.

The main contribution of this article is to demonstrate the utility of the SPSL in analyzing mental
health trials. We here describe a psychotherapeutic intervention using a dose–response model. In this
study, the patients differ in the number of sessions of psychotherapy that they have received. We wish
to know how the effect of treatment changes as the dose of therapy increases. Treatment dosage is here
defined as the number of therapy sessions that a patient would attend if therapy had been offered. As
most data sets in medical research, this application contains missing data, and the SPSL estimator must
therefore be adapted to ensure that the results are valid under a missing at random (MAR) data-generating
mechanism. We thus use multiple imputation with chained equations (MICE) methods and compute the
resulting standard errors (SEs) for the OLS, TSLS, and SPSL estimators. This article therefore provides
the first detailed applications of the SPSL estimator to mental health trials.

The paper is organized as follows. In the next section, we describe the main trial data set and the causal
parameters of interest. In Section 3, we recall the assumptions behind OLS and TSLS estimation and then
describe the SPSL framework of [8]. In Section 4, the theoretical properties of the SPSL are assessed
using a range of different simulated data sets. The proposed methods are then applied to address dose–
response questions in the trial of interest, in Section 5. The proofs of the two main propositions in this
paper, as well as some further details about the simulations, have been deferred to the Appendix.

2. Dose–response models in mental health

In trials of psychological therapies, it is often of interest not only to establish whether the intervention
is effective in the target population but also to describe the therapeutic processes that need to take place
to enhance their efficacy. Therapists explain the absence of a therapeutic effect by important therapeu-
tic processes such as the receipt of a sufficient amount of therapy or the establishment of an alliance
with the therapist not having taken place. Thus, standard intention-to-treat analyses of trials of mental
health interventions are increasingly accompanied by further explanatory analyses aimed at assessing
such hypothesized treatment effect heterogeneity empirically [1,2,5]. Here, we focus on treatment effect
modification by the dose of therapy, as measured by the number of therapy session received.

Importantly, such explanatory aims bring with them their own statistical challenges – namely, the
variables whose effects we are trying to estimate are endogenous in the model for the response. As we will
show, such endogeneity leads to bias in the OLS estimator, while an IV approach might be able to avoid
bias albeit at the cost of a loss in precision. We will later propose an estimator that optimally combines
these two approaches. But before going into the estimation of effects of endogenous variables, we first
provide a motivating trial example, clarify the parameters that capture treatment effect modification by
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process variables, and show that these parameters can indeed be represented by effects of endogenous
dose variables in a linear model for the response.

2.1. The Study of Cognitive Re-alignment Theory in Early Schizophrenia trial

We re-analyze a mental health trial that has previously used standard IV methods to investigate treatment
effect heterogeneity due to differences in therapeutic experience. Specifically, we focus on a trial inves-
tigating dose–response research questions. Here, the variable that is hypothesized to modify the causal
effect of therapy, is the number of sessions of therapy that a patient would attend, if she had been offered
a course of therapy. What we can observe for each patient is the endogenous variable: ‘number of ses-
sions received’. Hence, there is a need to employ IV methods in order to avoid bias. In this trial, the focus
of the research is on the modification of this dose–response relationship by therapeutic alliance.

The Study of Cognitive Re-alignment Theory in Early Schizophrenia (SoCRATES) is a clinical trial
investigating the effect of cognitive behavioral therapy or supportive counseling for individuals in addi-
tion to treatment-as-usual having suffered a first or second acute episode of schizophrenia [13]. For
simplicity, the two psychological therapy arms were here combined to form a group of 104 subjects.
These psychological therapies were contrasted with TAU, which was here defined as routine hospital-
ization following an acute episode of schizophrenia. The TAU arm comprised 103 subjects. Individuals
did not have access to these specific psychological therapies outside the trial. Thus, all trial participants
allocated to the TAU arm did not receive any sessions of the respective psychological therapies, and thus,
there was no contamination. However, there was non-adherence in the active arm. That is, patients being
offered treatment may have received different doses of therapy. In the most extreme case, participants did
not take part in any psychotherapy sessions and thus effectively received TAU.

The clinical outcomes of the study included the subjects’ scores on the Positive And Negative Syn-
drome Scale (PANSS). PANSS were administered at baseline to a total of 207 subjects, denoted by
PANSS(0), and at an 18-month follow-up, denoted by PANSS(18). The data analyzed here constitute
a subsample of the full data set, as delineated by Emsley et al. [14]. The dose of psychological ther-
apy was captured by the number of sessions that the patient took part in. In addition, psychotherapeutic
alliance was measured using the short 12-item patient-completed version of the California Therapeutic
Alliance Scale (CALPAS). Note that this is an interval psychometric scale. The scale cannot determine
the absence of therapeutic alliance and only measures differences in the degree of alliance. For conve-
nience, CALPAS scores were thus rescaled such that scores ranged from −7 to 0, with larger scores
denoting greater psychotherapeutic alliance and a value of zero indicating the best therapeutic alliance
achieved in this trial. A number of further clinical and demographic variables were measured at base-
line (pre-randomization), described in the next section. The SoCRATES data set contained a substantial
amount of missing data, with 54 cases missing between one and five values, and 48 subjects for whom
PANSS(18) was not available.

Several authors [4,15,16] have previously conducted analyses of the SoCRATES trial in order to under-
stand how the perceived alliance of the patients with their therapist influences the relationship between the
number of sessions received and the PANSS(18) outcome. We here replicate their analyses and expand
them, in order to demonstrate the usefulness of the use of the SPSL estimator in this context.

2.2. Treatment effect modification by process variables

We here follow Rubin’s causal model [13], which provides a framework for defining causal effects. We
use the following notation for our trial, in which an active condition is compared with a control condition:

• R is treatment offer, to which the participant is randomly assigned (with r = 0 for the control arm
and r = 1 for the active arm). In the SoCRATES trial, R = 1 for those offered psychological therapy
and R = 0 for those offered TAU. By contrast, T is treatment receipt, defined as receiving at least one
session of psychological therapy; T = 1 if S > 0. If T = 1, then R = 1, because of trial participants
having no access to psychological therapy outside the trial.

• Y(T = t) is the potential outcome under treatment t. There are two potential outcomes, Y(T = 1)
and Y(T = 0); only one of which can be observed for a given participant. The contrast Δ ∶= Y(T =
1) − Y(T = 0) then denotes an individual’s causal treatment effect (ITE). Importantly, ITEs can
vary between individuals. We will also utilize potential outcomes under treatment offer, denoted by
Y(R = 1) and Y(R = 0), which potential outcome we refer to will be made explicit in these instances.
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• S(1) ∶= S(R = 1) is the number of sessions that an individual would have taken part in, had they been
offered the active condition. In the SoCRATES data set, this potential outcome is observed for the
psychological therapies arm; it is missing for the control arm. Analogously, S(0) ∶= S(R = 0) is the
number of therapy sessions that an individual would take part in, had they been offered the control
condition. In SoCRATES, this potential outcome is S(0) = 0 for all trial participants because they
have no access to the active condition. The observed number of sessions, S, is related to the potential
number of sessions via the equation S = RS(1). We refer to trial participants with S(0) = 0 and
S(1) > 0 as ‘compliers’ and those with S(0) = 0 and S(1) = 0 as ‘never-takers’. The subpopulation
of compliers can be further divided into ‘one-session takers’, satisfying S(0) = 0 and S(1) = 1,
‘two-session takers’, satisfying S(0) = 0 and S(1) = 2, and so forth.

• A(1) ∶= A(T = 1) is the alliance (rescaled CALPAS score) that a participant would be able to build
with the therapist across their sessions if they were to receive therapy. Such a potential outcome can
only be defined for compliers (i.e., when S(1) > 0). However, the product S(1)A(1) is defined for the
whole sample. Variable A denotes the observed alliance score. Alliance cannot be observed for those
who are not offered therapy or are offered but do not comply, and thus, the score is missing for such
trial participants (i.e., when S = 0). However, the product SA can be fully observed and is related to
potential outcomes via the equation SA = RS(1)A(1).

• Finally, B denotes the baseline outcome measure, PANSS(0), and Xj’s collectively refer to other
observed covariates, including years of education and duration of untreated psychosis (DUP) in
years, as well as two dummy variables that allow for differences between the three different centers.

We here restrict our attention to trials without contamination and study the effect of dose of therapy
when offered, that is, the effect of S(R = 1). We make the following causal assumptions:

. (C1) No contamination: S(R = 0) = 0.

. (C2) Linear dose–response model:

• Y(R = 0) = 𝜇1 + 𝛽BB +
∑k

j=1 𝛽jXj + 𝜏;
• Y(R = 1) = Y(R = 0) + 𝛽SS(R = 1) + 𝛽SAS(R = 1)A(T = 1) + 𝜈.

. (C3) No effect of treatment offer in never-takers (exclusion restriction): E[𝜈|S(R = 1) = 0,A(T =
1) = a] = 0, for every a ∈ (−∞, 0].

. (C4) No unaccounted variability in average treatment effects in compliers:E[𝜈|S(R = 1) = s,A(T =
1) = a] = 0, for every s ∈ {1, 2,…}, and a ∈ (−∞, 0].

. (C5) Exchangeability of treatment offer: Y(R = 1),Y(R = 0) ⟂ R.

Assumption (C1) implies that our target population does not contain any so-called ‘always-takers’
(here defined by S(R = 0) > 0 and S(R = 1) > 0) nor any ‘defiers’ (here defined by S(R = 0) > 0
and S(R = 1) = 0). A crucial consequence of this assumption is the following relationship between the
observable and potential outcomes: S = RS(1) = S and SA = SA(1) = RS(1)A(1).

We seek to understand how being able to take part in more sessions, S(1), changes the efficacy of the
therapy and how this dose–response relationship is modified by the therapeutic alliance a participant is
able to build when receiving therapy, A(1). Assumption (C2) employs a linear model to describe these
relationships. The parameter 𝛽S describes the change in the potential outcome under treatment offer,
Y(R = 1), per one extra session taken part in for those who can build an optimal alliance with the
therapist. In SoCRATES where improvements are reflected by a lowering of PANSS(18), we anticipated
this parameter to be negative. The second parameter 𝛽SA models the modification of this relationship by
alliance. Specifically, this parameter reflects the change in the session effect as alliance increases by one
point.

The residual term 𝜈 represents unaccounted variability in the causal treatment offer effect Y(R = 1) −
Y(R = 0), in a subpopulation indexed by s and a. Causal assumptions (C3) and (C4) are concerned
with this variability. Assumption (C3) states that for never-takers (S(1) = 0), the expectation of this
residual is zero; that is, to say the average treatment offer effect in never-takers is zero. This assumption is
conventionally referred to as the exclusion restriction assumption in trials. Assumption (C4) is concerned
with this variability in the compliers (S(1) = s with s > 0). For compliers, Y(R = 1)−Y(R = 0) = Y(T =
1) − Y(T = 0), and thus, we are making an assumption regarding the variability of the ITEs. We assume
that there is no unaccounted variability in the average treatment effect across complier subpopulations
indexed by s and a. That is to say, our linear model has accounted for all the heterogeneity in average
treatment effects across sessions and alliance scores. For example, this implies that for any A(1) = a,
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the relationship between average treatment effects and the number of sessions a participant would take
part in is truly linear. Finally, assumption (C5) states that treatment offer is ignorable. Exchangeability
of treatment offer R is ensured in trials because of randomization.

We can now formally express the average causal treatment effect in the subpopulation of patients who
would take part in s > 0 therapy sessions and would achieve an alliance score of a, as a linear function
of these scores. Specifically, utilizing (C1), (C2), and (C4), we can then write the local average treatment
effect, LATEs,a ∶= E[Δ|S(R = 1) = s,A(T = 1) = a], for compliers as follows:

LATEs,a = E[𝛽SS(1) + 𝛽SAS(1)A(1) + 𝜈|S(1) = s,A(1) = a]
= E[𝛽Ss + 𝛽SAsa|S(1) = s,A(1) = a]
= 𝛽Ss + 𝛽SAsa,

(1)

for every s ∈ {1, 2,…} and a ∈ (−∞, 0], where the first equality is an application of (C2) and the second
equality follows from the linearity of the expectation, as well as (C4) for eliminating the error term.

It is now easy to see that for compliers, the parameters, 𝛽S and 𝛽SA, describe the modification of the
causal estimand, LATEs,a, by the process variables, S(R = 1) and A(T = 1). For those who achieve
the maximum alliance with the therapist (i.e., a = 0), the change for every extra session is given by
LATEs+1,0 − LATEs,0 = 𝛽S(s + 1) − 𝛽Ss = 𝛽s, and when reducing the alliance score by one point, this
relationship is modified to become LATEs+1,−1−LATEs,−1 = 𝛽S(s+1)−𝛽SA(s+1)−(𝛽Ss−𝛽SAs) = 𝛽S−𝛽SA.
Finally, the LATEs can be used to define the CACE as follows: CACE ∶= E[Y(T = 1)−Y(T = 0)|S(R =
1) > 0].

2.3. Correspondence with linear model

Utilizing assumptions (C1) and (C2), we obtain the following linear model. The full details of this
derivation are provided in Appendix A.

Y = 𝜇1 + 𝛽BB +
k∑

j=1

𝛽jXj + 𝛽SS + 𝛽SASA. (2)

Thus, the parameters of interest correspond to the effects of the explanatory variables, S and SA, in a
linear model for Y . The combined error term of the linear model may be denoted by 𝜀 ∶= 𝜏 + R𝜈, with
E[𝜀|S, SA] = E[𝜏|S, SA] ≠ 0. It is then apparent that explanatory variables, S and SA, may be endogenous.
The covariance between the number of therapy sessions received, S, and the noise term 𝜀, for instance,
could be due to an omitted common cause. The same argument holds for the explanatory variable, SA.

Because of the exclusion restriction stated in assumption (C3), and to the exchangeability stated in
(C5), treatment offer, R, does not have a direct effect on the outcome (for more details, see Appendix
A), and moreover, R and the outcome variable do not share a common cause. Therefore, this provides
us with the opportunity of using R as an IV; see Section 3. Note also that in the presence of treatment
effect variability within subpopulations (i.e., Var(𝜈) > 0), the variance of the model’s error term Var(𝜀) =
Var(𝜏 + R𝜈) might be increased for those being offered therapy (R = 1), with the increase possibly
depending on the subpopulation.

Thus, we are interested in estimating the regression coefficient of the explanatory variables S and SA
in the model for PANNS(18). Both of these explanatory variables are endogenous in this model, whereas
the remaining covariates are exogenous. We therefore require at least two IVs, in order to estimate these
effects without bias. In line with [3], we assume the following bivariate model for these variables, which
includes a set of interaction terms between treatment allocation, T , and the baseline variables:

(
S

SA

)
= 𝝁2 + 𝝃BB +

m∑
j=1

𝝃jXj +
(
𝜽T + 𝜽BB +

m∑
j=1

𝜽jXj

)
R + 𝜹, (3)

in which 𝝁2, the 𝝃’s, and the 𝜽’s are unknown parameters. The equations in (2) and (3) will be used
within a TSLS approach in order to estimate the two parameters describing treatment effect heterogeneity
across different subpopulations of participants, characterized by the number of sessions that a participant
would be likely to take if offered therapy and the degree of alliance that they would likely build with the
therapist.
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3. Combining ordinary least squares and two-stage least squares estimators

We now turn to a formal description of the Stein-like estimator, which combines the OLS and TSLS
estimators in an affine fashion.

3.1. Model assumptions

A two-stage model with IVs and additional covariates is used for our data set. (We here adopt the econo-
metrics convention of referring to the model for the endogenous variables and the model for the outcome
variable, as the first-stage and second-stage models, respectively.) The second-stage model is a model for
the clinical outcomes that contains regression coefficients representing our parameters of interest. The
outcome measure is denoted by the column vector 𝐲, which stands for PANSS(18) in the SoCRATES
trial. The design matrix 𝐗 has k columns, which represent the predictors in the model. These predictors
are partitioned into k1 endogenous variables denoted by 𝐗1 and k2 exogenous variables denoted by 𝐗2,
such that 𝐗 ∶= [𝐗1 𝐗2]. The outcome variable is modeled as follows:

𝐲 = 𝐗1𝜷1 + 𝐗2𝜷2 + 𝜺, (4)

where the parameters 𝜷1 and 𝜷2 are column vectors with respective dimensions k1 and k2 with k = k1+k2
and the error term 𝜺 has dimensions n×1. In the SoCRATES data set, 𝐗1 contains the number of sessions
and the interaction between the number of sessions and alliance, as measured by the CALPAS scale,
whereas𝐗2 includes an intercept, two dummy variables for the different centers, years of education, DUP,
and PANSS(0).

Through our choice of notation for 𝐗 ∶= [𝐗1 𝐗2], equation (4) can be written more compactly as
𝐲 = 𝐗𝜷 + 𝜺, in which 𝜷 ∶= [𝜷′

1 𝜷′
2]

′. If we assume that the error terms are homoscedastic with respect
to 𝐗, such that E[𝜀2

i |𝐗] = 𝜎2, for every i = 1,… , n, and that the design matrix is full-rank, such that
rank(𝐗′𝐗) = k, it then follows that the OLS estimator is well identified for this model and is given by
𝜷 ∶= (𝐗′𝐗)−1(𝐗′𝐲). The OLS estimator can be shown to be unbiased, if the variables in 𝐗 are assumed
to be exogenous. This assumption requires that E[𝐗′𝜺] = 0, or equivalently that E[𝐱′i𝜀i] = 0, for every
i = 1,… , n, because the 𝜀i’s are assumed to be identically distributed, and where each 𝐱i denotes the
ith row of 𝐗. When this is the case and the first moment of this estimator exists, the OLS estimator is
asymptotically unbiased and consistent such that E[𝜷] = 𝜷 + E[(𝐗′𝐗)−1(𝐗′𝜺)], and the second term
cancels out, because of the exogeneity of 𝐗, as n → ∞.

In the data set of interest, however, the variables in 𝐗1 cannot be assumed to be exogenous. Therefore,
we will make use of a matrix of instruments, denoted 𝐙1, of dimensions n × l1. These instruments are
combined with the k2 exogenous variables from the second-stage equation in order to produce the fol-
lowing first-stage equation. Observe that this portion of the model is a multivariate multiple regression,
because its outcome variable, 𝐗, is a matrix,

𝐗 = 𝐙1𝚪1 + 𝐗2𝚪2 + 𝜹. (5)

Here, 𝚪1 and 𝚪2 are matrices of parameters of order l1 × k and k2 × k, respectively, with l ∶= l1 + k2.
Moreover, 𝜹 is a matrix of order n × k of error terms. A graphical representation of the two levels of the
model in the presence of an unobserved confounder U is given in Figure 1. As for the OLS estimator, we
can adopt the shorthands 𝐙 ∶= [𝐙1 𝐗2] and 𝚪 ∶= [𝚪′

1 𝚪′
2]

′, which are of order n× l and l×k, respectively.
Equipped with these block matrices, the model in equation (5) can be rewritten in a more concise form
as 𝐗 = 𝐙𝚪 + 𝜹.

If, in addition, we assume that the instruments are exogenous with respect to the error term in equation
(4), such that E[𝐙′𝜺] = 0, and that the error term is homoscedastic with respect to 𝐙, such that E[𝜀2

i |𝐙] =
𝜎2 for every i = 1,… , n, it then follows that we can construct an asymptotically unbiased and consistent
estimator, assuming that the first moment exists. For such an estimator to be well identified, we also
need to assume that 𝐙 is full-rank such that rank(E[𝐙′𝐙]) = l and moreover that rank(E[𝐙′𝐗]) = k, as
commonly carried out in econometrics [see 14, for details]. Under these assumptions, we can then recover
the standard TSLS estimator formula, which is given by 𝜷 ∶= (𝐗̂′𝐗̂)−1(𝐗̂′𝐲), with 𝐗̂ ∶= 𝐇z𝐗 denoting
the projection of the matrix of predictors onto the column space of 𝐙 and where 𝐇z ∶= 𝐙(𝐙′𝐙)−1𝐙′ is the
hat matrix of the multivariate regression in equation (5). It also follows that this model is well identified
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Figure 1. Graphical representation of the instrumental variable model described in equations (4) and (5), com-
posed of a set of endogenous variables, 𝐗1, and a set of exogenous variables, 𝐗2. This graph corresponds to a
two-stage system of equations composed of 𝐲 = 𝐗1𝜷1 + 𝐗2𝜷2 + 𝐮𝜂1 + 𝜺 and 𝐗1 = 𝐙1𝚽1 + 𝐗2𝚽2 + 𝐮𝜼2 + 𝜹1,
where 𝐮 denotes a vector of unobserved confounders, while 𝜂1 and 𝜼2 represents its effect on 𝐗1 and 𝐲, respec-
tively. The matrices of parameters 𝚽1, 𝚽2, and 𝜹1 are of order l1 × k1, k2 × k1, and n × k1, respectively, and 𝜼 is a

vector of order 1 × k1. (For convenience, we have here omitted the arrow linking 𝐙1 and 𝐗2.)

whenever there are at least as many instruments as endogenous variables – that is, when l1 ⩾ k1, as in the
data set at hand.

In summary, we have made the following set of linear assumptions. These assumptions should be
combined with the assumptions made in Section 2. Firstly, the computation of the OLS requires the
following two standard assumptions:

. (OLS-1) Homoscedastitity: E[𝜀2|𝐗] = 𝜎2,

. (OLS-2) Identification: rank(E[𝐗′𝐗]) = k.

Secondly, as commonly carried out in econometrics [:], the derivation of the TSLS requires the following

. (TSLS-1) Exogeneity: E[𝐙′𝜀] = 0,

. (TSLS-2) Homoscedasticity: E[𝜀2|𝐙] = 𝜎2,

. (TSLS-3) Identification: rank(E[𝐙′𝐙]) = l, rank(E[𝐙′𝐗]) = k;

. (TSLS-4) Relevance: Cov(𝐗,𝐙) ≠ 𝐈.

Observe that, despite the fact that condition (TSLS-4) resembles condition (C4), these two conditions are
not necessarily related. Under the aforementioned assumptions, the empirical variance of the OLS and
TSLS estimators can be consistently estimated using the standard formulas Ṽar(𝜷) ∶= 𝜎2(𝐗′𝐗)−1 and
Ṽar(𝜷) ∶= 𝜎2(𝐗̂′𝐗̂)−1, with the sample residual sums of squares, 𝜎2 and 𝜎2, being given by (𝐲−𝐗𝜷)′(𝐲−
𝐗𝜷)∕(n − k) and (𝐲 − 𝐗𝜷)′(𝐲 − 𝐗𝜷)∕(n − k) for the sample residual sums of squares of the OLS and
TSLS estimators, respectively. More remarkably, the bias of these two estimators can also be estimated
from the data in a consistent fashion. Indeed, because the TSLS estimator is asymptotically unbiased,
it is natural to use this estimator in order to quantify the bias of the OLS estimator. Therefore, one may

approximate the squared bias of a candidate estimator, say 𝜷†, as follows: B̂ias2(𝜷†) ∶= (𝜷†−𝜷)(𝜷†−𝜷)′.
Moreover, because both 𝜷† and 𝜷 are consistent estimators ofE[𝜷†] andE[𝜷], respectively, it then follows

that B̂ias2(𝜷†) is a consistent estimator of the true squared bias of 𝜷†. This particular choice of empirical
bias estimate can be seen to be related to the Hausman test, commonly used in econometrics for testing
whether or not some predictors of interest are exogenous [17]. Indeed, if one were to estimate the bias

of the OLS estimator using this particular method, we would obtain B̂ias2(𝜷) = (𝜷 − 𝜷)(𝜷 − 𝜷)′, which
exactly corresponds to the trace of the numerator of the Hausman test.

Combining this empirical estimate of the bias with the standard variance estimators, we can formalize
a classical observation about the superiority of the TSLS estimator in terms of (estimated) bias and the
superiority of the OLS estimator in terms of (estimated) variance. Results of this type have motivated the
construction of combined estimators, such as the SPSL estimator introduced by [8]. For completeness, a
full proof of this result is provided in the Appendix.
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Proposition 1

Under assumptions (OLS-1), (OLS-2), (TSLS-1), (TSLS-2), and (TSLS-3), we have (i) B̂ias2(𝜷) ⪰
B̂ias2(𝜷) and (ii) V̂ar(𝜷) ⪯ V̂ar(𝜷), where ⪰ and ⪯ denote the positive semi-definite order for k × k
matrices.

3.2. Semi-parametric Stein-like estimator

In a series of publications, Judge and Mittelhamer have introduced the SPSL estimator and studied its
asymptotic properties [8, 11, 12, 18, 19]. The SPSL estimator is defined as an affine combination of an
unbiased estimator, such as the TSLS, and another estimator, such as the OLS. In the notation adopted
in the previous section, the SPSL estimator is thus defined as follows:

𝜷̄(𝛼) ∶= 𝛼𝜷 + (1 − 𝛼)𝜷,

for every 𝛼 ∈ R. The shrinkage parameter, 𝛼, controls the respective contributions of the OLS and TSLS
estimators. (Despite our choice of name, however, note that 𝛼 needs not be bounded between 0 and 1.)
This parameter is selected in order to minimize the trace of the theoretical MSE of the corresponding
SPSL estimator,

MSE(𝜷̄(𝛼)) = E
[
(𝜷̄(𝛼) − 𝜷)(𝜷̄(𝛼) − 𝜷)′

]
= Var(𝜷̄(𝛼)) + Bias2(𝜷̄(𝛼)),

where 𝜷 ∈ Rk is the true parameter of interest and the MSE is a k × k matrix. It is particularly appealing
to combine these two estimators, because the asymptotic unbiasedness of the TSLS estimator guaran-
tees that the resulting SPSL is asymptotically unbiased. Thus, the MSE automatically strikes a trade-off
between the unbiasedness of the TSLS estimator and the efficiency of the OLS estimator. In particular,
one should emphasize that although the SPSL trades off finite sample variance with finite sample bias,
it retains asymptotic unbiasedness. Therefore, in the light of proposition 1, this criterion constitutes a
natural choice for combining these two types of estimators.

The MSE of the SPSL estimator, MSE(𝛼𝜷 + (1 − 𝛼)𝜷), can be expressed as the weighted sum of the
respective MSEs of the OLS and TSLS estimators, as well as a cross squared error (CSE) term between
these two estimators. That is,

MSE(𝜷̄(𝛼)) = 𝛼2MSE(𝜷) + 2𝛼(1 − 𝛼)CSE(𝜷, 𝜷) + (1 − 𝛼)2MSE(𝜷), (6)

where the cross term is defined as follows: CSE(𝜷, 𝜷) ∶= E[(𝜷−𝜷)(𝜷−𝜷)′]. By analogy with the MSE, we
can also decompose the CSE into a covariance term and a squared cross-bias term, denoted Bias2(𝜷, 𝜷),
such that CSE(𝜷,𝜷) = Cov(𝜷,𝜷) + Bias2(𝜷, 𝜷), where the squared cross-bias term is Bias2(𝜷, 𝜷) ∶=
(E[𝜷] − 𝜷)(E[𝜷] − 𝜷)′.

The true (or theoretical) shrinkage parameter, 𝛼, is defined as the value that minimizes the trace of the
theoretical MSE of the SPSL estimator. Note that we are here considering a sequence of parameters, 𝛼.
Indeed, the shrinkage parameter will vary with different sample sizes. Therefore, for every n, the target
shrinkage parameter is given by

𝛼 ∶= argmin
𝛼′∈R

tr MSE(𝜷̄(𝛼′)). (7)

Crucially, this parameter is available in closed form, and it can also be shown to be unique, because
the trace of the theoretical MSE of 𝜷̄ is a convex function of 𝛼. This statement is made formal in the
following proposition, which is proved using the aforementioned decomposition of the MSE of the SPSL
estimator. The shrinkage parameter is only non-unique when the square root of the trace of the MSEs of
the OLS and TSLS estimators is identical. This quantity, denoted by (trMSE(𝜷†))1∕2 for every estimator
𝜷†, will be referred to as the root mean squared error of 𝜷†, in the sequel. A full detailed proof of this
result, including a proof of the convexity of the criterion, is provided in the Appendix.

Proposition 2
For every n, the shrinkage parameter defined in equation (7) is given by

𝛼 =
tr(MSE(𝜷) − CSE(𝜷, 𝜷))

tr(MSE(𝜷) − 2CSE(𝜷, 𝜷) + MSE(𝜷))
.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 1696–1714

1703



C.E. GINESTET, R. EMSLEY AND S. LANDAU

Moreover, if the random vectors, 𝜷 and 𝜷, are element-wise squared-integrable, then 𝛼 is unique
whenever the root mean squared errors of the OLS and TSLS estimators are not equal.

This shrinkage parameter can be estimated from the data by replacing the unknown theoretical quan-
tities in proposition 2 with their sample estimates. Because, asymptotically, the estimated sample bias of
the TSLS estimator is null, the formula for 𝛼 simplifies to

𝛼 =
tr(Ṽar(𝜷) − C̃SE(𝜷, 𝜷))

||𝜷 − 𝜷||2 ,

where || ⋅ || denotes the L2-norm on Rk, with respect to the empirical joint distribution of 𝐲, 𝐗, and 𝐙,
such that ||𝜷 − 𝜷||2 ∶= Ẽ[(𝜷 − 𝜷)′(𝜷 − 𝜷)]. The empirical SPSL estimator can then be expressed in
a familiar Stein-like format [20], as a weighted deviation from the unbiased TSLS estimator, thereby
justifying SPSL as a choice of name:

𝜷̄(𝛼) = 𝜷 − 𝜏

||𝜷 − 𝜷||2 (𝜷 − 𝜷),

where 𝜏 ∶= tr(V̂ar(𝜷) − ĈSE(𝜷, 𝜷)). See also [19].
As before, if we assume that the random vectors, 𝜷 and 𝜷, are well behaved, in the sense that they

are element- wise squared-integrable for every n, we can obtain a central limit theorem for the SPSL
estimator, as was demonstrated by [19]. From the definition of 𝛼, it also immediately follows that the
SPSL estimator dominates both the OLS and TSLS estimators in quadratic risk.

4. Data simulations

We have carried out Monte Carlo simulations in order to evaluate the statistical properties of the SPSL
estimator and to contrast them with those of the OLS and TSLS estimators for different degrees of
endogeneity and different levels of instrument’s strength.

4.1. Simulation model

Synthetic data sets were created for a two-stage model with a dose process variable, as in the SoCRATES
data set. This model contains the following variables: the outcome Yi, the baseline variable Bi, the number
of sessions attended by a given subject Si, and the experimental factor Ri, as well as an unmeasured
confounder Ui. Then, for every subject, we have

Yi = 𝛽BBi + 𝛽SSi + 𝜂Ui + 𝜀i

Si = 𝜉BBi + 𝜉RRi + 𝜉TBRiBi + 𝜂Ui + 𝛿i,
(8)

in which the 𝜀i’s and 𝛿i’s are unknown error terms that are assumed to be independent of each other.
Note that we are here treating the 𝜀i’s as having the same variance. Throughout the simulations, we will
be assuming that Bi and Ui are mutually independent and identically distributed according to a standard
normal distribution (i.e., centered at zero, and with unit variance), whereas the variances of the error
terms will be denoted by 𝜎2

𝜀
and 𝜎2

𝛿
, for 𝜀 and 𝛿, respectively and the variance of the Bi’s will be denoted

by 𝜎2
B. The experimental factor, Ri, is given a Bernoulli distribution with success probability p ∶= 1∕2.

Consequently, the variance of the Ri’s is Var(Ri) = 1∕4. In addition, we set the effect of the baseline
variable, Bi’s, to 𝛽B ∶= 1∕4 and its variance to 𝜎2

B ∶= 0.3. The full details of the standardization of the
parameters is given in Appendix C.

The simulation parameters are 𝜂 and 𝜅, which respectively control the amount of confounding and the
strength of the instruments. With our chosen specification, we obtain the following relationships:

Cor(Si,Ui) = 𝜂 and Cor(Si,Bi + Ri + RiBi) = 𝜅.

Thus, 𝜂 controls the degree of endogeneity of the Si’s, whereas 𝜅 controls the amount of covariance
between Si’s and the combined instruments Bi, Ri, and RiBi, such that 𝜅 can be interpreted as the strength
of the instruments. We wish to keep the marginal variances of the Yi’s and Xi’s at unity, while varying the
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values of 𝜂 and 𝜅. This is achieved by defining the variances of the error terms, 𝜀i and 𝛿i, as functions
of 𝜂 and 𝜅. In doing so, we simplify the interpretation of the parameter of interest, 𝛽S, which becomes
a standardized regression coefficient. Throughout these simulations, the target parameter will take the
value 𝛽S = 1∕4.

We evaluate the finite sample performance of the estimators of interest by comparing the Monte Carlo
estimates of three different population parameters. For every candidate estimator, 𝛽†, its Monte Carlo
distribution is given by the following empirical distribution function: F̃(b) ∶= m−1 ∑

t I{𝛽
†
t ⩽ b}, where

I{ft} denotes the indicator function taking a value of 1, if ft is true, and 0 otherwise. For each simulation
scenario, we draw m ∶= 105 realizations from the model in equation (8). The simulation scenarios were
varied by selecting 𝜂 to take the values 0.0, 0.25, and 0.5, which corresponded to exogeneity, moderate
endogeneity, and high endogeneity, respectively. Similarly, the strength of the IVs, 𝜅, was given values
0.01, 0.25, and 0.5, which is interpreted as weak IVs, moderately informative IVs, and strong IVs.

4.2. Results of the simulations

The behavior of the SPSL was found to be mainly controlled by the strength of the instruments. When
the instruments were strongly correlated with the predictor S, such that 𝜅 = Cor(Si,Bi + Ri + RiBi) was
large, the values of the SPSL estimator were close to the ones of the TSLS estimators, as can be observed
in the last row of Figure 2. By contrast, when the instruments were weak, such that 𝜅 was small, the
values of the SPSL estimator were closer to the ones of the OLS estimator, as can be seen in the first row
of Figure 2.

When the true shrinkage is known, the SPSL is superior in quadratic risk to the OLS and TSLS. These
Monte Carlo simulations appear to support a partial analog of this result when 𝛼 is evaluated from the
data. Indeed, Figure 3 shows that the MSE of the OLS estimator tends to be smaller than the MSE of
the SPSL estimator, when no confounding is present, thereby showing that the SPSL’s risk is not always
superior to the risk of the OLS, when 𝛼 is estimated from the data. On the other hand, one can observe
from Figure 3 that the Monte Carlo MSE of the SPSL estimator is smaller than or equal to the one of
the TSLS estimator under all considered scenarios, which justifies favoring the SPSL estimator over the
TSLS estimator.

Figure 2. Approximate Monte Carlo distributions of the estimators’ values under three different levels of con-
founding, 𝜂 = Cor(Si,Ui), and for three different levels of instrument’s strength, 𝜅 = Cor(Si,Bi + Ri + RiBi). In
each panel, the sample size varies between n = 100 and n = 500. We here compare the ordinary least squares
(OLS), two-stage least squares (TSLS), and semi-parametric Stein-like (SPSL) estimators with respect to the true
parameter 𝛽S = 1∕4, whose value is indicated by a dashed line. These simulations are based on 105 iterations for

each scenario.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 1696–1714
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Figure 3. Monte Carlo estimates of the root mean squared errors (RMSEs) of the three estimators of interest
under the simulation scenarios described in Figure 2. As predicted, the RMSE of the proposed semi-parametric
Stein-like (SPSL) method strikes a trade-off between its two constituent estimators. Indeed, under small 𝜂, the
SPSL’s RMSE approaches the RMSE of the ordinary least squares (OLS) estimator, whereas under large 𝜅, it
approaches the RMSE of the two-stage least squares (TSLS) estimator. Note that the y-scales of the row panels

differ, depending on the value of 𝜅.

5. Dose–response analyses

In our data set, missing data were handled using multivariate imputation by chained equations (MICE), as
implemented by [21] on the R platform. Multiple imputation produces valid inference, provided that (i)
the assumed missing value mechanism is MAR; (ii) the relevant variables predicting missing values are
included in the imputation; and (iii) the parameters in question are estimated using maximum likelihood.
Note that, in the case of SoCRATES, the putative endogeneity of S does not conflict with the MAR
assumptions, because multiple imputation solely requires observed variables, but not latent variables such
as counterfactuals, to be predictive of the missingness in the outcome.

The estimators of the regression parameters described in the previous sections can be viewed as max-
imum likelihood estimators under the assumption of normality. The variables included in the imputation
model, consisted of all the covariates, and the post-randomization variables, such as therapy sessions and
therapeutic alliance, as suggested by [22]. The SEs for the resulting estimators were then constructed in
a conventional way, using Rubin’s rule. That is, given a k-dimensional target estimator, 𝜷†, the pooled
SE for that estimator after imputing the different missing data points is given for every element 𝛽†j of the

vector 𝜷†, with j = 1,… , k, by the following formula:

se
(
𝛽†j |𝐃obs

)
∶=

(
1
I

I∑
i=1

V̂ar
(
𝛽†j |𝐃i,miss,𝐃obs

)
n

+ I + 1
I(I − 1)

I∑
i=1

(
𝛽†ji − 𝛽

†
j

))1∕2

,

where 𝐃obs represents the entire observed data set; 𝐃i,miss denotes the ith imputed data set, with i =
1,… , I, I being the total number of imputations; and 𝛽

†
j is the average of the I estimated parameters, 𝛽†ji’s,

which are based on each imputed data set. Finally, V̂ar(𝛽†j |𝐃i,miss,𝐃obs) denotes the empirical variance of

𝛽†j based on the ith imputed data set.
We have here replicated and extended some of the results reported in table 3 of [3], for the analysis of

the SoCRATES data set. We are fitting the linear model described in equations (2) and (3). In Table I of
the present paper, we have compared the performances of the OLS and TSLS estimators with the ones of
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Table I. Dose–response re-analysis of the SoCRATES data set from [23].

Predictors OLS TSLS SPSL

Complete casesa:

Session −0.95 (0.21) −2.40 (0.65) −1.68 (0.42)
Session× alliance −0.39 (0.11) −1.28 (0.45) −0.83 (0.27)
PANSS(0) 0.38 (0.09) 0.39 (0.10) 0.39 (0.09)
Years of education −1.11 (0.48) −0.99 (0.60) −1.05 (0.52)
Log DUPb 2.33 (2.63) −0.20 (3.23) 1.06 (2.88)
Center 2 4.32 (3.92) −1.22 (4.99) 1.55 (4.01)
Center 3 −11.96 (2.75) −16.32 (3.59) −14.15 (3.06)
SPSL 𝛼c – – 0.50

Imputed missing casesd:

Session −0.90 (0.23) −2.51 (0.86) −1.88 (0.62)
Session× alliance −0.35 (0.11) −1.27 (0.52) −0.91 (0.38)
PANSS(0) 0.36 (0.09) 0.37 (0.10) 0.37 (0.09)
Years of education −1.17 (0.52) −0.84 (0.66) −0.97 (0.51)
Log DUPb 2.13 (2.38) 0.34 (3.08) 1.04 (2.66)
Center 2 5.02 (3.51) 0.36 (5.00) 2.18 (4.16)
Center 3 −11.43 (3.25) −16.11 (4.78) −14.28 (3.32)
SPSL 𝛼c – – 0.61

SoCRATES, Study of Cognitive Re-alignment Theory in Early Schizophre-
nia; OLS, ordinary least squares; TSLS, two-stage least squares; SPSL, semi-
parametric Stein-like; PANSS, Positive And Negative Syndrome Scale; SE,
standard error; MICE, multiple imputation with chained equations.
Estimates for all predictors are reported, with bootstrapped standard errors in
parentheses.
aComplete cases, for whom PANSS at month 18 was available, n = 153.
bDUP here stands for duration of untreated psychosis in years.
cThe estimated shrinkage used in the computation of the SPSL estimator. The SE
for the SPSL estimator is based on 1000 bootstrap iterations.
dMissing data points were imputed using MICE with 100 imputations, thereby
producing a data set with n = 207 subjects.

the SPSL estimator. An increase in the number of sessions that the subjects attended yielded a substantial
decrease in psychotic symptoms reported by the subjects in the study, when a maximum level of alliance
with the therapist was achieved (i.e., rescaled CALPAS score of zero). Importantly, this study evaluated
the impact of therapeutic alliance on the effect of the number of sessions on outcome. This interaction
is graphically illustrated in Figure 4. As expected, the greater was the self-reported alliance with the
therapist, the larger was the benefit of an extra session, as highlighted by a previous analysis of the same
data set [15,16]. These results also show that attending extra sessions under poor therapeutic alliance has
a detrimental effect on outcome. This interaction effect is captured by the estimate of the coefficient of
the alliance × session product, 𝛽SA = −0.83 (SE = 0.27) for the SPSL estimator, thereby suggesting that
the benefit of an extra session diminishes the score of PANSS(18) by 0.71 points, for every unit reduction
in therapeutic alliance.

For the complete cases, the values of the SPSL estimates were found to be bounded by the ones of
the OLS and TSLS estimates. For the effect of sessions and for the interaction term between sessions
and alliance, the values of the OLS estimator markedly differed from the ones of the TSLS estimator.
Moreover, the TSLS estimators for these parameters exhibited greater SEs. Consequently, the SPSL esti-
mator struck a balance between these two estimates, both in terms of its value and in terms of its SE.
The shrinkage parameter, 𝛼, for both the complete and imputed data sets was close to 1∕2, albeit it was
found to favor the TSLS estimator for the imputed cases. We have here quantified the predictive power
of the IVs by comparing the first-stage models for the Si’s and the SiAi’s, with and without the IVs. For
the complete data set, the F-statistics for the part of the model predicting the number of sessions was
(F = 227.24, df1 = 5, df2 = 143), and similarly for the SiAi term (F = 33.18, df1 = 5, df2 = 143).
F-statistics were also computed after imputation of the missing data and provided similar results. Thus,
these results suggested that there was no weak instrument bias in the TSLS estimator.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 1696–1714
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Figure 4. Effect of the number of sessions on PANSS(18), in the Study of Cognitive Re-alignment Theory in
Early Schizophrenia data set modified by alliance, using parameter estimates based on complete case analysis and
after applying multiple imputation with chained equations, denoted by Complete and Imputed, respectively, and
for the three different estimators. Therapeutic alliance as measured by California Therapeutic Alliance Scale has
here been relabelled, such that minimal alliance is coded with one. It can be observed that the number of sessions
of therapy (measured on the x-axis) becomes detrimental to the number and severity of the symptoms (higher
PANSS scores at 18 months, on the y-axis), when therapeutic alliance diminishes (darker blue lines, denoting

lower alliance).

6. Discussion

In this paper, we have applied a method originally proposed by [8] for constructing Stein-like estimators
based on IV models, to a mental health trial. The re-analysis of the trial described in this paper has
demonstrated that the SPSL estimator should be incorporated in the toolbox of the researchers in this
discipline.

The use of IV methods to analyze dose–response relationships – and consequently the use of the SPSL
estimator for such problems – relies on effect homogeneity within relevant subpopulations, such as those
defined by process variables, as described in the paper at hand. Our simulation studies also assume that
treatment effect homogeneity holds across these subpopulations.

In this paper, we have concentrated on an application of the SPSL to dose–response models, with
special emphasis on treatment effect modification by the number of sessions a patient actually attends.
Naturally, this type of models could be applied to other situations, in which the effect of treatment is
modified by other properties of treatment, such as qualitative differences in the delivery of therapy, for
instance, [24]. Furthermore, a topic for future research is the applicability of the SPSL to other trial-related
questions in which IV methods have been used, such as in causal mediation analysis.

In this paper, we have made three types of assumptions, which have been referred to as the causal, OLS
and TSLS assumptions. The plausibility of these requirements in the context of the SoCRATES data set,
can be justified as follows. Firstly, consider some of the main causal assumptions, such as assumption
(C2), which states that we are fitting a linear dose–response model. Given the absence of any further
information about the relationship between the dose and the response, such linear assumptions can be
regarded as parsimonious. By contrast, if, in a different application, we had gathered more information
about the existence of a nonlinear relationship between the dose and the response, it would then be
possible to fit such data using polynomial regression. Moreover, for causal assumption (C3), observe
that offer of treatment by itself has no effect on the outcome. Hence, it is reasonable to assume that the
exclusion criterion assumption holds in our setting.

Secondly, for the assumptions pertaining to the OLS and TSLS estimation frameworks, it is reason-
able to make standard assumptions, such as (OLS-1) and (OLS-2), about the homoscedasticity of the
error terms and the identifiability of the predictors used in our model, because there was no evidence
of substantial multicollinearity in the data at hand. A similar justification can be made for assumptions
(TSLS-2) and (TSLS-3), regarding the identifiability of the TSLS estimator. Moreover, albeit the exo-
geneity of the instruments, stated in assumption (TSLS-1), encompasses several sub-assumptions owing
to the fact that we are using a large number of instruments, it should be emphasized that all of these sub-
assumptions are, in fact, related. Indeed, we have here constructed a set of instruments, by interacting the
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baseline variables with the experimental factor. Other authors have made identical assumptions, when
constructing relevant instruments for the SoCRATES data set [4, 6].

It is of special interest to consider the behavior of the SPSL estimator, when some of our assumptions
fail to be satisfied. We here focus on the OLS and TSLS assumptions and evaluate how their viola-
tions may impact on the behavior of the combined Stein-like estimator. Consider, for instance, condition
(OLS-2), which requires 𝐗′𝐗 to be identified, such that the expectation, E[𝐗′𝐗], is full-rank. If such an
assumption were to fail (or would be close to failure), then the condition number of the matrix, E[𝐗′𝐗],
would be very high and the determinant of its inverse would be very large, thereby yielding a large OLS
variance. Therefore, everything else being equal, the failure of (OLS-2) would be likely to put the OLS
at a disadvantage, in comparison with the TSLS.

A similar argument can be made, when considering a violation of (TSLS-3). This assumption requires
the matrices, E[𝐙′𝐙] and E[𝐙′𝐗], to be full-rank for the TSLS estimator to be identified. If this condition
were to fail, the resulting TSLS variance would be unduly high. In this case, provided that the remain-
ing assumptions would remain satisfied, a failure of (TSLS-3) would then lead to the SPSL estimator
being favored by the OLS. Moreover, the TSLS may also suffer, if condition (TSLS-4) were to fail. This
assumption requires that the instruments, 𝐙, are relevant, in the sense that they should be correlated with
the exogenous variables, 𝐗. If such an assumption were to be violated, this would put the TSLS at a dis-
advantage with respect to its counterpart, because the instruments would solely contribute to the TSLS
estimator by inflating its variance, thereby rendering the OLS comparatively more efficient.

For finite n, the moments of the TSLS estimator and other k-class estimators need not exist, as demon-
strated by [25]. It is common in such situations to assume that at least three instruments are present. This
condition ensures that the first two moments of the estimators under scrutiny exist. Such an assumption
is critical to the construction of the SPSL estimator, because the first two moments of the OLS and TSLS
estimators are needed to compute the empirical estimator of the MSE. However, note that, asymptoti-
cally, all such moments exist. Thus, from an asymptotic perspective, this strategy can be applied to any
number of instruments. Indeed, irrespective of the number of instruments used, every SPSL estimator is
guaranteed to be asymptotically consistent. In fact, similar arguments are used to justify the use of most
IV models, because such models tend to be only asymptotically identifiable.

The SPSL framework could be extended by allowing for a selection of certain parameters of interest
in the vector, 𝜷̄(𝛼). Currently, the MSE criterion is minimized in a global fashion, for all the elements
of the SPSL estimator. However, as we have seen with the re-analysis, this type of global optimality can
lead to counterintuitive results, because the values and SEs of some of the individual elements of the
SPSL vector need not be comprised between the ones of the corresponding entries in the OLS and TSLS
vectors. This issue could be addressed by selecting the SPSL estimator that locally minimizes the MSE
for a subset of parameters of interest. Algebraically, this could be achieved by pre-multiplying the MSE
in order to select the subset of parameters of interest. For instance, one may be solely interested in finding
the optimal SPSL estimator with respect to the number of sessions.

Note also that the OLS and TSLS estimators could be replaced by other candidate estimators when
one estimator removes the bias at the cost of variance inflation, such as the jackknife IV estimator, for
instance, introduced by [9]. A combined estimator could be constructed in a similar fashion and would
be likely to display comparable asymptotic properties. Other such estimators could be straightforwardly
accommodated within the SPSL framework by estimating the MSE of the resulting combined estimator
using the bootstrap. The rates of convergence of the asymptotic convergence of such combined estimators
could also be studied by exploiting classical results in probability, such as the Berry–Esseen theorem.
In addition, given the fact that the SPSL depends on the unbiasedness of the TSLS, it follows that the
sensitivity of the SPSL to the linear assumptions made in Section 2.3 could be evaluated using the same
type of sensitivity analysis used for the TSLS [e.g., 26].

The SPSL estimator therefore provides a general framework for striking a trade-off between a biased
but efficient estimator and an unbiased but inefficient estimator. Hence, one may consider how such a
framework could be extended to other modeling strategies, such as fixed and random effects estimators
for longitudinal data [see 14, for instance]. Similarly, this method could also be extended to combine
competing estimators for measurement models. Observe that the estimators utilized to produce the SPSL
estimator do not need to share the same data. Indeed, when constructing a combination of the OLS
and TSLS estimators, only the TSLS estimator relies on the instrument, Z. In particular, note that the
central limit theorem described by [19] could also enable the construction of statistical tests for evaluating
whether or not the values of individual parameters are statistically significant. This would complete the
development of the SPSL inferential framework.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 1696–1714
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Appendix A: Correspondence with linear model

We here show that our parameters of interest represent the causal effects of specific explanatory variables
in a linear model for the continuous outcome Y . We can write

Y = RY(R = 1) + (1 − R)Y(R = 0)
= R{Y(R = 0) + 𝛽SS(1) + 𝛽SAS(1)A(1) + 𝜈} + (1 − R)Y(R = 0)
= Y(R = 0) + 𝛽SRS(1) + 𝛽SARS(1)A(1) + R𝜈,

utilizing the linear model assumption, (C2), for Y(R = 1). Then,

Y(R = 0) + 𝛽SRS(1) + 𝛽SARS(1)A(1) + R𝜈 = Y(R = 0) + 𝛽SS + 𝛽SASA + R𝜈,

using the consequences of the no contamination assumption, (C1). Moreover,

Y(R = 0) + 𝛽SS + 𝛽SASA + R𝜈 = 𝜇1 + 𝛽BB +
k∑

j=1

𝛽jXj + 𝜏 + 𝛽SS + 𝛽SASA + R𝜈,

after invoking the linear model assumption, (C2), for Y(R = 0).
Defining a combined error term, 𝜀 ∶= 𝜏 +R𝜈, we arrive at the following linear model equation for the

observed outcome,

Y = 𝜇1 + 𝛽BB +
k∑

j=1

𝛽jXj + 𝛽SS + 𝛽SASA + 𝜀.

The derivation of this model equation only requires assumptions (C1) and (C2). The assumptions pertain-
ing to the residual terms in (C3) and (C4), as well as exchangeability in (C5), ensure that E[𝜀|R = r] = 0.
That is, the expectation of Y is affected by treatment offer only via the observed number of sessions and
alliance. Specifically, because of the exchangeability of random treatment offer assumed in (C5), we have

E[𝜀|R = r] = E[𝜏|R = r] + E[R𝜈|R = r] = E[R𝜈|R = r].

Furthermore, E[R𝜈|R = 0] = 0, and

E[R𝜈|R = 1] = E[𝜈|R = 1]
= P[S = 0]E[𝜈|R = 1, S = 0] +

∑
s>0,a

P[S = s,A = a]E[𝜈|R = 1, S = s,A = a]

= P[S = 0]E[𝜈|S(1) = 0,R = 1] +
∑
s>0,a

P[S = s,A = a]E[𝜈|S(1)A(1) = sa, S(1) = s],

because of the no contamination assumption, (C1). Finally, using assumptions (C3) and (C4), the
aforementioned equation can be rewritten as follows:

P[S = 0]E[𝜈|S(1) = 0,R = 1] +
∑
s>0,a

P[S = s,A = a]E[𝜈|S(1) = s,A(1) = a] = 0,

and therefore E[𝜀|R] = E[𝜀].

Appendix B: Proofs of propositions

B.1. Proof of Proposition 1

As mentioned in the text, we here assume that rank(E[𝐙′𝐙]) = l, rank(E[𝐙′𝐗]) = k, and rank(𝐗′𝐗) = k
hold. The proof of 1(i) immediately follows from the definition of the empirical bias in the body of the
paper, which implies that the empirical bias of the TSLS estimator is identically zero, for every realization.
For the proof of 1(ii), one needs to show that for every pair of matrices 𝐗 and 𝐗̂ ∶= 𝐇z𝐗, we have
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𝐗′𝐗 ⪰ 𝐗̂′𝐗̂. This can be conducted in two steps. Firstly, observe that we have the following equivalence
because of the symmetry of 𝐇z:

𝐗̂′𝐗 = (𝐇z𝐗)′𝐗 = 𝐗′𝐇z𝐗 = 𝐗′𝐗̂. (B.1)

Secondly, the inner product of 𝐗̂ can also be simplified using the idempotency of 𝐇z, such that

𝐗′𝐗̂ = 𝐗′𝐇z𝐗 = 𝐗′𝐇z𝐇z𝐗 = 𝐗̂′𝐗̂. (B.2)

Then, expanding the dot product of 𝐗 − 𝐗̂ and applying equalities (B.1) and (B.2), we obtain

(𝐗 − 𝐗̂)′(𝐗 − 𝐗̂) = 𝐗′𝐗 − 2𝐗′𝐗̂ + 𝐗̂′𝐗̂ = 𝐗′𝐗 − 𝐗̂′𝐗̂.

Observe that the dot product, (𝐗− 𝐗̂)′(𝐗− 𝐗̂), is a Gram matrix, and therefore, it is necessarily positive
semi-definite. Consequently, this implies that 𝐗′𝐗− 𝐗̂′𝐗̂ = (𝐗− 𝐗̂)′(𝐗− 𝐗̂) ⪰ 0, and hence 𝐗′𝐗 ⪰ 𝐗̂′𝐗̂,
by the definition of the positive semi-definite order, and moreover (𝐗′𝐗)−1 ⪯ (𝐗̂′𝐗̂)−1, because these
matrices were assumed to be invertible. Next, observe that the estimates of the error variances under the
OLS and TSLS estimation procedures are defined as

(n − k)𝜎2 ∶= (𝐲 − 𝐗𝜷)′(𝐲 − 𝐗𝜷) ⩽ (𝐲 − 𝐗𝜷)′(𝐲 − 𝐗𝜷) =∶ (n − k)𝜎2,

where the inequality follows from the optimality of the OLS, and therefore, 𝜎2(𝐗′𝐗)−1 ⪯ 𝜎2(𝐗̂′𝐗̂)−1,
after combining with the aforementioned inequality for 𝐗′𝐗 and 𝐗̂′𝐗̂, as required.

B.2. Proof of Proposition 2

The optimal value of 𝛼 can be determined after a minimization of the criterion of interest, which will
be denoted by f (𝛼) ∶= MSE(𝜷̄(𝛼)). For expediency, we will expand this criterion as was carried out in
equation (6) of the main body of the paper, such that

tr f (𝛼) = tr(𝛼2M1 + 2𝛼(1 − 𝛼)C + (1 − 𝛼)2M2),

with M1 ∶= MSE(𝜷), C ∶= CSE(𝜷,𝜷), and M2 ∶= MSE(𝜷) and where recall that 𝜷 and 𝜷 denote the
TSLS and OLS estimators, respectively. Expanding the aforementioned expression for f (𝛼) and taking
the first derivative with respect to 𝛼,

𝜕f (𝛼)
𝜕𝛼

= 𝜕

𝜕𝛼

(
𝛼2M1 + 2𝛼C − 2𝛼2C + (1 − 2𝛼 + 𝛼2)M2

)
,

which simplifies to

𝜕f (𝛼)
𝜕𝛼

= 2𝛼M1 + 2C − 4𝛼C + 2𝛼M2 − 2M2.

Collecting these terms with respect to 𝛼, this produces 𝜕f (𝛼)∕𝜕𝛼 = 2𝛼(M2 − 2C + M1) − 2(M2 − C).
Moreover, because the derivative is a linear operator, it commutes with the trace, and we obtain

tr(𝜕f∕𝜕𝛼) = 2𝛼tr(M2 − 2C + M1) − 2tr(M2 − C).

Setting this expression to zero yields 𝛼 ∶= tr(M2 − C)∕tr(M2 − 2C + M1), as required. Naturally, this
minimization holds for every choice of n, thereby proving the first part of Proposition 2.

In addition, one can show that this minimizer is unique by performing a second derivative test, such
that we obtain

tr(𝜕2f∕𝜕𝛼2) = 2tr(M1 − 2C + M2). (B.3)

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 1696–1714
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Because by assumption, the random vectors, 𝜷 and 𝜷, are element-wise squared-integrable, the compo-
nents, E[(𝛽j−𝛽j)2], of M1 are finite for every j = 1,… , k. Hence, using the linearity of the trace, the MSE
of 𝜷 can be treated as a sum of real numbers, thereby yielding the L2-norm on Rk, such that

(
tr MSE(𝜷)

)1∕2 =
( k∑

j=1

E

[
(𝛽j − 𝛽j)2

])1∕2

=∶ ||𝜷 − 𝜷||.
The latter quantity will be referred to as the (trace) root mean squared error of 𝜷.

By the same reasoning, it can be shown that C and M2 correspond to the inner product, ⟨𝜷 −𝜷, 𝜷 −𝜷⟩,
and the squared norm, ||𝜷 − 𝜷||2 on Rk, respectively. Thus, equation (B.3) can now be re-expressed as
follows:

tr(𝜕2f∕𝜕𝛼2) = 2
(||𝜷 − 𝜷||2 − 2⟨𝜷 − 𝜷, 𝜷 − 𝜷⟩ + ||𝜷 − 𝜷||2).

The Cauchy–Schwarz inequality can here be invoked to produce an upper bound on the cross term in the
latter equation, ⟨𝜷 − 𝜷,𝜷 − 𝜷⟩ ⩽ ||𝜷 − 𝜷|| ⋅ ||𝜷 − 𝜷||. It then suffices to complete the square in order to
obtain the following lower bound:

tr(𝜕2f∕𝜕𝛼2) ⩾ 2
(||𝜷 − 𝜷|| − ||𝜷 − 𝜷||)2

⩾ 0,

for every n, where equality only holds when the root mean squared errors of 𝜷 and 𝜷 are identical, as
required.

Appendix C: Simulation model

We here describe the simulation model adopted in Section 5. Our objective in this Appendix is to justify
our choice of parameters. The central difficulty is to express the error variances of the outcome variable
and of the endogenous variable, in terms of the parameters in the model. Consider the model in equation
(8). Firstly, the variance of the Si’s is given by

Var(Si) = 𝜉2
BVar(Bi) + 𝜉2

RVar(Ri) + 𝜉2
RBVar(RiBi) + 𝜂2

Var(Ui) + 𝜎2
𝛿

+ 2𝜉B𝜉RCov(Bi,Ri) + 2𝜉B𝜉RBCov(Bi,RiBi) + 2𝜉B𝜂Cov(Bi,Ui)
+ 2𝜉R𝜉RBCov(Ri,RiBi) + 2𝜉R𝜂Cov(Ri,Ui) + 2𝜉RB𝜂Cov(RiBi,Ui).

(C.1)

The first line in the aforementioned equation can be simplified in the following manner: 𝜉2
B𝜎

2
B + 𝜉2

R∕4 +
𝜉2

RB𝜎
2
B∕2 + 𝜂2 + 𝜎2

𝛿
, because by definition 𝜎2

R = 1∕4, and in addition, we also have Var(RiBi) =
Var(Ri)Var(Bi) + Var(Bi)E(Ri)2 = 1∕2𝜎2

B. Next, observe that Cov(Bi,Ri) = Cov(Ri,Ui) = 0, because
Ri is independent of both Bi and Ui. Similarly, Cov(Bi,Ui) = Cov(RiBi,Ui) = 0, because Ui is inde-
pendent of both Bi and Ri. Therefore, the remaining nonzero second-order terms in equation (C.1)
are Cov(Bi,RiBi) and Cov(Ri,RiBi), and these are respectively given by Cov(Bi,RiBi) = E(BiRiBi) −
E(Bi)E(RiBi) = E(B2

i Ri) = 1∕2𝜎2
B, because the Bi’s were assumed to be centered at zero, and using

the fact that Cov(Ri,RiBi) = E(R2
i Bi) − E(Ri)E(RiBi) = E(R2

i Bi) − E(Ri)E(RiBi) = 0, owing to
E(R2

i Bi) = E(R2
i )E(Bi) = E(Bi). Altogether, the variance of the Si’s can then be seen to reduce to the

following expression:

Var(Si) = 𝜉2
B𝜎

2
B + 𝜉2

R∕4 + 𝜉RB𝜎
2
B(𝜉B + 𝜉RB∕2) + 𝜂2 + 𝜎2

𝛿
. (C.2)

Secondly, the variance of the Yi’s, given by Var(Yi) = Var(Bi𝛽B + Si𝛽S +Ui𝜂+ 𝜀i), can be decomposed
as follows:

Var(Yi) = 𝛽2
B𝜎

2
B + 𝛽2

SVar(Si) + 𝜂2𝜎2
U + 𝜎2

𝜀
+ 2𝛽B𝛽SCov(Bi, Si) + 2𝛽B𝜂Cov(Bi,Ui) + 2𝛽S𝜂Cov(Si,Ui).

The first covariance term, Cov(Bi, Si), in the aforementioned equation can be expanded as Cov(Bi,Bi𝜉B +
Ri𝜉R + RiBi𝜉RB + Ui𝜂 + 𝛿i), which can be seen to reduce to 𝜎2

B(𝜉B + 𝜉RB∕2), because Bi,Ri,Ui, and 𝛿i are
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assumed to be pairwise independent. Similarly, one can verify that Cov(Bi,RiBi) = E(B2
i Ri) = 1∕2𝜎2

B,
for our choice of parametrization of Bi and Ri. Moreover, we also have Cov(Si,Ui) = 𝜂, because Ui is
independent of all of the constituent variables of Si. Altogether, the variance of the outcome variable can
therefore be expressed conditionally on the variance of Bi, as follows:

Var(Yi) = 𝛽2
B𝜎

2
B + 𝛽2

S + 2𝛽B𝛽S𝜎
2
B(𝜉B + 𝜉RB∕2) + 2𝛽S𝜂

2 + 𝜂2 + 𝜎2
𝜀
, (C.3)

using the fact that Var(Si) is constrained to be 1 and where we have again used the fact that the Bi’s and
Ui’s are pairwise independent.

From the aforementioned derivations, it can then be seen that the degree of confounding is standardized
with respect to the parameter, 𝜂, such that the correlations between the predictor, Si, and the unmeasured
confounder, Ui, is given by Cor(Si,Ui) = 𝜂, as required. Moreover, we can also define the instruments’
strength, 𝜅, as a function of the parameters 𝜉B, 𝜉R, and 𝜉RB. In order to do so, we need to guarantee that
the variance of the summed instruments, Bi +Ri +RiBi, is equal to unity. Using our previous derivations,
one can verify that Var(Bi + Ri + RiBi) = 2.5𝜎2

B + 1∕4. Therefore, this variance can be set to 1, by
choosing 𝜎2

B ∶= 0.3. Then, we obtain Cor(Si,Bi +Ri +RiBi) = 𝜅, where 𝜅 ∶= 𝜉B0.45+ 𝜉R0.25+ 𝜉RB0.3,
such that if we assume 𝜉B, 𝜉R, and 𝜉RB to be equal, it follows that this produces the further simplification
𝜅 = 𝜉B = 𝜉R = 𝜉RB because all the coefficients in 𝜉B0.45 + 𝜉R0.25 + 𝜉RB0.3 sum to 1.
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