
Introduction
Aquaporins (AQPs) are a family of small, hydrophobic, integral
membrane proteins of about 270 amino acids. In 1991, AQP1, for-
merly called CHIP28 , was cloned as a first water channel and bio-
physically characterized [1, 2]. Sequence analysis of AQP1
demonstrated that AQP protein subunits consist of six �-helix
transmembrane domains with inverted symmetry between the first
three and last three domains ([3]; Fig. 1). The two loops between
transmembrane helices 2-3 and 5-6 contain the signature amino
acid sequence motifs of the AQPs, asparagine-proline-alanine
(NPA) sequences. This predicted topology led to the ‘hourglass
model’ of AQP structure, in which these two NPA-containing loops

connect in the centre of the lipid bilayer and form a hydrophilic
pore for water transfer through the lipid bilayer ([4]; Fig. 1). The
hourglass of AQP structure has been confirmed using electron and
X-ray crystal analysis of AQP1 [5, 6].

Biochemical and freeze fracture studies have indicated that
AQP1 assembles in tetramer in the plasma membrane and each
monomer contains a separate pore [4, 7]. The water selectivity of
AQP1 has been suggested to be due to both the size-exclusion
effect of the pore [8], and the orientation of asparagines in the NPA
motifs providing necessary hydrogen-bonding interactions to iso-
late water molecule and avoid the passage of protons through the
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pore [9]. However, a direct barrier across the pore, centered around
the NPA region, has also been suggested to form the major imped-
iment to the proton passage [10, 11]. 

Subsequent studies have shown that AQP1 belongs to a large
family of water-transporting proteins. Other AQPs have been
cloned and at least 13 AQPs (AQP0 to AQP12) have so far been
identified in mammals [12, 13]. They are expressed in various
epithelia and endothelia and function as channels to permeate not
only water but also small solutes. AQP1, AQP2, AQP4, AQP5 and
AQP8 are primarily water selective, whereas AQP3, AQP7, AQP9
and AQP10 also transport glycerol, which are called ‘aquaglyc-
eroporins’ [14, 15]. Although AQP1 has been considered to be a
water-selective channel as described above, AQP1 has also been
reported to transport cations [16], gases such as carbon dioxide
[17], and ammonia [18]. AQP7 and AQP9 have been reported to
transport heavy metal salts such as arsenate [19], and AQP6 has
been demonstrated to transport chloride at low pH [20]. It is
most likely that AQPs function as channels that permeate water
or small solutes.

The AQPs reside constitutively at the plasma membrane in
most cell types. However, recent studies have demonstrated that
the AQPs are present in zymogen granules in rat pancreatic acinar
cells [21], secretory granules in rat parotid acinar cells [22] and
Brunner’s gland [23], cytoplasmic vesicles in human parotid aci-
nar cells [24] and mouse liver [25], synaptic vesicles from rat
brain [26], and intracellular vesicles in rat kidney [27]. These
observations imply that AQPs in secretory granules and vesicles
are involved in their volume regulation.

In various exocrine and endocrine cells, secretory proteins are
synthesized in rough endoplasmic reticulum (RER). Then the pro-
teins are vectorially transport from RER through a succession of
membrane-bounded compartments including the Golgi complex,
condensing vacuoles, and secretory granules and vesicles. The
secretory granule or vesicle is formed from the condensing 

vacuole, which buds off the trans face of the Golgi complex. In the
condensing vacuole, secretory proteins are present as dilute form.
In a subsequent packing process, the proteins are condensed.
During this process, it is conceivable that transport of ions and
water through secretory granule membrane is necessary for the
protein condensation, although there is not yet complete agree-
ment on the basic principles involved [28–30]. 

The secretory granules and vesicles move to particular locations
within the cell close to the plasma membrane prior to the release of
their contents to the outside. Since the secreteory vesicles have
been suggested to fuse with the plasma membrane by using elec-
tron microscopy [31], it has been considered that cell secretion
involves the fusion of membrane-bound granules and vesicles at the
plasma membrane at the secretory sites, and the release of intra-
granular and intravesicular contents to the extracellular sites.
Currently, by using atomic force microscopy, it has been demon-
strated that secretory granules and vesicles transiently dock and
fuse at ‘porosome’, a permanent cup-shaped structures at the cell
membranes, and swell to allow explusion of their contents [32–36].
Therefore, secretion involves the fusion of the granule or vesicle
membrane with porosome in the plasma membrane, followed by
the release of their contents outside. Secretion without stimulation
is referred to as ‘constitutive secretion’, but cell secretion following
a stimulus is termed ‘regulatory secretion’.

During the secretory process, regulation of secretory granule or
vesicle volume is important, in which contribution of various ion
channels has been demonstrated [21, 26, 37–39]. This paper
reviews the possible role of AQPs on secretory granules and vesi-
cles in secretory function, especially in exocrine glands.

Role of AQPs in cell secretion

AQP5 is a water-selective channel protein widely expressed in
exocrine glands [40–42]. In rat duodenal Brunner’s gland, vasoac-
tive intestinal polypeptide (VIP) has been reported to increase the
flow rate as well as bicarbonate and protein output [43]. Parvin et al.
[23] have demonstrated that AQP5 localizes in the secretory gran-
ule membrane and the apical membrane in rat Brunner’s gland by
immunohistochemistry and electron microscopic immunohisto-
chemistry, and that the AQP5 level in the apical membrane is
increased by VIP stimulation. This observation suggests that the
AQP5 translocates from the secretory granule membrane to the
apical membrane on secretion provoked by VIP. In the rat parotid
gland, AQP5 is localized in the apical membrane including the
intracellular canaliculi of acinar cells [41]. In rat parotid acinar
cells, AQP5 has also been reported to traslocate from the intracel-
lular vesicles to the apical membrane in vitro in response to stim-
ulation with muscarinic agonists, which induce water secretion
and feeble release of the digestive enzyme amylase [44]. However,
the immunofluorescence and immunoelectron microscopic stud-
ies demonstrated that AQP5 was predominantly localized in the
apical plasma membrane in the mouse parotid and submandibu-
lar glands after stimulation or inhibition of secretion in vivo, 

Fig. 1 Hourglass model of aquaporins (AQP1) structure. AQP1 protein
subunits consist of six �-helix transmembrane domains with inverted
symmetry between the first three and last three domains. The two
loops between transmembrane helices 2–3 (loop B) and 5-6 (loop E)
contain the signature amino acid sequence motifs of the AQPs,
asparagine-proline-alanine (NPA) sequences.
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indicating that no changes in the subcellular localization of AQP5
occurs [45]. On the other hand, it has been reported that
immunostained AQP5 was scattered as clusters in the submem-
branous area of the acinar cells in the rat injected with the �-ago-
nist isoproterenol, which provokes amylase secretion in parotid
acinar cells [42]. In the mouse parotid gland, AQP5 was localized
along the apical membrane and its small invaginations formed by
fusion of secretory granules after isoproterenol-administration
[46]. The fluidity of the primary secretion has been proposed to be
important for the release of intragranular contents from mem-
brane-bound secretory granules in pancreas [47] and parotid
gland [48]. It is most likely that components of granule membrane
such as ion channels might insert into the apical membrane dur-
ing fusion process at porosome, and subsequently salt and water
would flush out the stored macromolecules into the acinar lumen
and provide for an appropriate amount of fluid to be secreted with
the proteins [47, 48]. 

Individual secretory events can be visualized with sulforho-
damine B (SRB), a fluorescent fluid-phase polar tracer, as the
formation of docked-granule profiles at apical membrane using
two-photon excitation microscopy, since SRB remaining in the
luminal region rapidly diffuses into granules fused with the plasma
membrane [49]. When secretory events in rat parotid acini were
investigated using the two-photon microscopy, the �-agonist
isoproterenol provoked cell secretion, docked-granule profiles,
at apical region as Figure 2 shows (Sugiya, Nemoto & Kasai, in
preparation). However, the profiles formed disappeared soon.
This observation suggests that SRB diffused into granules fused

with the plasma membrane may subsequently be diluted by
water rapidly, and implies function of AQPs in secretory granule
membrane. 

Role of AQPs in secretory 
granule swelling

In cell secretion process, role of secretory granule swelling has
been investigated. In beige mouse mast cells, membrane fusion
has been demonstrated to precede secretory granule swelling dur-
ing cell secretion by the studies with electrophysiological mem-
brane capacitance measurements [50, 51], which proved that
osmotic swelling is not required for fusion. It has been inferred
that secretory granule swelling is necessary to stabilize and widen
the fusion pore and is caused by movement small solutes through
the fusion pore into the granule matrix.

On the contrary, secretory granule swelling has been proposed
to be prerequisite for secretory granule fusion with plasma mem-
brane [52–56]. On the hypothesis, it has been considered that
swelling of secretory granules results in a build-up of pressure for
allowing expulsion of intragranular contents and the extent of
secretory granule swelling dictates the amount of intragranular
contents expelled during secretion.

In rat pancreas, AQP1 had been demonstrated to be localized
at zymogen granules, the membrane-bound secretory vesicles

Fig. 2 Cell secretion provoked by
isoproterenol in rat parotid acinar
cells. In sulforhodamine B (SRB)
fluorescence image, there was no
docked-granule profile before
stimulation (A). When the cells
were stimulated by isoproterenol
for 154 sec., docked-granule pro-
files appeared at apical region (B).
During stimulation with isopro-
terenol (122–182 sec.), a docked-
granule profile formed and subse-
quently disappeared as indicated
by an arrowhead (C).
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[21]. The amino and carboxyl domains of AQP1 have suggested
to localize at the luminal side of zymogen granule membrane,
because immunoreacted signal of AQP1 was detected by
immunoblot analysis when anti-AQP1 antibody to the carboxyl
terminus of AQP1 was introduced into to the zymogen granules
permeabilized by streptolysin-O, no immunoreacted signal was
detectable in the sample of intact zymogen granules pre-exposed
to the anti-AQP1 antibody, and immunogold-labelling was
observed at the inner side of membrane of streptolysin-O-per-
meabilized zymogen granules on the immunoelectron
microscopy using the anti-AQP1 antibody [21]. This topology is
curious, because the hydropathy analysis suggests that AQPs
have six putative helical domain, and the studies utilizing epitope
tagging, AQP-reporter chimeras, and site-specific antibodies
confirmed this fundamentally topological organization and indi-
cated that the amino and carboxyl termini are cytoplasmically
oriented [57].

The contribution of AQP1 to zymogen granule swelling was
studied [21]. Fusion of zymogen granules with plasma mem-
brane has previously been reported to be facilitated by activation
of the trimeric GTP-binding protein Gi�3 in zymogen granule
membrane by in vitro fusion assay [58, 59]. Subsequently, the
guanosine 5�-triphosphate (GTP)-binding proteins has been
shown to contribute to secretory granule swelling using atomic
force microscopy [37], which provides three-dimensional data
with the structure and dynamics of single biomolecule, living
cells and organelles including secretory granules [60]. These
observations suggest that zymogen granule swelling is an
important prerequisite for zymogen granule fusion with plasma
membrane. Cho et al. [21] have been demonstrated that the
GTP-mediated increase in granule volume and water entry into
granules determined using atomic force microscopy and tritiated
water, respectively, were inhibited by HgCl2, an inhibitor of AQP1
[2], or by insertion of anti-AQP1 antibody into the zymogen
granules. Therefore, it is most likely that AQP1 contributes to
zymogen granule fusion with plasma membrane and expulsion
of granule contents during secretion in pancreatic acinar cells. 

In synaptosomes and synaptic vesicles from rat brain, Kelly 
et al. [39] examined whether synaptic vesicle swelling is similarly
regulated to the zymogen granules in exocrine pancreas using
atomic force microscopy. Since size of synaptic vesicles increased
in the presence of GTP and the Go/Gi stimulator mastoparan, an
amphiphilic tetradecapeptide from wasp venom, synaptic vesicle
swelling via activation of heterotrimeric GTP-binding protein has
been demonstrated [39]. Subsequently, water channels, AQP1 and
AQP6, associated with synaptic vesicles isolated from rat brain
were detected [26]. Since Go� was also detected as the major het-
erotrimeric GTP-binding protein in synaptic vesicles, Jeremic et al.
[26] examined the role of AQPs in  synaptic vesicle swelling via the
activation of Go. The effects on synaptic vesicle size of Go protein
stimulators, GTP and mastoparan, were examined using various
approaches, such as photon-correlation spectroscopy, right-angle
light scattering and atomic force microscopy. Consequently,
swelling of synaptic vesicles rapidly occurred in response to GTP
and mastoparan. However, in the presence of the AQP inhibitor

HgCl2, the stimulatory effect of mastoparan on synaptic vesicle
swelling was significantly abrogated [26]. These observations
strongly suggest that synaptic vesicle swelling is caused by a Go-
regulated, AQP-mediated water entry in secretory vesicles and
involved in neurotransmitter expulsion, as suggested in pancreatic
zymogen granules.

In secretory granules isolated from the rat salivary parotid
gland, AQP5 has been demonstrated to localize on the membrane
of secretory granules by immunoblot analysis and immunoelectron
microscopy [22]. On the immunoelectron microscopy using anti-
AQP5 antibody to the carboxyl terminus of AQP5, the immunogold
particles were detected at the outside of secretory granule 
membrane. To study the function of AQP5 in the parotid secretory
granules, Matsuki et al. [22] utilized a quantitative in vitro assay
involving rapid osmotic swelling and end-point measurements of
granular osmotic lysis, which has been used for the investigation
of ion conductance in secretory granules [61]. In this assay sys-
tem, it has been demonstrated that anti-AQP5 antibody induces
secretory granule swelling and lysis in iso-osmotic KCl solution,
suggesting that inhibition of AQP5 function causes secretory
granule swelling and lysis. In secretory granules of the rat parotid
gland, expression of the heterotrimeric GTP-binding protein Gs�

and Gs�-regulated Cl– conductance have been reported [62, 63].
However, AQP5 regulation by GTP-binding proteins in the secretory
granule is still unknown.

Role of AQPs in ion permeation

On the basis of studies using atomic force microscopy in pancre-
atic acinar cells and isolated zymogen granules, Jena et al. [37]
proposed that K+ and Cl– channels in the granule membrane need
to induce granule swelling during secretion to prevent collapse of
zymogen granules. Ion fluxes through K+ and Cl– channels in the
granule membrane and osmotic swelling thus appear to contribute
to maintain granule integrity and morphology in secretory function.

When the molecular mechanism of swelling of pancreatic
zymogen granules was studied, detergent-solubilized zymogen
granules co-isolate the inwardly rectifying K+ channel IRK-8 and
the chloride channel CLC-2, in addition to other proteins such as
AQP1, Gi�3 and phospholipase A2 after immunoprecipitation
with a monoclonal AQP1 antibody [64]. Exposure of zymogen
granules to either the K+-channel blocker glyburide or the phos-
pholipase A2 inhibitor ONO-RS-082 blocked GTP-induced zymo-
gen granule swelling. In liposomes reconstituted with the AQP1
immunoisolated complex from solubilized zymogen granules,
swelling in response to GTP occurred, but the GTP effect was
abolished by glyburide or ONO-RS-082. In the planar lipid mem-
branes reconstituted with the immunoisolate complex, conduc-
tance corresponding to the passage of K+ was decreased by gly-
buride or an anti-AQP1 antibody. These observations suggest
that Gi�3-phospholipase A2 -mediated pathway and K+ channels
are involved in AQP1 regulation [64]. It has been reported that
AQP1 expressed in Xenopus oocytes conducted cations [65] and
the water permeability function was inhibited by the K+ channel
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blocker, tetraethyl ammonium [66]. When AQP1 purified from
Saccharomyces was reconstituted into planar lipid bilayers,
cyclic GMP-induced ion conductance was detected, although the
ion channel number was exceedingly low [67]. The amount of
similarity between K+ channels and AQP1 has been demonstrated
[68]. These observations imply that AQP1 is involved in K+ flux
in zymogen granules directly or indirectly, although crystallogra-
phy studies have been demonstrated that AQP1 is a water-spe-
cific channel [6]. 

Matsuki et al. [22] have also demonstrated that the anti-AQP5
antibody-induced granule lysis is inhibited in the absence of Cl–

or in the presence of 4,4-diisothiocyanostilbene-2,2’-disulfonic
acid, an anion channel blocker in the reaction mixture. There is
no evidence that AQP5 acts as ion channels in the AQP5-
expressing oocytes [65, 69]. The presence of Cl– conductance in
the secretory granule membrane of the rat parotid gland has
been demonstrated [48, 70]. In airway secretory glands, the
expression of cystic fibrosis transmembrane conductance regu-
lator (CFTR), a cAMP-activated Cl– channel, has been reported
[71], and CFTR has been suggested to be related to the ion con-
tent in the secretory granules and granule expansion [72]. As a
consequence, we hypothesize that a balance of water permeation
via AQP5 and Cl– conductance is necessary for secretory gran-
ule volume regulation. Currently, the hypothesis that AQPs func-
tion as osmotic and turgor sensors rather than water channels,
the sensor hypothesis, has been advocated [73, 74]. Therefore,
AQP5 appears to act as an osmotic sensor in the secretory gran-
ules of the parotid gland, although further studies with precise
mechanisms of the relationship between AQP5 and the Cl– chan-
nels are necessary. 

Fig. 3. Localization of AQP6 in rat parotid secretory granule membrane.
Protein expression of AQP6 in parotid secretory granule membrane
(granule) was detected by western blotting using anti-AQP6 antibody. In
granule membrane, 33 kDa band of AQP6 was detected. Kidney medul-
lae epithelial cells (kidney) were used as a positive control.

Fig. 4. Localization of AQP6 in rat parotid secretory granules.
Immunoelectron microscopy in ultrathin cryosection was carried out.
Anti-AQP6 antibody was labelled with 10 nm colloidal gold-conjugated
secondary antibody. (A) Colloidal gold particles were observed in
parotid secretory granules as indicated (solid arrowheads) and in other
spots (open arrowheads). (B) Colloidal gold particles were observed
both in outer and inner leaflets of secretory granule membrane. SG,
secretory granule; Lum, lumen; Mv, microvilli; ICS, intercellular canali-
culi. Bar, 0.5 µm.
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The function of most AQPs is well known to be inhibited by
mercurial agents which bind the sulfhydryl (SH) group of cys-
teines. In AQP5, a cysteine at residue 182 in loop E, a hydropho-
bic loop (Fig. 1), is considered to be a mercury-sensitive domain
[75], and corresponds to the known mercurial-inhibitory site [76].
Therefore, we examined the effect of HgCl2 on lysis of secretory
granule in the parotid gland. Interestingly, HgCl2 clearly induced
parotid secretory granule lysis [77]. The HgCl2-induced granule
lysis was also completely blocked in the presence of ß-mercap-
toethanol, a protective agent for SH groups, which has been
demonstrated to restrain the effect of HgCl2 on AQP5 [78]. These
observations were thought to support the view that the inhibition
of AQP5 function causes secretory granule lysis. 

However, it has been demonstrated that AQP6 function is acti-
vated by HgCl2 [79, 80]. AQP6 genes have been identified in rat
and human kidneys with high homologies to AQP0 and AQP2 [81,
82]. Subsequently, AQP6 has been found to be localized in inter-
cellular sites of acid-secreting �-intercalated cells from renal-col-
lecting duct [27]. It has been considered that AQP6 functions not
as a water channel but as an anion channel, because permeation
by anions in response to acidic pH or Hg2+ activation in Xenopus
Laevis oocytes expressing AQP6 was found [79] and Hg2+-activated
ion conductance was verified by single-channel recordings of the
oocytes [83]. In Xenopus Laevis oocytes expressing AQP6, Hg2+

has also been demonstrated to stimulate transport of glycerol and
urea [80]. Currently, we found the presence of AQP6 associated
with secretory granule membranes in the rat parotid acinar cells
[84]. In the granule membrane isolated from the purified secretory
granules, anti-AQP6 antibody specifically recognized 33 kDa band
by western blotting, indicating the presence of AQP6 in secretory
granule membrane of rat parotid acinar cells, as Figure 3 shows.
To confirm the presence of AQP6 in parotid secretory granules,
immunoelectron microscopy in ultrathin cryosection was carried
out (Fig. 4). Close observation of immunogold labelling of secre-
tory granules demonstartrates gold labelling both the inner as well
as outer leaflet of the granule membrane. In HEK239 cells, when a
green fluorescence protein (GFP) tag was added to the N-terminus
of AQP6, GFP-AQP6 was redirected to the plasma membranes
[85]. In HEK239 cells expressing GFP-tagged AQP6, AQP6 has
also been demonstrated to function as an anion channel with the
halide permeability sequence: NO3

– > I– >> Br– > Cl– >> F– [85],
strongly supporting that AQP6 functions as anion channel in
mammalian cells. Therefore, it is most likely that AQP6 functions
as a Cl– channel and contributes to regulation of osmoregulation

in secretory granules of the parotid gland, although further studies
need to elucidate AQP6 function in secretory granule. In synaptic
vesicles, HgCl2 inhibited the GTP-induced vesicle swelling, despite
of the presence of AQP6 [26]. Therefore, role of AQP6 in the
synaptic vesicle swelling is unknown.

Conclusions

Secretion of macromolecules in exocrine and endocrine cells
occurs through docking and fusion of secretory granule membrane
at porosome in plasma membrane and the subsequent discharge
of secretory granule contents [32–36]. It has been suggested that
secretory granule swelling is involved in the exocytotic process. A
specific set of ion channels in secretory granule membrane has
been proposed to contribute to the secretory granule swelling [21,
26, 37–39]. AQPs in secretory granules membrane have to be
demonstrated to be concerned in the granule swelling and may
contribute to release of contents in secretory granules, which could
provide a new information with AQP functions. In pancreatic zymo-
gen granules, functional relationship between AQP1 and K+ chan-
nel has been demonstrated [64]. In parotid secretory granules, the
presence of AQP5 and AQP6, which are water-selective and Cl–-
permeable channels, respectively, has been demonstrated [22, 84].
Therefore, the relationship between water channels and ion chan-
nels has to be elucidated. To elucidate the function of AQPs in
secretory granules, specific, non-toxic AQP inhibitors and specific
AQP antibodies will be useful.

Cell secretion can be greatly accelerated following an appropri-
ate cellular signal, which is called ‘regulatory secretion’.
Regulatory secretion is dependent on intracellular Ca2+ or other
intracellular signals. AQP4 function has been reported to be regu-
lated by protein kinase C [86]. Studies with such a regulation on
AQPs in secretory granules may be important to elucidate the
functions. 
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