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Abstract: Cytosine DNA methylation (5mCs) is an important epigenetic modification
in genomic research. However, the methylation states of some cytosine sites are not
available due to the limitations of different studies, and there are few tools developed
to deal with this problem, especially in plants, which have more methylation types than
animals. Here, we report PlantDeepMeth, a novel deep learning model that utilizes deep
learning to predict DNA methylation states in plants. The evaluation of PlantDeepMeth
on known cytosine sites in both the Brassica rapa and Arabidopsis thaliana genomes shows
good performance in predicting methylation states, indicating that the tool is good at
learning patterns for methylation imputation. Motif analysis of the model’s predictions
identified specific motifs associated with hypo- or hyper-methylation states in B. rapa and
A. thaliana, further revealing key regulatory patterns captured by the model. Moreover,
cross-species validation between B. rapa and A. thaliana demonstrated the generalizability
of PlantDeepMeth, with the model maintaining high performance across different plant
species. These results highlight the effectiveness of PlantDeepMeth and demonstrate the
potential of deep learning to advance plant genomics research.

Keywords: deep learning; convolutional neural networks; recurrent neural network;
methylation state; plant epigenomics

1. Introduction
Cytosine DNA methylation (5mCs) is a critical epigenetic modification that is widely

present in genomes of plants and animals and plays an important role in regulating gene
expression, maintaining genome stability, and influencing developmental processes [1–7].
With the advent of high-throughput sequencing technologies, vast amounts of DNA methy-
lation data have been generated, providing essential resources for in-depth studies of DNA
methylation functions in various biological activities. However, due to technical limitations
of specific experiments such as single-cell methylation sequencing, and biological complexi-
ties such as high GC content and repetitive genomic regions, and those that show structural
variation between the studied genome and the reference genome, as well as those with
insufficient sequencing depth, methylation data often suffer from uneven coverage [8–10].
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These limitations result in lost methylation information or inaccurate determination of
methylation states in certain genomic regions.

The presence of incomplete or low-quality methylation sites limits the study of genome-
wide methylation patterns. To overcome this problem, researchers have proposed various
methods to impute or correct the methylation states of these sites [11–13]. These methods
typically leverage genomic features such as CpG island proximity, transcription factor bind-
ing sites, histone modification marks, and DNA sequence context to improve prediction
accuracy. Nevertheless, these approaches often struggle with accuracy and generaliza-
tion, especially when dealing with large, complex methylation data. Furthermore, while
these methods benefit from the comprehensive genomic annotations available for humans
and some animals, such annotation information is often lacking for plants, limiting the
development of accurate methylation prediction models specifically for plant genomes.

In recent years, deep learning has emerged as a powerful data-driven approach that
breaks the limitations of traditional methods (here referred to as machine learning) by
reducing the reliance on well-annotated genomes [14–20]. Deep learning models can learn
and extract high-level features directly from raw data, enabling accurate prediction of
intricate biological patterns even in the absence of genomic annotation data. For instance,
DeepCpG is a deep learning-based model that uses only DNA sequences and neighboring
methylation data to predict methylation states in human and animal single cells, outper-
forming traditional methods such as Random Forest (RF) that rely on multiple genomic
annotation information [21]. This data-driven approach has potential for plant genomes,
which often lack detailed genomic annotations. However, because plant genome sequences
have three types of methylation (CpG, CHG, and CHH, where H = A, C, or T), traditional
methods and existing deep learning models, such as DeepCpG, were developed for ani-
mal genomes with only CpG sites, and thus cannot handle the complexity and diversity
of methylation patterns in plants. The three types of methylation characteristic of plant
genomes make it impossible to directly apply deep learning models developed for animal
genomes to plants. In addition, the Smart Model for Epigenetics in Plants (SMEP) shows
the potential of deep learning to predict diverse epigenomic modifications in plant genomes
using DNA sequences. However, relying solely on DNA sequence information may not
comprehensively capture the intricate patterns associated with plant DNA methylation.
Other models, such as MethSemble-6mA, iResNetDM, and Methyl-GP, leverage ensemble
learning or sequence-based representations to identify DNA and RNA methylation sites
across different animal species [22–24]. Furthermore, frameworks like DeepPlantCRE and
StableDNAm have integrated attention mechanisms, residual networks, and contrastive
learning to enhance feature learning in plant regulatory regions [25,26]. These advances
reflect the growing recognition that plant methylomes require specialized architectures to
address their unique biological and structural features.

Transfer learning has emerged as a promising approach to overcome this challenge.
Transfer learning is a deep learning method that exploits the knowledge learned from one
domain (the source domain) and applies it to a different but related domain (the target
domain), enabling the model to perform well in the target domain even with limited labeled
data by utilizing the abundant labeled data from the source domain. It is a particularly suit-
able approach to apply models trained in animal genomes to plant genomes. For example,
DeepSEA, a deep learning model originally developed to predict the functional effects of
non-coding variants in the human genome [27], has been successfully transferred to predict
the regulatory effects of genomic variants in plant genomes [28]. This demonstrates the
use of transfer learning to bridge the gap between the distinct genomic features of animals
and plants, and provides a viable route for the efficient development of plant genome
models. Another example is DeepSignal-Plant, which was transferred from DeepSignal.
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It relies on third-generation sequencing data to make cytosine methylation state predic-
tions. But DeepSignal-Plant cannot predict cytosine methylation states for regions lacking
sequencing signal coverage, as it depends on signal-based features. In addition, DeepPlant
was proposed as an enhanced model for plant methylation detection, which is also based
on third-generation sequencing data. It combines BiLSTM and Transformer-based triple
encoders to better capture methylation patterns, particularly for underrepresented CHH
sites [29].

With the aim of predicting/correcting the methylation states in plant genome studies,
we developed PlantDeepMeth, a transfer learning model based on DeepCpG, which was
originally designed for animal genomes and adapted for plant genomes. Because the
methylation pattern of plants is different from that of animals, we modified the structure
of DeepCpG and retrained the entire network from scratch using the plant methylation
data. The results showed that PlantDeepMeth can effectively predict the methylation states
of cytosine sites in plant genomes and find motifs associated with different patterns of
methylation activity. Overall, PlantDeepMeth provides an effective solution to the problem
of predicting DNA methylation in plants, supporting the power of deep learning and
transfer learning in bioinformatics.

2. Materials and Methods
2.1. Data Collection and Process

The bisulfite sequencing dataset focusing on cytosine DNA methylation (5mCs) from
leaves of Brassica rapa under normal growth conditions was retrieved from NGDC un-
der accession numbers CRR596509 [30]. The reference genome (V3.0) and annotation
datasets (V3.1) of B. rapa were downloaded from http://brassicadb.cn/#/Download/
(accessed on 31 July 2024) [31]. The bisulfite sequencing of wild-type Arabidopsis thaliana
was retrieved from NCBI under accession numbers SRR15967549 [32]. The reference
genome (TAIR10) was downloaded from http://plants.ensembl.org/index.html (accessed
on 21 August 2024) [33]. The bisulfite sequencing of Oryza sativa was obtained from NCBI
under accession numbers SRR1542709. The O. sativa reference genome (IRGSP-1.0) was
downloaded from the Ensemble Plants database (https://plants.ensembl.org/index.html,
accessed on 19 September 2024).

Bisulfite sequencing data were aligned to the reference genome using Bismark
(v0.24.2) [34]. After alignment, methylation calls were extracted for each cytosine site.
A custom Perl script was employed to count the number of reads at each cytosine site;
only cytosine sites with at least four aligned reads were used for training. Cytosine sites
with fewer than four reads were labeled as ‘NA’ and excluded from the training process
(Figure 1a, ‘?’ represents ‘NA’). Therefore, the positive samples (methylation sites) and
negative samples (unmethylation sites) were generated from the bisulfite sequencing data.
After model training, these ‘NA’ values were filled based on the model’s predictions. The
input methylation status was rounded according to the methylation rate, with the values
of 0 and 1 representing unmethylated and methylated states, respectively (Figure 1a). For
B. rapa, the data from chromosomes 1 to 7 were used as the training set, while data from
chromosomes 8 and 9 were used as the validation set. The data from chromosome 10 was
reserved as the testing set. Similarly, for A. thaliana, the data from chromosomes 1 to 3 were
used for training, data from chromosome 4 for validation, and data from chromosome 5
for testing. This partitioning strategy ensures that the model is evaluated on unseen data
from different chromosomes, allowing for a more robust assessment of its generalization
performance across the genome. Models were initially fitted on the training sets, and
the validation sets were used to optimize parameters. The final model performance was
evaluated on the testing sets. For computing binary evaluation metrics, such as AUC, F1
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score, or MCC score, predicted methylation probabilities greater than 0.5 were rounded to
1 (methylated), while those less than or equal to 0.5 were rounded to 0 (unmethylated).

 

Figure 1. Overview and performance evaluation of the PlantDeepMeth model. (a) PlantDeepMeth
architecture and workflow. The model consists of three models. The DNA model is a convolutional
neural network that processes DNA sequences, extracting features through convolutional, pooling,
and fully connected layers. The methylation model uses a bidirectional Gated Recurrent Unit to
capture patterns from neighboring methylation states. Both models were fed into the joint model,
which combines features from DNA sequences and methylation states through fully connected layers
to predict the methylation state at each cytosine site. (b) Methylation state prediction on chromosome
10 of Brassica rapa using the joint model. Visualization of observed and imputed methylation states
across a genomic region. The black dots indicate the observed methylation states, while the cyan line
represents the imputed states from the model. (c) The performance evaluation of PlantDeepMeth
trained on Arabidopsis thaliana and comparison with the SMEP model.

2.2. PlantDeepMeth Model Architecture

The PlantDeepMeth model was transferred from DeepCpG [21], specifically adapted
for plant genomes to predict cytosine methylation states. Unlike DeepCpG, which uses
single-cell methylation sequencing as input, PlantDeepMeth integrates three methylation
types of cytosine sites from plant genomes, allowing the model to learn broader methylation
patterns and capture more generalizable features. Due to the distinct methylation contexts
in plant genomes as compared to animals, we did not freeze any layers from the original
DeepCpG. Instead, we modified the model architecture and retrained all layers from scratch
using plant methylation data. The PlantDeepMeth model consists of three distinct models:
a DNA model that captures and learns features from DNA sequences, a methylation model
that focuses on extracting features from the surrounding regions of cytosine sites, and
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a joint model that integrates the learned features from both the DNA and methylation
models to make comprehensive predictions. All models were built in Python 3.6 using
Keras (version 2.2.5) with TensorFlow (version 1.14) as the backend. All models were
trained and evaluated on a Linux server equipped with an Intel (R) Xeon (R) Gold 5120
CPU @ 2.20 GHz, 320 GB RAM, and an NVIDIA Tesla V100-PCIE-32 GB GPU. The system
ran Linux kernel (version 3.10.0-1160.el7.x86_64) compiled with GCC 7.3.0, using CUDA
version 10.1.

2.3. DNA Model

The DNA model in PlantDeepMeth is designed as a convolutional neural network
(CNN) to effectively capture and process sequence features from a 1001 bp DNA sequence
centered on a target cytosine site (500 bp upstream and downstream of the target central
site). The DNA sequence was represented as a binary matrix using one-hot encoding for
the four nucleotides: A = [1, 0, 0, 0], T = [0, 1, 0, 0], G = [0, 0, 1, 0], and C = [0, 0, 0, 1].
The architecture of the DNA model processes the input DNA sequence through multiple
convolutional layers, which are constructed with two convolutional layers. The first
convolutional layer uses 128 filters with a kernel size of 11 and a stride of 1, followed by
max pooling with a pool size of 4. The second convolutional layer uses 256 filters with
a kernel size of 3 and a stride of 1, followed by max pooling with a pool size of 2. Each
convolutional layer is followed by a ReLU activation function. To mitigate the risk of
overfitting and improve the model’s generalization ability, a dropout layer is applied after
the fully connected layer, randomly omitting a portion of neurons during training. The
features extracted by the convolutional layers are then flattened into a 1D vector, which is
fed into a fully connected layer with 128 units activated by ReLU. The final output of the
DNA model is generated by a predictive layer that uses a sigmoid activation function.

2.4. Methylation Model

The methylation model in PlantDeepMeth is designed to capture the complex rela-
tionships and dependencies between methylation states of neighboring cytosine sites. This
model employs two layers of bidirectional Gated Recurrent Units (GRUs) to process the
sequential nature of methylation data. The input of this model consists of 100-dimensional
vectors that encode the methylation states and distances to the 25 neighboring cytosine
sites on both sides of a central cytosine site, with the methylation state of the central site
being used as the label. These distances are normalized by dividing them by the maximum
genome-wide distance (i.e., the largest possible distance between any two neighboring
cytosine sites across the entire genome), transforming them into relative ranges that allow
the model to effectively learn positional relationships across different scales.

Initially, the input sequences are merged and processed by a Time Distributed layer,
which applies the same replicated model to each time step independently (i.e., the model
is applied separately to each position in the sequence without considering interactions
between different time steps). This is followed by the first bidirectional GRU layer with
128 units, where both L1 and L2 regularizations were applied with coefficients of 0.0001 to
reduce overfitting and promote generalization to unseen data. The second bidirectional
GRU layer, with 256 units, further refines the feature representation by capturing more com-
plex temporal dependencies. A final dropout layer is used to further mitigate overfitting by
randomly omitting a fraction of GRUs during training. The output is a 512-dimensional vec-
tor that captures complex temporal dependencies in methylation state transitions around
the target cytosine.
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2.5. Joint Model

The joint model in PlantDeepMeth takes as input the concatenated feature vectors
from the DNA and methylation models. Specifically, it receives a 768-dimensional input
vector formed by combining the 256-dimensional output from the DNA model and the
512-dimensional output from the methylation model. The combined feature vector is then
passed through two fully connected layers, each with 512 units and ReLU activation. The
output layer consists of a final dense layer with a sigmoid activation function, which is used
to predict the binary methylation state (methylated or unmethylated) for each cytosine site.
The joint model effectively integrates the features learned from the DNA sequence and local
methylation context. By modeling the interactions between the extracted DNA sequence
and surrounding cytosine features, the model can capture higher-order dependencies that
might be missing when considering each feature set independently.

2.6. Model Evaluation

In this study, we evaluate the performance of PlantDeepMeth models using the fol-
lowing key metrics: accuracy (ACC), area under the receiver operating characteristic curve
(AUC), F1 score, Matthew’s correlation coefficient (MCC), true negative rate (TNR), and
true positive rate (TPR). The default threshold for all the evaluation indicators is 0.5. ACC
provides a general measure of the model’s performance by calculating the ratio of correct
predictions to the total number of predictions. However, given the class imbalance in our
dataset, i.e., the proximity ratio between methylated and unmethylated sites is 1:9 in B.
rapa and A. thaliana. AUC is particularly valuable in this context as it reflects the model’s
ability to distinguish between positive and negative classes, regardless of the threshold.
The F1 score, which is the harmonic mean of precision and recall, offers a balanced mea-
sure, especially when dealing with uneven class distributions. MCC, designed for binary
classification, provides a more informative metric than accuracy in cases of class imbalance
by considering all four confusion matrix categories (true positives, true negatives, false
positives, and false negatives). TNR and TPR are used to evaluate the model’s performance
in identifying negative and positive instances, respectively.

2.7. Motif Analysis

The motif analysis was performed using the DNA model trained on B. rapa and
A. thaliana. Specifically, we used the kernels from the first convolutional layer of the DNA
model. Each kernel in this layer has a length of 11 base pairs. This fixed kernel size allows
the model to capture specific sequence patterns of this length, which are then interpreted
as potential motifs associated with DNA methylation.

The filters from the convolutional layer of the DNA model were first analyzed to iden-
tify the sequence fragments that produced the highest activation values. These sequence
fragments were then aligned to visualize the patterns captured by each filter. The activation
levels of all filter neurons were computed for a set of DNA sequences. For each sequence
and filter, a sequence window around the position that activated the filter the most was
selected. If the activation level of the filter at a specific position was greater than 50% of the
maximum activation level across all sequences, the corresponding sequence window was
selected. These selected sequence windows were then aligned and visualized as sequence
motifs using WebLogo (version 3.7.8) [35].

3. Results
3.1. The Construction and Workflow of PlantDeepMeth

We developed PlantDeepMeth to integrate a convolutional neural network (CNN) for
DNA sequence processing and a recurrent neural network (RNN) for capturing sequential
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dependencies within cytosine DNA methylation data (Figure 1a). PlantDeepMeth imple-
mented three models: DNA model, methylation model, and joint model. Using these three
models, PlantDeepMeth can infer lost or correct inaccurate methylation states often found
in genomic regions with no/low coverage of DNA methylation sequencing reads, filling the
gap in DNA methylation prediction tools in plant genomic studies (Figure 1b). Rather than
relying on increasing sequencing depth, which can be prohibitively costly and not always
feasible in plant genome studies, PlantDeepMeth offers a more cost-effective solution.

In detail, the DNA model processed 1001 bp sequences (500 bp upstream and 500 bp
downstream of the central cytosine site) to extract relevant features. It used a CNN to
identify patterns in the DNA sequence, which were then passed through layers to extract
and refine features for methylation state prediction. The methylation model input is
a 100-dimensional vector, gathering methylation state and distance information from
neighboring cytosine sites to predict the methylation state of targets. By exploiting the
sequential nature of methylation data, it used recurrent layers that capture dependencies
between the methylation states of nearby sites, allowing the model to account for the spatial
relationships inherent in the DNA methylation process. The joint model integrated the
outputs of the DNA and methylation models by concatenating the extracted features. This
combined information was then passed through additional layers to model the interactions
between the DNA sequence and local methylation signals, allowing prediction of the
methylation state (Figure 1a).

For the running process, the bisulfite sequencing data were first aligned to the refer-
ence genome. Each cytosine site was then classified as either methylated or unmethylated
based on the alignment of the sequencing reads at that site. If the total number of reads
was less than four, the cytosine site was labeled as unknown (‘NA’ or ‘?’). The sequence
information was then encoded into a binary matrix, representing the 1001 bp DNA se-
quence centered on the target unknown cytosine site. This encoded sequence was then
processed by the CNN to capture key sequence features, while the methylation information
from neighboring cytosine sites was processed by a bidirectional GRU network to model
temporal dependencies. The joint model was further run based on the outputs of the DNA
and methylation models. All three models were trained, verified, and evaluated after
model architecture construction.

3.2. PlantDeepMeth Accurately Predicts DNA Methylation States

To evaluate the performance of PlantDeepMeth, we applied the model to predict
observed methylation states in A. thaliana and B. rapa and compared the results with those
obtained using SMEP, a published deep learning model for 5mC prediction in plants.
Considering that positive samples (methylated cytosine sites) and negative samples (un-
methylated cytosine sites) are not balanced in the datasets, accuracy in this case cannot truly
reflect model performance, we used the area under the receiver operating characteristic
curve (AUC) and the area under the Precision-Recall Curve (PRC) as key indicators to
evaluate model performance. In addition to using AUC and PRC, our model was also
evaluated using several performance metrics to gain a comprehensive understanding of its
effectiveness. Figure 1c presents the results for A. thaliana, while Supplementary Figure S1
shows the evaluation on B. rapa.

The combined accuracy, AUC, and PRC values support that all three models in Plant-
DeepMeth capture distinct patterns associated with DNA methylation (Figures 1c and S1).
The performance highlights the robustness of PlantDeepMeth in distinguishing between
methylated and unmethylated cytosine sites, with all three models achieving accuracy
and AUC values above 0.8. Using the A. thaliana data as an example, the DNA model
achieved an accuracy of 0.82, an AUC of 0.81 and a PRC of 0.15; the methylation model
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showed stronger performance with an accuracy of 0.86 and an AUC of 0.93 and a PRC of
0.49; while the joint model showed the best performance with an accuracy of 0.89 and an
AUC of 0.95 and a PRC of 0.53 (Figure 1c). In contrast, SMEP, which relies solely on 41 bp
DNA sequence inputs, achieved comparatively lower performance in A. thaliana with an
accuracy of 0.66, an AUC of 0.50, and a PRC of 0.08. Similar results were obtained in B. rapa
(Figure S1). Moreover, the joint model analysis in A. thaliana and B. rapa outperformed both
the DNA and methylation models in various metrics (Figures 1c and S1), indicating that
the joint model can effectively integrate both DNA sequence and methylation information,
learn high-level patterns, and thus provide a more comprehensive prediction framework.
In addition, the consistent performance of PlantDeepMeth in both A. thaliana and B. rapa
indicates its potential as a reliable tool for methylation prediction in diverse plant species
(Figures 1c and S1).

3.3. Identification of Motifs Associated with Cytosine Methylation

Sequence motifs that were associated with cytosine methylation in the A. thaliana
and B. rapa genomes identified by the DNA model were analyzed. The DNA model
was specifically trained to detect and characterize sequence motifs that could influence
methylation states. The filters from the first convolutional layer of the DNA model, which
function similarly to conventional position weight matrices, were visualized as sequence
logos to facilitate interpretation of the motifs recognized by the model. Representative
motifs from B. rapa are shown in Figure 2, while those from A. thaliana are presented in
Supplementary Figure S2.

 

Figure 2. Discovered sequence motifs associated with DNA methylation in Brassica rapa. The
motifs were identified by PlantDeepMeth after filtering partial sequences. The figure shows the
first two principal components of the motif occurrence frequencies in sequence windows (activity).
The low to high estimated motif effect on methylation levels is represented by blue to red colors.
Sequence logos show the motif related to DNA methylation.
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Principal component analysis (PCA) was applied to the activity scores of these motifs,
and the results show distinct patterns of motif co-occurrence and their estimated effect on
methylation states. Specifically, the PCA plot shows that motifs with similar nucleotide
composition tend to cluster together. As a result, some motif labels appear overlapped in the
figure due to close proximity in the PCA space, but this does not affect the interpretation of
clustering patterns. Two major clusters emerge: one associated with increased methylation
levels and the other with decreased methylation levels (Figures 2 and S2). Consistent
with patterns observed in a deep learning model of animals [21], motifs associated with
decreased methylation levels were often found to be CG-rich and predominantly distributed
in the B. rapa and A. thaliana genomic regions with higher CG content, such as promoter
regions and transcription start sites. These motifs are likely to be involved in regulatory
processes that maintain hypomethylation in active promoter regions. On the other hand,
motifs associated with increased methylation levels tended to be AT-rich and were more
abundant in CG-poor genomic contexts, possibly indicating their role in establishing or
maintaining hypermethylation in these genomic regions. These motifs could serve as
molecular markers for future studies of the influence of DNA sequence on methylation
patterns, as well as their broader role in regulating gene expression and plant development.

3.4. Cross-Species Prediction

Generalizability is a critical aspect of deep learning, and strong generalizability indi-
cates that a model can apply learned knowledge to other datasets. To assess the generaliz-
ability/robustness of the PlantDeepMeth models, we performed cross-species prediction
experiments between B. rapa and A. thaliana. Specifically, PlantDeepMeth models trained
on one genome were used to predict methylation states in the other genome. Our results
highlight the generalization ability of all three models in PlantDeepMeth, with the joint
model showing the best performance (Figure 3). The learned patterns of methylation states
in PlantDeepMeth are applicable to the other genomes of B. rapa or A. thaliana, suggesting
that the methylation regulatory mechanism may be conserved between them. This cross-
species evaluation underscores the potential of deep learning models to adapt to the unique
epigenetic landscapes of different organisms, a key strength of deep learning methods in
bioinformatics. These results are summarized in Supplementary Table S1.

Although PlantDeepMeth can predict missing methylation states, we cannot evaluate
its prediction accuracy on these sites due to the lack of experimental verification. Using the
PlantDeepMeth trained on A. thaliana, we can evaluate its performance on these known
methylation states in B. rapa. The joint model achieved an AUC of 0.92 and an F1 score
of 0.56, significantly outperforming the DNA model, which had an AUC of 0.74 and an
F1 score of 0.39 (Figure 3a), and also better than the methylation model, which had an AUC
of 0.88 and an F1 score of 0.44. The higher accuracy and Matthew’s correlation coefficient
(MCC) of the joint model indicate its superior ability to capture methylation patterns across
species. When we evaluated the performance of PlantDeepMeth trained on B. rapa for
predicting methylation states in A. thaliana, the joint model again demonstrated its highest
strength with an AUC of 0.92 and an F1 score of 0.49 (Figure 3b). In comparison, the
DNA model showed an AUC of 0.71 and an F1 score of 0.16, while the methylation model
achieved an AUC of 0.92 and an F1 score of 0.41. Furthermore, despite the lower F1 score
in the DNA model, its true negative ratio (TNR = 0.91) was the highest among the models,
highlighting its ability to correctly identify unmethylated states (Figure 3b). Interestingly,
although the joint model generally outperformed the other models, the methylation model
had a higher true positive ratio (TPR = 0.86 for A. thaliana predicting B. rapa, and 0.84 for
B. rapa predicting A. thaliana), indicating its superior ability to identify methylated sites
(Figure 3). This suggests that the methylation model, which focuses on local methylation
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signals, may be more sensitive in detecting true positives, even though the joint model
captures broader patterns across species.

 

Figure 3. Cross-validation of PlantDeepMeth based on Brassica rapa and Arabidopsis thaliana. (a) The
evaluation of PlantDeepMeth trained on A. thaliana for predicting B. rapa. (b) The evaluation of
PlantDeepMeth trained on B. rapa for predicting A. thaliana.

In addition, to better verify the generalization ability of PlantDeepMeth, we further
applied the learned rules of PlantDeepMeth from the A. thaliana genomes to the Oryza
sativa genome. The results showed that all three models performed well, with the joint
model achieving the highest performance (Figure S3a). This indicates that the ability
of the model to capture methylation patterns is not limited to B. rapa and A. thaliana
but has a broad applicability. Take together, these results highlight the generalizability
and robust performance of PlantDeepMeth models, especially the joint model, across
different plant species, demonstrating their effectiveness even when applied to diverse and
phylogenetically distant plant genomes.

4. Discussion
In this study, we proposed PlantDeepMeth to address the challenge of missing or

uncertain cytosine methylation states in plant genomes caused by uneven sequencing cov-
erage and biological complexity. By modifying and retraining the DeepCpG architecture on
plant-specific data, our model captures the distinct methylation types in plants—including
CpG, CHG, and CHH, which are not addressed by existing models originally developed
for animals. Evaluated across B. rapa, A. thaliana, and Oryza sativa, PlantDeepMeth shows
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strong cross-species generalizability and consistently outperforms SMEP, other deep learn-
ing models developed for plant methylation prediction from second-generation sequencing.
Moreover, the model identifies sequence motifs associated with methylation variation,
providing new insights into plant epigenetic regulation. These results demonstrate the
advantages of PlantDeepMeth and highlight the potential of deep learning for advancing
plant methylome research.

Although PlantDeepMeth performed well in our study, it does have some limitations.
While the model generalizes well across closely related species, it may struggle with
more distantly related species, which could require species-specific retraining to capture
their unique epigenetic landscapes. Moreover, using B. rapa as an example, the current
training dataset is derived exclusively from leaf tissues under standard growth conditions.
As a result, the model may not generalize well to other tissues or to plants exposed to
environmental stress. For instance, we observed notably reduced performance when
applying the model to maize embryo tissues (Figure S3b), suggesting that methylation
patterns can differ substantially across developmental stages and physiological contexts.
These findings highlight the need for future development of tissue-specific models to
improve prediction accuracy across diverse biological contexts.

Another limitation of PlantDeepMeth is the lack of direct comparison with traditional
machine learning methods that are typically used in other contexts, such as RF models.
For example, the RF Zhang model leveraged a comprehensive set of features, including
the methylation state and distance of neighboring CpG sites, annotated genomic contexts,
transcription factor binding sites, histone modification marks, and DNase I hypersensitivity
sites [36]. These features were derived from comprehensive genomic annotations. However,
the RF Zhang model was originally developed for animal genomes, and as such, it does
not contain the CHH and CHG methylation types. Meanwhile, such detailed genomic
annotation information is currently not available for most plant genomes, limiting the
direct comparison of our method with traditional machine learning methods. Beyond
SMEP, several other methylation prediction methods have emerged, including those for
RNA methylation, such as m5C site identification using XGBoost with feature selection [37].
Although effective in their domains, these models are typically trained on RNA or animal
datasets and do not address the structural or epigenetic complexity of plant genomes.
DeepSignal-Plant and DeepPlant support all three methylation types using Nanopore
sequencing but focus on signal-level detection rather than imputation from sparse bisulfite
data [29,32]. In contrast, PlantDeepMeth is specifically designed to address this challenge
by integrating DNA sequence features and local methylation context to impute missing
methylation states from plant bisulfite sequencing data.

The methylation model relies on methylation patterns derived from neighboring
cytosine sites and works well mainly in genomic regions with sufficient and accurate
methylation information. In certain genomic regions, such as telomeres or centromeres,
where successive cytosine sites often have no or low read coverage, their methylation
information is largely incomplete or inaccurate. In this situation, the site with reliable
methylation data used by the methylation model for context may be too distant from the
prediction site, leading to reduced prediction accuracy. In comparison, by utilizing DNA
sequence features instead of relying exclusively on methylation patterns, the DNA and
joint models are better at making accurate predictions in such genomic regions. In addition,
although the joint model provides a more robust and reliable solution by combining
sequence and methylation information, it tends to run slower due to its computational load.

The DNA model identified sequence motifs that appear to be associated with methy-
lation activity in B. rapa and A. thaliana. These motifs provide valuable insights into
the regulatory elements that may be marked by methylation dynamics. Specifically, we
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observed that certain motifs were consistently linked with regions of high methylation,
suggesting a potential role in promoting or maintaining DNA methylation. Conversely,
some other motifs were associated with regions exhibiting reduced methylation, possibly
indicating a role in demethylation processes or the prevention of methylation in specific
genomic contexts. In B. rapa, a non-model organism with limited prior data on DNA methy-
lation motifs, these findings serve as a foundational reference for exploring its epigenetic
landscape. In A. thaliana, a well-studied species, our results confirmed existing knowledge
about methylation-related regulatory elements while also presenting new motifs for ex-
perimental validation. Future work can focus on validating the biological significance of
these motifs, particularly their role in methylation regulation and interactions with other
epigenetic factors such as histone modifications. Understanding these motifs in greater
detail may reveal critical insights into methylation regulation dynamics and offer guidance
for manipulating methylation patterns in plant breeding and functional genomics.

Future work will involve constructing tissue-specific models and adapting the model
to account for dynamic methylation changes under stress or other conditions. Meanwhile,
with the availability of third-generation sequencing data, it is expected that the deep
learning approach will be extended to more accurately impute missing methylation states.
In addition, further work needs to focus on de novo construction of models, refining the
model architecture, optimizing training strategies, and integrating more genomic features
to improve the prediction accuracy.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants14111724/s1, Figure S1: The performance evaluation of
PlantDeepMeth trained on Brassica rapa; Figure S2: Discovered sequence motifs associated with DNA
methylation in Arabidopsis thaliana. The motifs were identified by PlantDeepMeth after filtering partial
sequences. The figure shows the first two principal components of the motif occurrence frequencies
in sequence windows (activity). The low to high estimated motif effect on methylation levels is
represented by blue to red colors. Sequence logos show the motif related to DNA methylation; Figure
S3: Evaluation of the generalization ability of PlantDeepMeth based on Arabidopsis thaliana training.
(a) The test results on Oryza sativa. (b) The test results on Zea mays embryo; Table S1: Cross-species
performance of PlantDeepMeth on Arabidopsis thaliana and Brassica rapa.
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