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Giant moving vortex mass in thick 
magnetic nanodots
K. Y. Guslienko1,2, G. N. Kakazei3,4, J. Ding3, X. M. Liu3 & A. O. Adeyeye3

Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter 
physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, 
square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with 
thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. 
Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband 
ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation 
spectra. We demonstrate that the fundamental mode frequency cannot be explained without 
introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin 
waves. The vortex mass depends on the system geometry and is non-local because of important role 
of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases 
drastically with the dot thickness increasing.

There are some fundamental conceptions in physics such as mass, charge, field etc. In the simplest case 
of classical Newton’s mechanics, the mass of an object (particle) is determined by its resistance to accel-
eration due to action of an external force, i.e., this is an inertial mass1. However, in general case, defi-
nition of the particle mass is not so simple because of the particle interaction with surrounding fields 
that essentially renormalizes the particle physical properties. Sometimes, in magnetism it is possible to 
assign properties of mechanical particles such as coordinate, momentum, mass etc. to an inhomogeneous 
magnetization texture. This approach was effectively used to describe dynamical behavior of magnetic 
topological solitons2 - domain walls, vortices and skyrmions. Below we consider a new mechanism of 
formation of the inertial magnetic vortex mass in a ferromagnetic dot due to interaction with spin waves. 
In this case, the vortex mass is a proportionality coefficient between the moving vortex energy and its 
squared velocity and reflects the energy increase due to the vortex dynamic profile deformations.

Usually the mass in magnetism is introduced by analogy to the effective mass of Bloch electrons in a 
lattice potential assuming quadratic dispersion relation for spin waves (magnons)3: = /ħM Jam

2 2, where 
J is the exchange integral, a is the lattice period. The value of the Bloch mass Mm is very small, about of 
10−30 g. More realistic understanding of the mass having absolutely other sense was suggested by Döring4 
to describe domain wall motion in bulk magnets. It reflects an influence of deformations of a moving 
domain wall on its energy (i.e., how this energy depends on velocity). The necessity of magnetic vortex 
mass and corresponding vortex frequency re-normalization was numerically obtained for a model system 
of easy plane 2D ferromagnet in the exchange approximation5.

The vortex excitations in patterned films are being studied extensively for the last decades6. Existence 
of the vortex low frequency gyrotropic mode dominated by the dipolar interaction was predicted7 and 
then it was observed experimentally by different experimental techniques8–11. More recently, an ulti-
mate effect in the magnetic vortex dynamics - the vortex core polarity reversal was detected in pat-
terned magnetic nanostructures increasing the driving force strength12,13. In this case, the moving vortex 
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deformation leads to appearance of a dependence of the vortex energy on its velocity and eventually 
to the vortex core reversal following by release of the accumulated energy via emission of radial spin 
waves. Then, it was proven experimentally that in thick dots other kind of the vortex dynamical defor-
mations, flexure oscillations of the vortex core string with n nodes along the dot thickness, can exist14,15. 
Very recent X-ray imaging experiments on the gyrotropic bubble domain dynamics in CoB/Pt dots16 
showed importance of the mass contribution to describe the bubble low frequency excitation modes. 
The estimated mass was found to be essentially larger than the Döring mass used for calculations of 
the bubble domain excitation spectra within the limit of ultra-thin domain wall in Ref. 17. It was also 
shown that the rigid vortex model18 leads to essential underestimation of the mass and more adequate 
approach accounting for the spin wave spectra is needed19, especially for thick dots. Importance of the 
vortex - azimuthal spin waves interaction was underlined in Ref. 20, where the frequency splitting of the 
azimuthal spin waves was measured. We show below that neither Bloch mass nor Döring mass is suffi-
cient to describe the GHz dynamics of topological magnetic solitons - vortices and bubble-skyrmions in 
restricted geometry. Some generalization of the mass accounting for additional spin degrees of freedom 
(spin waves) and their interaction with moving magnetic soliton is necessary.

In this study, we report broadband ferromagnetic resonance measurements and calculations of the 
fundamental vortex gyrotropic mode in relatively thick cylindrical permalloy (Ni80Fe20 alloy) dots with 
thickness 50–100 nm and radius of 150 nm. We show that the frequency of this low-frequency mode can 
be explained introducing an inertia (mass) term to the vortex equation of motion. The mass is anoma-
lously large and reflects moving vortex interaction with spin waves of the azimuthal symmetry.

Results
Experimental design. Periodic two dimensional arrays of circular permalloy (Ni80Fe20) vortex state 
circular dots with the thickness L =  40–100 nm, radius R =  150 nm and pitch p =  620 nm were fabricated 
on Si substrates over 4 mm ×  4 mm area using deep ultraviolet lithography followed by electron beam 
evaporation and lift-off process. Fabrication details can be found elsewhere14,15. The simulated vortex 
magnetization configuration is shown in Fig. 1. Axes x and y of the Cartesian coordinate system are lying 
in the dot array plane along square lattice diagonals (Fig. 2) and axis z is aligned along the dot thickness 
(Fig. 1). Since the distance between the dot centres is more than twice the dot diameter, interdot dipolar 
interactions are considered to be negligibly small.

Microwave spectra measurements and simulations. The microwave absorption of the dot arrays 
was probed using a vector network analyzer by sweeping the frequency in 50 MHz − 6 GHz range in the 
absence of an external magnetic field at room temperature. The microwave field, hrf, is oscillating in the 
patterned film plane perpendicularly to the central waveguide (Fig. 2). The measured microwave excita-
tion spectra are quite complicated. Therefore, we concentrated our attention on the lowest resonance 
peak that was clearly observed in the vicinity of 1 GHz. This peak was interpreted as the vortex gyrotropic 
mode, which is almost uniform (i.e., its dynamical magnetization profile has no nodes) along the dot 
thickness14,15. A careful measurements of the dependence of resonance frequency of this mode on the dot 
thickness demonstrate a clear maximum around the dot thickness L =  70 nm (see Fig. 3).

The experimental results were compared with the simulated microwave absorption spectra for the 
dots with dimensions identical to the experimental ones, obtained by applying a pulse excitation scheme 
(see Methods). As observed, the simulated resonance frequencies ω0(L) (Fig. 3) of the fundamental vor-
tex mode varying the dot thickness L are in a very good agreement with the experimental data, demon-
strating the similar maximum of the dependence ω0(L). From the other side, our simulations are in 
qualitative agreement with the simulations by Boust et al.21,22 for the dots of small radius R =  80 nm. This 

Figure 1. Cylindrical magnetic dot in the vortex state and the system of coordinates used. Arrows mark 
the local magnetization vectors in the static state. The x-component of the reduced magnetization m varies 
from + 1 (deep red color) to − 1 (deep blue color).



www.nature.com/scientificreports/

3Scientific RepoRts | 5:13881 | DOi: 10.1038/srep13881

allows us to consider the conducted micromagnetic simulations as a reliable tool to study in details the 
observed vortex excitation modes in thick dots.

Simulations confirmed the assumption that the observed peaks around 1 GHz correspond to the low-
est mode (no nodes along dot thickness) of the vortex gyrotropic excitation spectra (see Refs 14, 15 for 
detailed description of the modes). The dynamical magnetization distribution of this mode was found to 
be almost homogeneous at smaller thickness. However, it reveals a smooth dependence on the thickness 
coordinate for larger dot thickness with a minimum in the dot centre14,21.

Analytical calculations of the vortex excitation spectra. The calculations conducted on the basis 
of existing analytical theory of the vortex gyrotropic mode6,7 showed that the calculated fundamen-
tal frequency ω0(L) is in two times larger than the experimental one for dot thickness of 80–100 nm. 
Accounting for the inhomogeneity of the dynamical magnetization along the dot thickness yields cor-
rections of about 10% and, therefore, is not sufficient to explain this discrepancy. We developed a new 
approach to the problem introducing the magnetic vortex mass as a result of the interaction with spin 
waves and calculated giant values of the mass for thick dots, which can explain our measurements.

Figure 2. Experimental set up for high frequency measurements of the dot arrays used for detection of 
the fundamental vortex gyrotropic mode. The patterned film is a square array of permalloy cylindrical dots 
with the radius 150 nm and variable thickness in the range 40–100 nm.

Figure 3. The frequency of the lowest vortex gyrotropic mode vs. dot thickness, ω0(L) 2p: red squares – 
the experimental data, blue solid line – the simulated frequencies, green solid line – the calculations 
according to Eq. (4) accounting vortex mass, black dashed line – calculations without accounting for the 
vortex mass. Inset: the dependence of the vortex mass density υM0 on the dot thickness calculated by using 
Eq. (9).
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To calculate magnetization dynamics we start from the Landau-Lifshitz equation of motion 
γ= − ×m m H of the reduced magnetization m =  M/Ms, =m 12 2. Here H =  − δw/δM, w is the mag-

netic energy density = (∂ /∂ ) +αw A x wm m
2 , wm =  − Msm · Hm/2 is the magnetostatic energy density, 

A is the exchange stiffness, Hm is the magnetostatic field, γ is the gyromagnetic ratio, and xα =  x, y, z.  
We distinguish two subsystems in the magnetic dot: slowly moving vortex +  fast magnetization  
oscillations - spin waves (SW) and express magnetization as a sum = − +υm m m m1 s s

2  of the 
vortex (υ ) and SW (s) orthogonal contributions, mυ · ms =  0. The components of ms are the simplest in 
a moving coordinate frame x′ y′ z′ , ψ′ = (ϑ, Θ , )υm sin 0s , where the axis Oz′  is directed along the 
instant local direction of mυ defined by the spherical angles of mυ(Θ υ, Φ υ) (see Methods). We consider 
SW magnetization ms as a small perturbation of the moving vortex mυ background and calculate how 
the SW dynamics influence the vortex dynamics.

To consider thickness dependent vortex excitations we assume that vortex magnetization can be writ-
ten as Mυ(r, t) =  Mυ(ρ, X(z, t)), where X(X, Y) a position of the vortex core center. Then, we can rewrite 
the vortex equation of motion in the Thiele form23 as equation for X:

δ δ× + ( )/ = − ( ) Eg X X X P 1

where = ˆgg z, g =  2πMs/γ is the gyrovector density, E is the total magnetic energy per unit dot thickness, 
and P is an extra force due to the spin-wave momentum P(ϑ) (see Methods). The equation of motion 
(1) describes the vortex gyrotropic motion in a confining potential E(X) influenced by SW via the term 
P that gives an additional contribution to the magnetic energy as = ⋅ E P Xkin .

The equations of motion for the SW variables ϑ(r, t), ψ(r, t) (neglecting the exchange interaction 
because R ≫  Le, = /L A M2e s is the exchange length) are γϑ = − ρ

 Hm, ψ γ= − Φυ Hm
z , where the 

dynamic magnetostatic field Hm(r, t) is defined in Methods. The equations for ϑ, ψ depend on time 
derivative of the moving vortex phase Φ υ(X). The derivative Φυ  is calculated within the two vortex 
model6,7 as ρ ϕ ϕΦ = ( ) −υ

  m X Y[ sin cos ]0 , where ρ ρ ρ( ) = ( − )/m 10
2  is the radial profile of the 

vortex gyrotropic mode24, ρ is in units of R. We use the cylindrical coordinates r =  (ρ, ϕ, z). Substituting 
the solution of inhomogeneous equation ρϑ( , , ) ∝ , z t X Y  to the vortex-SW interaction Lagrangian 
per unit thickness = ⋅ L P Xint  (see Methods) we can write it as a vortex kinetic energy

∫ ∫Λ = = ′ ( , ′) ( ) ⋅ ( ′) ( )υ  dzE dzdz M z z z zX X1
2 2kin kin

where Mυ(z, z′ ) is the nonlocal vortex mass density, see Methods. The mass term (2) reflects dependence 
of the moving vortex energy on its velocity and appears due to a vortex structure deformation resulting 
from hybridization with high-frequency azimuthal spin waves.

The equation of motion (1) of the vortex core position X can be written accounting the mass term 
(2) as (see Methods)

∫ ∫ κ λ′ ( , ′) ( ′) + × ( ) + ′ ( , ′)⋅ ( ′) −
∂

∂
= .

( )υ ̈dz M z z z z dz z z z
z

X g X X X 0 3

2

2

Solution of Eq. (3) leads to renormalization of the massless vortex gyrotropic frequencies. The eigenfre-
quency of the n-th gyrotropic mode is

ω ω′ = ( + / − )/ ( )υ υg M g M1 4 1 2 4n
n

n
n

where ωn is the eigenfrequency of bare, massless vortex, and υMn is the diagonal component of the vortex 
mass density (see Methods, Eq. (9)).

Discussion
The finite vortex mass density υMn gives always negative contribution to the vortex gyrotropic eigenfre-
quencies given by Eq. (4). The calculations conducted using Eq. (9) showed that the mass density 
increases with the dot thickness increasing (see Fig. 3) and sharply decreases with the gyrotropic mode 
number n increasing. The non-monotonous dependence of the fundamental vortex gyrotropic mode 
frequency on the dot thickness similar to shown in Fig. 3 was simulated by Boust et al.21 without expla-
nation of its origin. The mass is of principal importance for explanation of the fundamental vortex fre-
quency (n =  0) leading to the gyrotropic frequency decrease in 2 times for the dot thickness L =  80–100 nm 
(Fig. 3). There is a smooth maximum on the calculated dependence ω ′ ( )L0  at the dot thickness L =  80 nm. 
Whereas, the experimental and simulated maxima of the dependence ω ′ ( )L0  are more pronounced. I.e., 
the mass density υM 0 is higher than the calculated one using Eq. (9). Accounting for the experimental 
value ω π′/20  =  0.83 GHz we get for the fundamental vortex gyrotropic mode mass the giant value of 

≈υ
−M L 100 18 g for the dot thickness L =  100 nm. This mass is in 11–12 orders of magnitude larger than 

the typical magnon mass = /ħM Jam
2 2, in two orders of magnitude larger than the vortex domain wall 

mass 6.2 10−21 g measured by Bedau et al.25,26 and in 3 orders of magnitude larger than a typical Döring 
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mass of quasi 1D-domain walls4. The vortex mass is comparable with the bubble-skyrmion mass esti-
mated recently as > 8 10−19 g by Büttner et al.16. The vortex mass is giant (especially, in comparison with 
the Bloch mass) because it is proportional to degree of complexity of the spin texture, the number of spin 
deviations from the aligned spin state. These deviated spins are mainly located in the vortex core, and 
their number increases by increasing the dot thickness. There is just one reversed spin for the Bloch 
magnon and the corresponding effective mass is small.

The calculated vortex mass is principally different from the effective gyrotropic mass, mG ≈  10−19 g, 
introduced formally by Wysin et al.27 on the basis of the Thiele equation. The mass mG is proportional 
to the dot radius and is thickness independent. Whereas, the mass calculated as result of the vortex-SW 
interaction, =υ υM M L0 , increases strongly with L increasing and weakly depends on R. Small values of 
the vortex mass density γ= . /υM 1 50 2 and γ= . /υM 0 60 2 calculated19 and simulated28 previously in the 
limit of thin dots L/R ≪  1 are in agreement with the present calculations of ( )υM L0  for the dot thickness 
L ≈  20 nm.

The central point of our model of the magnetization dynamics is the vortex-SW dynamical inter-
action (see Eq. (5) and details in Methods). Therefore, a question arises: are there any experimental or 
simulation evidences that such interaction does exist? It was established experimentally that the vortex 
motion influences the azimuthal spin waves resulting in a splitting of their frequencies for the spin wave 
modes with indices m =  + 1/− 120,29,30. Moreover, it was shown experimentally and by simulations in the 
papers29,30 that removing of the vortex core results in disappearance of the splitting of the azimuthal 
mode frequencies. And vice versa, it was demonstrated by X-ray microscopy and by simulations that 
exciting the azimuthal spin waves it was possible to excite the vortex core motion, increase its magnitude 
up to the vortex core polarization reversal31. I.e., there is no doubts that such vortex-SW interaction 
exists.

The introduced mechanism of magnetic vortex mass formation via interaction with the azimuthal 
spin waves is similar to appearance of the mass of some elementary particles via the Higgs mechanism 
(interaction with the Higgs field)32,33. In our case, the azimuthal magnons play a role of the Higgs bosons 
(excitations of the Higgs field). The geometrical gauge field (represented by the vortex variables) acquires 
a finite mass due to coupling with the magnons. This mass can be written in terms of the moving vortex 
mass within the Thiele approach to the magnetic vortex motion. Recent simulations34 showed that the 
drop of domain wall mobility at high velocity in a magnetic nanotube can be interpreted as increasing 
of the wall mass due to emitting of spin waves. This is an additional confirmation that appearance of 
the dynamical magnetic soliton (domain wall, vortex, skyrmion) mass is a general effect which might 
be observed in many magnetic patterned nanostructures including circular magnetic dots, nanotubes, 
nanostripes etc.

Summarizing, we found by broadband ferromagnetic resonance measurements that in ferromagnetic 
nanodots, the eigenfrequency of the fundamental vortex gyrotropic mode reveals a maximum as func-
tion of the dot thickness. The frequency of this mode is calculated by introducing an inertia (mass) term 
to the vortex equation of motion. The mass is anomalously large and reflects moving vortex interaction 
with traveling spin waves of the azimuthal symmetry. The mass is non-local due to non-locality of the 
magnetostatic interaction. The observed behaviour is explained on the basis of developed analytical the-
ory and confirmed by micromagnetic simulations.

Methods
Micromagnetic simulations. Frequency and spatial distribution of the observed vortex modes 
were obtained from the micromagnetic simulations that were performed using commercial LLG code35. 
Standard parameters for Ni80Fe20 (exchange constant A =  1.05 ×  10−6 erg·cm−1, gyromagnetic ratio 
γ =  2.93 × 2p GHz/kOe and anisotropy constant Ku =  0) were used. The values of saturation magnet-
ization Ms =  810 emu/cm3 and Gilbert damping parameter α =  0.01 were extracted from ferromagnetic 
resonance measurements on a reference 60 nm thick Ni80Fe20 continuous film. Cell size was fixed at 5 nm 
× 5 nm × 5 nm. The dot thickness L was varied in the range 20–100 nm. The simulations were carried out 
for the individual dots because the interdot distances in the measured dot arrays were large enough to 
neglect the dipolar interdot interactions. To reveal the microwave absorption spectra in the broad fre-
quency range a short dc magnetic field pulse with duration of 50 ps and amplitude of 50 Oe was applied 
along the x axis. The spatial characteristics of the different excited vortex modes were quantified using 
spatially and frequency-resolved fast Fourier transform imaging14,15.

Analytical calculations of the vortex mass. To describe magnetization dynamics we use the 
Lagrangian

∫ λ λΛ = ( , ), = ( ) ⋅ − ( , ), ( )αd t D w Dr r B m m m m 5
3

0

where γ( ) = ( / )( + ⋅ ) ×−MB m m n n m1 [ ]s
1 , n is an arbitrary unit vector19, and ( )= ∂ −μ μ μ

ˆD A . 
The gauge vector potential = ∂ ⋅μ μ

−Â R R 1 is determined by the rotation matrix R(Θ υ, Φ υ) from the 
initial xyz coordinate frame to x′ y′ z′  frame (the index μ =  0, 1, 2, 3 denotes the time and space 
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coordinates xμ =  t, x, y, z and ∂μ =  /∂xμ). The operator μÂ  acts on the SW magnetization and can be 
represented by the time- and spatial derivatives of the vortex angles (Θ υ, Φ υ).

The Lagrangian (Eq. (5)) then can be re-written in the form Λ  =  Λ υ +  Λ sw +  Λ int, where ∫Λ λ= d rint
3

int 
is the interaction term between the moving vortex magnetization mυ described by the Lagrangian 
Λ ( , )υ X X  and spin waves, which are described by the Lagrangian density ( )λ ′= ⋅ ′ − ′, ∂ ′µ wB m m msw s s s . 
The magnetization m(r, t) is expressed via the angles Θ (r, t) =  Θ υ(r, t) +  ϑ(r, t), Φ (r, t) =  Φ υ(r, t) +  ψ 
(r, t), where ψ′ = (ϑ, Θ , )υm sin 0s  describes SW excitations, r =  (ρ, z), ρ is the in-plane radius vector, 
and z is the thickness coordinate. The ′ms-components are used in the form ϑ(ρ, z, t) =  av(ρ, z)
cos(mϕ −  ωt), ψ(ρ, z, t) =  bv(ρ, z)sin(mϕ −  ωt), where aν, bν are the SW amplitudes, v =  (n, m, l) (n =  0, 
1, 2 …, m =  0, ± 1, ± 2, …, l =  0, 1, 2 …) n and l is number of the nodes of dynamical SW magnetization 
along thickness and radial directions, respectively. The dynamic vortex-SW coupling induced by the 
component Â0 exists only for the azimuthal modes with m =  ± 1. The SW and interaction Lagrangian 
density are λ γ ψ= ( / )ϑ + ⋅M M m Hsw s s s m and λ γ= ( / ) Θ Φ ϑυ υ

M sinsint , correspondingly. Here 
∫ ′ ′ ′( , ) = ( , ) ( , )ˆt M d G tH r r r r m rm s s

3  is the dynamic magnetostatic field, the kernel ′( ) = ( , )αβ αβĜ G r r  
is the magnetostatic tensor23, α, β =  ρ, ϕ, z. The spin-wave field momentum 

∫γ ρ= ( / ) Θ ϑ ∇ ΦυM dP sins X
2

0  corresponding to λint determines the vortex-SW interaction 
Lagrangian ∫ λρ= = ⋅ L d P Xint

2
int .

The spin wave eigenfrequencies/eigenfunctions can be found from solution of the linear integral equa-
tion in the limit F(η) →  0:

∫ η η η η ω η η′Γ( , ′) ( ′) − ( ) = ( ), ( )d a a F 6
2

where the integral kernel is ∫ ∫η η τ η τ τ η η η α αΓ( , ′) = ( , ) ( , ′)/ , ( , ′) = (∂ /∂ ∂ ′)ρρ ααd d d d dk4 expzz
2  

β ρ ρ(− − ′ ) ( ) ( ′)k z z J k J k1 1  are the magnetostatic Green functions, α, α′  =  ρ, z and the  
function F(η ) describing the SW-vortex interaction is 

∫η η ϕ η ϕ β ω η ρ η η ρ( ) = ( ) + ( ) = ( / ) ′ ( ′) ( , ′)( ( ′) ⋅ )ρρ ω ˆF F F R d m d zXsin cos 2s c M 0 , η =  (ρ, z), 
dη =  ρdρdz, the frequency ω is in units of ω M =  γ4πMs.

For the SW variables ϑ and ψ without interaction with the vortex core (F(η)= 0), we reduce the prob-
lem to eigenvalue problem for the integral magnetostatic operator and get a discrete set of magnetostatic 
eigenfunctions μv(r) and corresponding SW eigenfrequencies ωv(v =  (n, m, l)), which are well above the 
fundamental gyrotropic eigenfrequency, ω0. The solution of inhomogeneous equation (6) ϑ(ρ, z, ω) can 
be represented by the resolventa ω η η η η ω ω( , , ′) = ∑ ( ) ( ′)/( − )ν ν ν νR a a2 2 2 .

Introducing the complex variable s =  sx+ isy for the dimensionless vortex core position s =  X/R and 
performing the Fourier transform s(z, t) =  s(z)exp(iωt) Eq. (3) can be written as an integro-differential 
equation for s(z) with a nonlocal potential14:

∫
ω λ

κ ω

( ) = − ∂ /∂ + ( ),

( ) = ′ ( , ′) − ( , ′) ( ′). ( )υ

ˆ

ˆ
g s z z U s z

Us z dz z z M z z s z

[ ]

[ ] 7

2 2

2

We assume that the eigenfunctions of Eq. (7) are decomposed in the series of cos qnz (qn= nπ/L to 
satisfy the dot face boundary conditions). Then, for finding the eigenfrequencies we use diagonal approx-
imation (n = n′ ) in the matrix equation (7) and define the diagonal matrix elements of the vortex mass 
( >υM 0n ) per unit dot thickness as ∫= ′ ( ) ( , ′) ( ′)υ υM dzdz u z M z z u zn

n n , δ( ) = /( + )u z q z2 1 cosn n n0 .
The nonlocal vortex mass density ( , ′)υM z z  is calculated as

∫ ∫ ∫ζ
β
γ

ρρ ρ η η η η ζ( , ) = ( ) ′ ( , , ′) ( ) ( ′, )
( )υ ρρRM z d m d drrm r d r

4
0

82 0 0

The mass density can be written as a separable kernel using explicit summation over the azimuthal 
spin wave spectra

∑ζ
β
γ ω

ζ( , ) = ( ) ( )
( )

υ
ν ν

ν νIM z z N
4

1
92 2

where ∫ ρρ ρ ρ( ) = ( ) ( , )ν νI z d m a z0  is the overlapping integral of the vortex gyrotropic mode m0(ρ) and 
the unperturbed SW eigenmode gv(ρ, z) obtained from solution of homogeneous Eq. (6), numbered by 
the index ν  and normalized to unit, ∫ ∫ζ η η ζ η( ) = ( ) ( , ) ( )ν ρρ νN d drrm r d r a0  describes dipolar interac-
tion between the moving vortex and azimuthal spin waves, and ωv are the eigenvalues of homogeneous 
Eq. (6). We accounted that the lowest gyrotropic eigenfrequency is essentially smaller than the SW fre-
quencies, ω0 ≪  ωv. The diagonal component υM 0 of the mass density corresponding the eigenfrequency 
ω0 calculated by using Eq. (9) is approximately equal to 10/γ2 for L =  80–100 nm, R =  150 nm, whereas 
the value of ≈0.5/γ2 was calculated in Ref. 18 for the same dot sizes within the rigid vortex model. The 
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components of the vortex mass density υMn corresponding to the high-order vortex gyrotropic modes ωn 
(n ≥  1)14 are essentially smaller and result only in a small renormalization of the eigenfrequencies ωn.

The energy E in Eq. (1) can be calculated as sum of the magnetostatic and exchange energy using the 
definitions, ∫=W L dzE, and

∫ ∫

∫

κ

λ

( ) = ′ ( , ′) ( ) ⋅ ( ′),

( ) =




∂
∂



 ,

( )

W z R L dz dz z z z z

W z R L dz
z

s s s

s s

[ ] 1
2

[ ]
2 10

m

ex

2

2
2

where ∫κ π β β( , ′) = (− − ′ ) ( )z z M dk k z z I k8 exps
2 2 2 , ∫ ρρ ρ λ π( ) = ( ), = ( / )I k d J k M L Ls e0

1
1

2 2 
( / ) + /R R[ln 5 4]c  is the exchange stiffness coefficient perpendicular to the dot plane, β =  L/R, and Rc(L) 

is the vortex core radius6.
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