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Abstract

Methylphenidate (MPH) is commonly prescribed in childhood and adolescence for the treatment 

of attention–deficit/hyperactivity disorders. In rodents, MPH exposure during preadolescence 

(postnatal days [PD] 20–35) causes decreased sensitivity to drug and natural rewards, while 

enhancing a negative emotional state characterized by increased sensitivity to aversive situations 

later in adulthood. It has been proposed that this behavioral profile may be mediated, at least in 

part, by changes in the expression of dynorphin, the endogenous ligand for κ-opioid receptors 

(KOR). Because increases in dynorphin activity and activation of KOR induce aversive states, we 

examined the possibility that these behavioral deficits may be mediated by changes in KOR 

function, and that MPH-exposed rats would demonstrate increased sensitivity to the κ-agonist 

U-50,488. Sprague-Dawley male rats were treated with MPH (2 mg/kg) or its saline vehicle 

(VEH) during PD20-35. When adults (PD90+), these rats were divided into groups receiving 

saline, U-50,488 (5 mg/kg), or nor-Binaltorphimine (20 mg/kg), a κ-antagonist, and their 

behavioral reactivity to various emotion-eliciting stimuli was assessed. Results show that MPH 

exposure decreases cocaine place conditioning and sucrose preference, while increasing 

vulnerability to anxiety (elevated plus-maze)- and stress (forced swimming)-eliciting situations, 

and that these behavioral deficits can be intensified by U-50,488, while being normalized by nor-

Binaltorphimine treatment. These results are consistent with the notion that dysregulated 

dynorphin/κ-opioid systems may mediate deficits in behavioral responding after developmental 

MPH exposure. Moreover, these findings further support the idea of κ-antagonists as potential 

pharmacotherapy for the treatment of anxiety- and depression-related disorders.
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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is commonly diagnosed during childhood, 

affecting around 8% of school-aged children worldwide (Biederman and Faraone, 2004). 

Psychostimulant medications are effective for the treatment of ADHD, and methylphenidate 

(MPH; Ritalin) is one of the most prescribed therapeutic agents (Arnsten, 2006; Zito et al., 

2000). Despite its well-documented efficacy in the control of ADHD-related symptoms 

(Biederman and Faraone, 2005), little is known about the long-term consequences resulting 

from early-life exposure to MPH (Carlezon and Konradi, 2004; Vitiello, 2001).

Similar to the neurobiological actions of cocaine and amphetamine (Koob et al., 1998), 

MPH increases dopamine in brain reward-related regions, namely the ventral tegmental area 

(VTA) and the nucleus accumbens (NAc) (Federici et al., 2005), enhances locomotor 

activity (Askenasy et al., 2007), and regulates sensitivity to abused drugs (Crawford et al., 

2007; Wooters et al., 2008). Because prolonged exposure to stimulants results in long-

lasting neural adaptations that consequently increase vulnerability to compulsive drug use, 

stress, and related disorders (Nestler and Carlezon, 2006; Volkow, 2004), research has 

began to focus on assessing the long-term consequences of developmental exposure to 

MPH.

Recent studies show that exposing rats to MPH during postnatal days (PD) 20–35, a period 

approximating preadolescence (i.e., ages 4–12 years) in humans (Andersen and Navalta, 

2004; Spear, 2007), results in decreased sensitivity to cocaine and morphine in adulthood 

(Andersen et al., 2002; Bolaños et al., 2008). Interestingly, these rats also show increased 

stress reactivity when confronting adverse situations, and reduced responsivity to various 

rewards (Bolaños et al., 2003; Mague et al., 2005). The mechanism(s) underlying these 

effects are unknown. However, it has been proposed that these MPH-induced effects may be 

partly mediated by increases in dynorphin (Carlezon and Konradi, 2004), the endogenous 

ligand for κ-opioid receptors [KOR] (Chavkin et al., 1982; Corbett et al., 1982).

Similar to other psychostimulants, MPH also increases dynorphin within the NAc in young 

rats (Yano and Steiner, 2005). There is extensive evidence demonstrating that increased 

dynorphin and its subsequent KOR stimulation causes aversive and depression-like states 

(Carlezon et al., 2006; Land et al., 2008; Shippenberg and Herz, 1986), while KOR 

antagonism induces antidepressant-like effects (Mague et al., 2003; Zhang et al., 2007). 

Given the degree of prescribed use of MPH and the potential for treating individuals not 

meeting the criteria for this disorder (Rey and Sawyer, 2003), it is essential to characterize 

the long-term consequences associated with developmental stimulant exposure. 

Accordingly, these studies were designed to assess whether the MPH-induced behavioral 

effects are regulated by subsequent KOR stimulation in adulthood. We hypothesized that 

MPH exposure would result in increased sensitivity to U-50,488, a κ-agonist, whereas 

treatment with the long-acting κ-antagonist nor-Binaltorphimine (Horan et al., 1992; Jewett 

and Woods, 1995) would normalize MPH-induced behavioral deficits.
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MATERIALS AND METHODS

Animals

Litters containing Sprague-Dawley male rat pups with their dams were obtained from 

Charles River Laboratories (Raleigh, NC) at PD14. Rats were housed in clear polypropyline 

boxes containing wood shavings in an animal colony maintained at 23–25°C on a 12 h light/

dark cycle in which lights were on between 07:00 and 19:00 h.

Drugs

Methylphenidate hydrochloride (MPH), cocaine hydrochloride (COC), (±)-trans-U-50,488 

methanesulfonate (U50), and nor-Binaltorphimine (nor-BNI), were obtained from Sigma 

(St. Louis, Missouri). Each drug was dissolved in .9% saline (VEH) and administered in a 

volume of 1mL/kg. Doses are based on the salt form of each drug.

Drug Treatments

MPH (2 mg/kg) or VEH intraperitoneal (i.p.) injections were given between PD20–35 twice 

daily (4 h apart). From PD20–23, MPH- and VEH-treated rats were kept together in the 

same cage with their dams. At PD24 (weaning), rats were separated by treatment condition 

into groups of 4-per-cage. At PD45, rats were further separated into groups of 2-per-cage, 

and were left undisturbed until adulthood (i.e., 8 weeks after the last injection), when they 

were divided into subgroups receiving a subcutaneous (s.c.) injection of U50 (0 or 5 mg/kg), 

or nor-BNI (0 or 20 mg/kg). Behavioral testing started 15 min after U50, and 24 h after the 

nor-BNI injection. The dose of MPH approximates clinically relevant doses in pediatric 

patient population (Gualtieri et al., 1982; Kuczenski and Segal, 2005), while the dose of nor-

BNI (20 mg/kg) was chosen based on published reports demonstrating that this dose is 

selective for KORs (Endoh et al., 1992; Takemori et al., 1988). Because κ-agonists can 

induce aversive states (Shippenberg et al., 2007), we used separate groups of control (i.e., no 

developmental treatment) rats (275–325 g) to determine the dose of U50 that would prevent 

COC-induced place conditioning without inducing place avoidance (see Supplement 1). 

Except for place conditioning and sucrose preference, behaviors were recorded with a video 

camera located on the ceiling of separate testing rooms. Behavioral observations and 

analyses were done by observers with no knowledge of the treatment conditions of each rat. 

Rats were provided with food and water ad libitum. Experiments were conducted in 

compliance with the Guidelines for the Care and Use of Laboratory Animals (National 

Institute of Health, 1996), and approved by Florida State University animal care and use 

committee.

Place Conditioning

Experiment 1—Adult rats pretreated with MPH or VEH during preadolescence were used 

to assess place conditioning to COC in a three-compartment apparatus (Bolaños et al., 

2008). Compartments differed in floor texture, wall coloring, and light intensity. On the 

preconditioning day (day 0), rats were allowed to freely explore the apparatus for 20 min to 

obtain baseline preference to any of the three compartments (side compartments: 35 × 27 × 

25 cm; middle compartment: 10 × 27 × 25 cm, l × w × h). Only rats showing no spontaneous 
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preference to either compartment were used (unbiased procedure); this accounted for more 

than 90% of all of the rats tested. Conditioning trials were given on two consecutive days 

(day 1 and 2). During these trials, rats received saline (SAL) and were confined to one of the 

large size compartments of the apparatus for 30 min. After 4 h, rats received COC (0, 5, 10, 

or 20 mg/kg, i.p.), and were immediately confined to the opposite side compartment for 30 

min. On the final day (day 3; test day), rats received an injection of SAL and were again 

allowed to freely explore the apparatus for 30 min. Time spent in the drug-paired 

compartment(s) was assessed during this 30 min period.

Experiment 2—We determined the dose of U50 that would prevent cocaine-induced place 

conditioning without inducing place avoidance in naïve (i.e., no developmental treatment) 

adult rats. This experiment was performed as described above, with the exception that rats 

were divided into groups receiving a) U50 (0, 2.5, 5, or 10 mg/kg) 15 min before receiving 

SAL, or b) U50 (0, 2.5, 5, or 10 mg/kg) 15 min before COC (0 or 10 mg/kg), and were 

confined to one of the side compartments of the apparatus for 30 min.

Experiment 3—Results from experiment 2 demonstrated that 5 mg/kg U50 attenuated 

COC-induced place conditioning without inducing place avoidance. Thus, adult VEH- and 

MPH-pretreated adult rats were used to assess the effects of U50 (5 mg/kg) or nor-BNI (20 

mg/kg) on COC-induced (10 mg/kg) place conditioning. VEH-and MPH-pretreated rats 

were divided into groups receiving SAL/SAL, SAL/COC, U50/SAL, U50/COC, nor-BNI/

SAL, nor-BNI/U50, or nor-BNI/COC. U50 was administered 15 min prior COC, while nor-

BNI was administered 24 h before the start of the experiment.

Sucrose Preference

This test consisted of a two bottle choice paradigm in which rats are given the choice 

between consuming water versus sucrose (dissolved in water). This paradigm has been used 

extensively to assess the effects of stress-induced anhedonia (Sampson et al., 1992). Rats 

were habituated to drink water from two bottles for 5 days. At the start of the experiment 

(day 6), rats were exposed to ascending concentrations of sucrose (0, 0.25, 0.5, and 1%) for 

2 days per concentration (Bolaños et al., 2003). Water and sucrose consumption were 

measured at 08:00 and 17:00 hr each day, at which time the position of the sucrose bottle 

(left or right) was switched. For the experiments involving the KOR drugs, separate groups 

of VEH- and MPH-pretreated rats were habituated as described. Rats received nor-BNI (0 or 

20 mg/kg) 24 h before the start of the experiment. The water bottles were removed 2 h 

(17:00 hr) before the beginning of the dark phase and rats were left with access to food. Rats 

then received U50 (0 or 5 mg/kg) or SAL 15 min before the start of the dark phase (19:00 

hr) at which time were given access to sucrose (0.5%) or water for 2 h. Testing duration was 

chosen based on previous reports assessing the acute effects of U50 on sucrose intake 

(Badiani et al., 2001; Ruegg et al., 1997). The position of the water and sucrose bottles (left 

or right) was switched every 30 min for the duration of the procedure. After the 2 h test, rats 

were left undisturbed and their overnight fluid consumption was measured the next morning 

(08:00 hr). The preference for sucrose over water was used as a measure for rats’ sensitivity 

to reward.

Wiley et al. Page 4

Neuropsychopharmacology. Author manuscript; available in PMC 2009 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Elevated Plus-Maze (EPM)

VEH- and VEH-pretreated rats were tested for 5 min on the EPM, a behavioral model of 

anxiety-like behavior. The maze was made of gray plastic and consisted of two 

perpendicular, intersecting runways (12 cm wide × 100 cm long). One runway had tall walls 

(40 cm high) or “closed arms,” while the other one had no walls or “open arms.” The arms 

were connected together by a central area, and the maze was elevated 1 m from the floor. 

Testing was conducted between 09:00 and 13:00 hr under controlled light conditions (~90 

lux). At the beginning of the test, rats were placed in the central area, facing one of the open 

arms, and total time spent in the open arms was videotaped. We also assessed self-grooming 

in the “closed arms” because rats engage in repetitive grooming in response to anxiogenic 

stimuli (Spruijt et al., 1988). Separate groups of VEH- and MPH-pretreated rats received 

nor-BNI (20 mg/kg) 24 h, or U50 (5 mg/kg) 15 min prior the start of the experiment.

Forced Swimming

The forced swim test (FST) is a two-day procedure in which rats are forced to swim under 

inescapable conditions. On day 1, rats are forced to swim for 15 min. Initially, they engage 

in escape-like behaviors, but eventually adopt a posture of immobility, making only the 

movements necessary to maintain their head above water. When retested 24 h later, rats 

become immobile more quickly (Lucki, 1997); however, antidepressant treatment between 

forced swim exposures can significantly increase their escape-like behaviors, an effect that 

has been correlated with antidepressant activity in humans (Cryan et al., 2002). Rats were 

placed in plastic cylinders (30 × 75 cm) filled to 54 cm depth with 25°C water and forced to 

swim for 15 min. At the end of this period, rats were removed from the water, dried with 

towels and kept in a warm enclosure for 30 min, and received nor-BNI (20 mg/kg) or SAL. 

Cylinders were emptied and cleaned between rats. Twenty-four hours after the forced swim 

rats were retested 15 min after receiving SAL or U50 (5 mg/kg), for 5 min under identical 

conditions, and sessions were videotaped. Latency to become immobile, total immobility 

time, and swimming counts were the dependent variables. Swimming counts were rated at 5 

s intervals during the 5 min retest. Latency to immobility was defined as the time at which 

the rat first initiated a stationary posture that did not reflect attempts to escape from the 

water (Lucki, 1997). To qualify as immobility, this posture had to be clearly visible and 

maintained for ≥2.0 s.

Locomotor Activity

VEH- and MPH-pretreated rats were also tested to examine the effects of U50 (5 mg/kg) on 

locomotor activity as indexed by distance traveled (cm) in an open field apparatus (63 × 63 

× 26 cm) for 2 h. In addition, distance traveled was assessed in separate VEH- and MPH-

pretreated groups 24 h after the first exposure to forced swimming.

Statistical Analysis

Statistical significance was measured using mixed-design (between and within variables) 

analysis of variance (ANOVAs) followed by Tukey post-hoc test. VEH and MPH exposure 

was considered the pretreatment, while subsequent SAL, COC, and the KOR drug exposure 

(U50 and nor-BNI) the post-treatment variable(s). When appropriate, student’s t-test was 
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used to determine statistical significance of preplanned comparisons. Data are expressed as 

the mean ± SEM. Statistical significance was defined as P< 0.05.

Results

Effects of MPH Exposure on Cocaine-induced Place Conditioning in Adulthood

No conditioning effects were observed in VEH (n= 32)- or MPH (n= 35)-pretreated rats 

conditioned with SAL (Fig. 1). Time spent in the COC-paired compartments varied as a 

function of pretreatment and post-treatment (interaction: F(3,59)= 9.298; p= 0.0001). VEH-

pretreated spent significantly more time in COC-paired environments [10 (p< 0.05), 20 (p< 

0.05), mg/kg], whereas MPH-pretreated rats did not develop place conditioning to COC (p> 

0.05). In fact, exposure to 10 mg/kg COC induced place avoidance in MPH-pretreated rats.

Effects of U-50,488 on Place Conditioning in Treatment Naïve Adult Rats

Figure 2 shows the effects of U50/SAL (left panel; n= 32), and U50/COC on place 

conditioning (right panel; n= 32). Time spent in the compartments varied as a function of 

drug exposure (U50 × COC interaction: F(3,56)= 2.98; p= 0.03). Rats receiving U50/SAL (0, 

2.5 and 5 mg/kg) did not show place conditioning (p> 0.05), whereas those treated with U50 

(10 mg/kg) developed place avoidance (p< 0.05). The right panel shows that rats receiving 

SAL/COC (10 mg/kg) developed place conditioning (p< 0.05). A low dose of U50 (2.5 

mg/kg) did not block, whereas a moderate dose (5 mg/kg) attenuated COC-induced place 

conditioning (p< 0.05).

Effects of U-50,488 and nor-BNI on Cocaine-induced Place Conditioning in MPH-treated 
Rats in Adulthood

Results from experiment 2 revealed that 5 mg/kg U50 blocked COC-induced place 

conditioning without inducing place avoidance. Thus, we assessed the effects of U50 (5 mg/

kg), and nor-BNI (20 mg/kg), on COC (10 mg/kg)-induced place conditioning in VEH- and 

MPH-pretreated rats (n= 119; 8–11 per condition). A three-way ANOVA indicated that 

place conditioning varied as a function of developmental pretreatment, KOR, and COC post-

treatment (interactions: F(2,105)= 3.21; p= 0.04). For instance, VEH-pretreated spent 

significantly more time in the COC-paired environments (p< 0.05), whereas the MPH-

pretreated rats consistently avoided them (p< 0.05). Additionally, VEH-pretreated rats show 

no preference or avoidance for the U50-paired environments (p> 0.05). Furthermore, U50 

significantly attenuated COC-induced place conditioning in this group (p< 0.05). On the 

contrary, MPH-pretreated rats avoided COC-paired environments (p< 0.05: vs. the VEH-

pretreated rats in the SAL/COC condition), and showed place avoidance to U50 (p< 0.05: 

vs. the VEH-pretreated rats in the U50/SAL condition). MPH-pretreated rats receiving 

U50/COC demonstrated a greater magnitude of place avoidance than those receiving 

SAL/COC (p< 0.05), or the VEH-pretreated rats receiving U50/COC (p< 0.05). Exposure to 

20 mg/kg nor-BNI reversed the effects of MPH on COC-induced place conditioning, as time 

spent in the COC-paired compartments did not differ from the VEH-pretreated rats (p> 

0.05). Moreover, and in line with KOR blockade, U50 did not induce place conditioning or 

avoidance in the VEH- or MPH-pretreated rats receiving nor-BNI (p> 0.05).
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Effects of MPH and Subsequent U-50,488 and nor-BNI Exposure on Sucrose Preference in 
Adulthood

A mixed design, containing between (i.e., developmental pretreatment) and within (i.e., total 

liquid intake across days) variables repeated measures ANOVA indicated that MPH-

pretreatment did not affect the rats’ total fluid intake (water+sucrose; Fig. 4B) at any of the 

sucrose concentrations tested. Sucrose preference varied as a function of pretreatment and 

sucrose concentration (interaction: F(5,190)= 6.11; p= 0.001). Based on previous 

observations (Bolaños et al., 2003), we hypothesized that MPH-pretreatment would result in 

decreased sucrose preference when compared to VEH-pretreated rats (preplanned 

comparison). Unpaired t-tests demonstrated that MPH pretreatment (n= 20) decreased 

preference for a 0.25 (t(38)= 2.79; p< 0.05), and 0.5% (t(38)= 3.27; p< 0.05) sucrose solution 

when compared to the VEH-pretreated rats (n= 20; Fig. 4A). Differences in sucrose 

preference between groups were not present at the 1% concentration.

We assessed the effects of U50 and nor-BNI on sucrose preference in VEH (n= 30)- and 

MPH (n= 36)-pretreated rats using the sucrose test modifications (i.e., 2 h access to the 

solution) as previously described (Fig. 4C). A three-way ANOVA revealed that sucrose 

preference varied as a function of pretreatment (main effect: F(1,60)= 19.45; p= 0.0001) and 

post-treatment (main effect: F(2,60)= 30.03; p= 0.0001). As expected, MPH-pretreated rats 

(n= 12) showed a decrease in sucrose preference (t(20)= 3.3; p< 0.05) as compared to the 

VEH-pretreated (n= 12). U50 (5 mg/kg) significantly decreased sucrose preference in MPH-

pretreated rats (t(19)= 2.67; p< 0.05), while having a tendency to also decrease sucrose 

preference in the VEH-pretreated group (p= 0.07: vs. VEH/SAL). However, nor-BNI (20 

mg/kg) reversed the effects of MPH on sucrose preference. Because there was a non-

statistically significant tendency for U50 to decrease total fluid intake in VEH- and MPH-

pretreated rats (data not shown), we also assessed sucrose preference overnight. Figure 4D 

shows that sucrose preference varied as a function of pretreatment and KOR post-treatment 

(interaction: F(2,66)= 7.12; p= 0.002). The MPH/U50 group had a significant decrease in 

sucrose preference (p< 0.05: vs. VEH/U50), but this decrease was not different from the 

MPH/SAL condition (p> 0.05). Sucrose preference in the VEH/nor-BNI group was not 

different from the VEH/SAL condition (p> 0.05); however, nor-BNI reversed the effects of 

MPH on sucrose preference.

Effects of U-50,488 and nor-BNI on MPH-induced Anxiety-like Behaviors in the EPM

We assessed the effects of MPH, and subsequent U50 or nor-BNI treatment, on anxiety-like 

behavior using the EPM (Fig. 5A–C). A three-way ANOVA indicated that time spent in the 

open arms of the EPM was differentially affected by pretreatment (main effect: F(1,50)= 

43.21; p= 0.0001) and post-treatment (main effect: F(2,50)= 29.98; p= 0.0001). Based on 

previous observations (Bolaños et al., 2003), we hypothesized that MPH-pretreated rats 

would spend less time in the open arms of the EPM when compared to VEH-pretreated rats 

(preplanned comparison). Unpaired t-tests demonstrated that MPH-pretreated rats (n= 10; 

Fig. 5A) spent less time in the open arms than the VEH-pretreated (n= 10) rats (t(18)= 5.3; p< 

0.05). Further analysis indicated that U50 decreased (t(16)= 2.54; p< 0.05) time spent in the 

open arms by VEH- (n= 8) and MPH-pretreated (n= 10) rats; whereas nor-BNI increased 

(t(16)= 3.72; p< 0.05) the time spent in the open arms by VEH- (n= 8) and MPH-pretreated 

Wiley et al. Page 7

Neuropsychopharmacology. Author manuscript; available in PMC 2009 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(n= 10) rats. Although nor-BNI increased time in the open arms in both groups, MPH-

pretreated rats spent less time than the VEH-pretreated rats (p< 0.05) in the open arms. 

However, time spent in the open arms by rats in the MPH/nor-BNI condition was higher 

than that observed in the MPH/SAL group (p< 0.05; Fig. 5A). A separate three-way 

ANOVA revealed that entries into the open arms also varied as a function of pretreatment 

(main effect: F(2,50)= 13.26; p= 0.0006) and post-treatment (main effect: F(2,50)= 14.61; p= 

0.0001). The VEH-pretreated had higher entries into the open arms than the MPH-pretreated 

rats (t(18)= 2.55; p< 0.05; Fig. 5B). U50 did not affect the VEH-pretreated, but did induce a 

trend towards a decrease in open arm entries in the MPH-pretreated rats as compared to the 

MPH/SAL condition (p= 0.07). Nor-BNI significantly increased entries into open arms by 

both VEH- and MPH-pretreated rats (p< 0.05). Self-grooming behavior varied as a function 

of pretreatment and post-treatment (interaction: F(2,50)= 7.15; p= 0.002). The MPH-

pretreated rats had higher self-grooming counts than VEH-pretreated rats (p< 0.05; Fig. 5C). 

There was a tendency towards an increase in self-grooming in VEH-pretreated (p= 0.07), 

while self-grooming in the MPH-pretreated rats was significantly decreased by U50 (p< 

0.05: vs. MPH/SAL). Nor-BNI decreased self-grooming in the VEH- and MPH-pretreated 

rats.

Effects of U-50,488 and nor-BNI on MPH-induced Effects on Forced Swimming Behavior

We used the FST to study rats’ responses to stressful conditions (Fig. 6A–F). MPH-

pretreated (n= 10) had shorter latency to immobility on day 2 of the FST (F(1,16)= 5.6; p= 

0.03) than the VEH-pretreated (n= 8) rats (Fig. 6A). MPH-pretreated had higher levels of 

total immobility (F(1,16)= 6.7; p= 0.01), and lower swimming counts (F(1,16)= 5.8; p= 0.02), 

than the VEH-pretreated rats (Fig. B–C). The effects of the κ-drugs on latency to immobility 

varied as a function of pretreatment and post-treatment (interaction: F(1,40)= 4.1; p= 0.049; 

Fig. 6A). U50 did not affect VEH-pretreated rats’ latency to immobility, total immobility, or 

swimming counts (n= 20 Fig. 6A–C), although there was a tendency for U50 to decrease 

swimming counts. However, rats in the MPH/U50 condition (n= 24) showed shorter 

latencies to immobility (p< 0.05), higher levels of total immobility (p< 0.05), and decreased 

swimming counts (p< 0.05) than the VEH/U50 group. U50 treatment resulted in even 

shorter latency to immobility when compared to the MPH/SAL condition (p< 0.05). 

However, U50 did not affect total immobility or swimming counts when comparing the 

MPH-pretreated groups (p> 0.05). Rats in the MPH/nor-BNI condition did not show 

differences in latency to immobility, total immobility or swimming counts when compared 

to the VEH/nor-BNI condition (Fig. 6A–C). As can be seen in Figure 6D–F, the 

antidepressant effects of nor-BNI were still apparent 4-weeks after exposure to the κ-

antagonist. Together, these findings indicate that κ-antagonist treatment can normalize the 

MPH-induced behavioral deficits.

Effects of U-50,488 on Locomotor Activity in VEH- and MPH-treated Rats in Adulthood

MPH-pretreated had less spontaneous ambulatory counts in response to a novel environment 

(i.e. the open field) during the first 10 min of the session than the VEH-pretreated rats (t20= 

−5.3; p= 0.04; n= 22). However, an acute injection of U50 (5 mg/kg) did not affect 

locomotor activity in either of the groups (Fig. 7A).
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Because MPH-pretreated rats showed lower levels of locomotion for the first 10 min in the 

open field (Fig. 7A), it is conceivable that the effects observed in the FST might be due to 

locomotor impairment in these rats. Thus, we had additional control groups in which VEH 

(n= 6)- and MPH (n= 6)-pretreated rats were exposed to the FST only on day 1. The 

following day, rats were placed in the open field for 1 h, instead. No changes in locomotor 

activity were evident in VEH- or MPH-pretreated rats (Fig. 7B).

Discussion

The present findings further show that early-life MPH exposure results in decreased 

responsiveness to rewarding stimuli while enhancing an emotional state characterized by 

increased sensitivity to aversive situations. These results also demonstrate that these MPH-

induced deficits can be intensified, under certain conditions, by subsequent exposure to 

U50-488, or normalized by nor-BNI. MPH-pretreated rats did not consistently approach 

environments associated with doses of cocaine that readily induced place preference in the 

VEH-pretreated rats, and showed attenuated preference for sucrose (Andersen et al., 2002; 

Bolaños et al., 2003; Carlezon et al., 2003). Cocaine has both rewarding and aversive 

properties, and it is possible that the place avoidance observed in the MPH-pretreated rats is 

caused by a decrement in cocaine’s rewarding effects (i.e., tolerance to the rewarding effects 

of the drug), which, in turn, unmasks other aversive effects of cocaine (Ettenberg, 2004). 

Alternatively, it is conceivable that MPH-pretreated rats are more sensitive to cocaine, and 

that intermediate doses (i.e., greater than 5 and lower than 10 mg/kg) could have induced 

place conditioning. Nevertheless, these findings are analogous with demonstrations that 

molecular manipulations that reduce the rewarding effects of cocaine often lead to cocaine-

induced place aversions (Carlezon et al., 1998; Iñiguez et al., 2008; Olson et al., 2005). The 

decrease in sucrose preference is likely due to MPH’s ability to alter responsiveness to the 

rewarding effects of the solution, because the total liquid intake during testing did not differ 

between treatment groups (Fig. 4B). These results are consistent with demonstrations that 

developmental exposure to MPH leads to long-lasting neuroadaptations that result in 

diminished sensitivity to the rewarding effects of cocaine and morphine, and decreased 

motivation for natural rewards (Andersen et al., 2002; Bolaños et al., 2003, 2008; Mague et 

al., 2005).

MPH-pretreated rats appeared more sensitive to KOR activation as they reliably avoided 

environments paired with a dose of U-50,488 (5 mg/kg) that did not induce place avoidance 

in VEH-pretreated rats. In addition, exposure to U-50,488 attenuated cocaine place 

conditioning in VEH-pretreated rats (Crawford et al., 1995), while intensifying the MPH-

induced avoidance for cocaine-paired environments, and their deficits in sucrose preference. 

It must be noted, however, that U-50,488 also had a tendency to negatively influence 

sucrose preference in VEH-pretreated rats. The mechanism(s) underlying these effects are 

unknown. Rewarding stimuli increase dopamine in the VTA-NAc reward pathway, while 

attenuated dopamine transmission is associated with negative emotional states characterized 

by increased sensitivity to adverse situations (Nestler and Carlezon, 2006). Stimulation of 

KORs decreases the firing activity of dopamine neurons and inhibits dopamine release 

within the NAc (Di Chiara and Imperato, 1988; Manzanares et al., 1991). κ-agonists do not 

induce reward, are not self-administered (Kuzmin et al., 1997) and, at high doses, induce 
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aversive states (Land et al., 2008; Mucha and Herz, 1985). Thus, under normal conditions, 

U-50,488 would attenuate cocaine and sucrose reward by stimulating KORs located in 

dopamine terminals within the NAc, thereby inhibiting dopamine release from these 

terminals (Di Chiara and Imperato, 1988; Spanagel et al., 1992). Accordingly, the enhanced 

behavioral reactivity observed in the MPH-pretreated rats could be indicative of heightened 

sensitivity of dynorphin/KOR systems because these rats showed robust place avoidance in 

response to a dose of U-50,488 that had no significant behavioral effects in VEH-pretreated 

rats.

Decreased sensitivity to rewarding stimuli can be interpreted as a sign of anhedonia 

(inability to experience pleasure, a core symptom in human depression) in animal models 

(Nestler and Carlezon, 2006). These findings show that the MPH-induced deficits in cocaine 

and sucrose reward can be restored to normal levels by nor-BNI. Similar to the effects of 

some antidepressant drugs, nor-BNI increases dopamine transmission in the NAc and 

striatum (Maisonneuve et al., 1994; Shippenberg et al., 2007; You et al., 1999); therefore, 

given that depression and its deficits in appetitive motivation (anhedonia) are linked to 

impaired functioning of dopamine systems (Nestler and Carlezon, 2006), it is possible that 

nor-BNI enhances dopamine transmission in reward-related brain areas to reverse 

depression-like behaviors after developmental MPH exposure.

MPH also rendered rats more vulnerable to adverse situations (Bolaños et al., 2003; Britton 

et al., 2007; Carlezon et al., 2003). MPH-pretreated rats spent significantly less time in the 

“open arms” of the EPM, and significantly more time engaged in self-grooming, a well-

known behavioral response to anxiety-eliciting situations. Further studies with the FST 

found that MPH exposure decreases latency to immobility, an effect opposite to those 

observed after antidepressant treatments (Cryan et al., 2002). Though similar to the findings 

with reward-related behaviors in that U-50,488 intensified, while nor-BNI reversed the 

anxiogenic and depression-like behaviors induced by MPH, U-50,488 also decreased the 

time spent in the open arms, and had a tendency to increase self-grooming in VEH-

pretreated rats. The decreased latency to immobility observed in the MPH-pretreated rats did 

not result from impaired motor activity because these rats did not show deficits in 

locomotion 24 h after day 1 of forced swimming, or after U-50,488 exposure (Fig. 7A–B). 

U-50,488 induces hyperlocomotion at low, and hypolocomotion at higher (i.e., greater than 

5 mg/kg) doses in mice (Kuzmin et al., 2000). We observed increased locomotion after 

U-50,488 treatment, however, the magnitude of the increase was not different between the 

groups (Fig. 7A). The basis for U-50,488’s effects on motor activity is unknown. It is 

speculated that different KOR populations, located in different brain regions, may mediate 

U-50,488 effects (Charntikov et al., 2008; Kuzmin et al., 2000). This notion is intriguing 

because U-50,488 induces hyperactivity in developing rats, while inducing hypoactivity in 

adult rats (Collins et al., 1998; McDougall et al., 1997), yet it attenuates drug reward in 

developing and adult rats in a similar manner (Bolaños et al., 1996; Crawford et al., 1995).

The effects produced by nor-BNI are similar to those observed after treatment with 

antidepressants. Antidepressant medications exert their mood-elevating effects after 

prolonged (i.e., weeks) administration (Nestler et al., 2002), and preclinical studies show 

that depression-like behaviors can be reversed after prolonged treatment (Berton et al., 2006; 
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Bolaños et al., 2008; Krishnan et al., 2008). Interestingly, the nor-BNI-induced 

antidepressant-like effect was still apparent 4-weeks after a single exposure to the drug (as 

measured in the FST; Fig. 6D). The basis for nor-BNI-induced effects in the FST is unclear. 

Nor-BNI is known for its long-lasting antagonistic actions at KORs (Horan et al., 1992; 

Jewett and Woods, 1995), however, this κ-antagonist may not have long-term efficacy in the 

FST (Zhang et al., 2007). It is reasonable to assume that the discrepancies between Zhang et 

al., and our results are due to differences in experimental conditions. Nevertheless, these 

findings parallel those demonstrating that stimulation of KOR induces depression-like 

effects, while KOR antagonism produces anxiolytic and antidepressant-like effects (Knoll et 

al., 2007; Mague et al., 2003; McLaughlin et al., 2003; Pliakas et al., 2001).

The behavioral profile induced by early-life MPH exposure is indicative of long-lasting 

changes in reward pathways resulting in altered behavioral reactivity to drugs of abuse while 

concurrently inducing depression-like states (Nestler and Carlezon, 2006). It has been 

proposed that the mechanism(s) underlying these effects may be partly mediated by changes 

in CREB/dynorphin activity (Carlezon and Konradi, 2004). Our findings demonstrating 

enhanced behavioral responsivity to KOR stimulation, and reversal of MPH-induced effects 

by KOR antagonism, lend support to this notion. It must be noted, however, that we did not 

run U-50,488 or nor-BNI dose-response experiments in MPH-pretreated rats, and it is 

possible that the doses used in this study were too high. It is also possible that different drug 

doses may have had varied effects because we noticed that while 5 mg/kg U-50,488 did not 

influence locomotion in the VEH- or MPH-pretreated rats, it tended to negatively influence 

VEH-pretreated rats in the sucrose preference and EPM paradigms. Although 20 mg/kg nor-

BNI may be high, this dose has been shown to be selective for KORs blockade (Endoh et al., 

1992; Takemori et al., 1988), without influencing motor activity (Knoll et al., 2007). How 

MPH might increase KOR sensitivity is unknown. Exposure to cocaine and amphetamine 

increases dynorphin expression and decreases KOR expression, whereas prolonged exposure 

to these drugs decreases dynorphin, followed by KOR upregulation during drug cessation in 

the NAc and striatum (Spangler et al., 1996; Trujillo and Akil, 1990; Turchan et al., 1998; 

Unterwald et al., 1994). Given the psychostimulant-like properties of MPH, it is feasible that 

MPH exposure may result in upregulation/increased sensitivity of KORs.

To summarize, this study shows that treatment with MPH during development results in 

decreased sensitivity to rewarding stimuli while enhancing a negative emotional state 

characterized by increased sensitivity to adverse situations in adulthood. Additionally, this 

study shows that KOR stimulation, under certain experimental conditions, can intensify, 

while KOR blockade reverses these behavioral deficits. However, it is imperative to 

recognize that the MPH-induced behavioral profile described here was derived from normal 

rats, and similar experimental design and MPH treatment using established animal models of 

ADHD might yield different, even contrary results. Thus, these results should not be 

overinterpreted, because MPH remains a safe and effective pharmacotherapy for ADHD 

(Biederman and Faraone, 2005; Hyman, 2003). Despite the inherent difficulties in 

extrapolating to the human condition, these results underline the importance in the accurate 

diagnosis of ADHD before stimulant medication is commenced (Volkow and Insel, 2003). 

Together these findings underscore the need for further assessment of potential long-term 
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neurobiological adaptations induced by early-life experiences that may contribute to the 

pathophysiology of neuropsychiatric disorders later in life, and further indicate that drugs 

attenuating dynorphin/κ-receptor activity may be effective for the treatment of behavioral 

disorders associated with anxiety- and depression-like states.
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Figure 1. 
Developmental exposure to MPH regulates COC-induced place conditioning (n= 67). MPH-

pretreated spent significantly less time in COC-paired environments, while VEH-pretreated 

rats spent significantly more time in COC-associated environments in a dose-dependent 

manner. *p< 0.05: vs. VEH/SAL and VEH/COC 5 mg/kg conditions. √p< 0.05: vs. VEH/

SAL, VEH/COC 5 mg/kg, and the VEH/COC 10 mg/kg conditions. **p< 0.05: vs. 

VEH/COC 10 mg/kg; ***p< 0.05: vs. VEH/COC at 20 mg/kg. Data are presented as the 

difference in time spent in the COC-paired minus time spent in the SAL-paired 

compartments during testing day (mean ± SEM, in sec).
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Figure 2. 
Determination of U50-induced place preference/avoidance in pretreatment naïve rats (n= 

64). Left panel: U50 induced place avoidance at 10 mg/kg dose (*p< 0.05: vs. 0, 2.5 and 5 

mg/kg). Right panel: **p< 0.05: vs. the U50/SAL condition. U50 (5 mg/kg) blocked COC-

induced place conditioning: ***p< 0.05 vs. rats receiving 0, 2.5 and 10 mg/kg U50 prior to 

10 mg/kg COC. Data are presented as time spent in the cocaine-minus time spent in the 

SAL-paired compartments after conditioning (mean ± SEM, in sec).
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Figure 3. 
Effects of U50 and nor-BNI on COC-induced place conditioning in VEH- and MPH-

pretreated rats (n= 119). VEH-pretreated developed place conditioning (*p< 0.05 vs. 

VEH/SAL condition), while MPH-pretreated rats avoided COC-paired environments (**p< 

0.05 vs. VEH/COC condition). MPH-pretreated rats appeared more sensitive to the effects 

of U50 (5 mg/kg): ***p< 0.05 vs. VEH-pretreated rats in the U50/SAL condition. Nor-BNI 

(20 mg/kg) reversed the place avoidance induced by COC and U50 in MPH-pretreated rats: 

√p< 0.05 vs. MPH-pretreated rats in the SAL/COC condition. †p= 0.06: vs. MPH-pretreated 

rats in the U50/SAL condition. Data are presented as time spent in the cocaine- minus time 

spent in the SAL-paired compartments after conditioning (mean ± SEM, in sec).
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Figure 4. 
Developmental exposure to MPH and subsequent U50 and nor-BNI treatment on sucrose 

preference (A–D). (A) MPH-pretreated showed decreased sensitivity to the rewarding effects 

of sucrose when compared to the VEH-pretreated rats. *Different at 0.25% (p< 0.05) and 

0.50% sucrose (p< 0.05). (B) VEH or MPH pretreatment did not affect total fluid (sucrose + 

water) intake. (C) U50 (5 mg/kg) reduced sucrose (0.5 %) preference in both VEH- and 

MPH-pretreated rats given 2 h access to the solution. *p< 0.05: vs. MPH/SAL; †p< 0.07: vs. 

VEH/SAL; #p< 0.05: vs. VEH/U50; §p< 0.05: vs. MPH/SAL. (D) U-50 did not change 

overnight sucrose preference (0.5%). Nor-BNI restored sucrose preference in VEH- and 
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MPH-pretreated rats. Data are presented as percent preference between MPH and VEH 

conditions (n= 106).
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Figure 5. 
Developmental exposure to MPH and subsequent U50 and nor-BNI treatment regulate 

responses to anxiogenic stimuli (n= 56). (A) Rats in the MPH/SAL condition spent 

significantly less time in the open arms of the EPM than rats in the VEH/SAL group (*p< 

0.05). U50 significantly decreased time in open arms in VEH- (√p< 0.05: vs. VEH/SAL) and 

MPH-pretreated rats (**p< 0.05: vs. VEH/U50). Nor-BNI significantly increased time in 

open arms in VEH- (#p< 0.05: vs. VEH/SAL; §p< 0.05: vs. VEH/U50) and MPH-pretreated 

(***p< 0.05: vs. MPH/SAL) rats. (B) Rats in the MPH/SAL condition had significantly less 
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entries into the open arms of the EPM than rats in the VEH/SAL group (*p< 0.05). U50 had 

no effect in the VEH-, while inducing a trend towards a decrease in open arm entries in the 

MPH-pretreated rats. Nor-BNI increased open arm entries in VEH- (#p< 0.05: vs. MPH/nor-

BNI) and MPH-pretreated (**p< 0.05: vs. MPH/U50) rats. (C) Rats in the MPH/SAL 

condition spent significantly more time engaged in self-grooming in the closed arms of the 

EPM than rats in the VEH/SAL condition (*p< 0.05). U50 treatment decreased grooming in 

MPH- (**p< 0.05: vs. MPH/SAL), while slightly increasing grooming in VEH-pretreated 

rats (†p= 0.07: vs. VEH/SAL). Nor-BNI decreased grooming in VEH- (***p< 0.05: vs. 

VEH/U50) and MPH-pretreated rats (***p< 0.05: vs. MPH/SAL). Data are presented as 

percent time spent (mean ± SEM) in the open arms, and as self-grooming counts (mean ± 

SEM) in the closed arms.
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Figure 6. 
Developmental exposure to MPH and subsequent U50 and nor-BNI treatment regulate 

responsivity to forced swim stress (n= 62). (A) Rats in the MPH/SAL condition had shorter 

latencies to immobility than rats in the VEH/SAL group on day 2 of the FST (*p< 0.05). 

U50 further decreased, while nor-BNI treatment normalized latency to immobility in MPH-

pretreated rats. (B) Rats in the MPH/SAL and MPH/U50 conditions showed increased total 

immobility, whereas nor-BNI treatment decreased total immobility. (C) Rats in the 

MPH/SAL and MPH/U50 conditions showed decreases in swimming behavior. Nor-BNI 
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treatment did not affect swimming in either the VEH- or MPH-pretreated rats. (D–F) VEH/

nor-BNI and MPH/nor-BNI treatments showed no differences in latency to immobility, total 

immobility, or swimming counts 4-weeks after treatment on day 2 of the FST. Data are 

presented as latencies to become immobile, total immobility (in seconds) or swimming 

counts (mean ± SEM).

Wiley et al. Page 24

Neuropsychopharmacology. Author manuscript; available in PMC 2009 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Developmental exposure to MPH and subsequent U50 effects on locomotor activity. (A) 

MPH-pretreated rats showed lower motor activity when compared to the VEH condition 

during the first 10 min of the test (*p< 0.05). Acute U50 treatment did not influence 

locomotion in either of the groups (n= 22). (B) VEH- and MPH-pretreated rats had no 

differences in locomotor activity 24 h after exposure to day 1 of FST (n= 12). Data are 

presented as mean total distance traveled (mean ± SEM, in cm).
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