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Abstract Ascorbic acid (vitamin C) is an enzyme co-factor in eukaryotes that also plays a critical

role in protecting photosynthetic eukaryotes against damaging reactive oxygen species derived

from the chloroplast. Many animal lineages, including primates, have become ascorbate auxotrophs

due to the loss of the terminal enzyme in their biosynthetic pathway, L-gulonolactone oxidase

(GULO). The alternative pathways found in land plants and Euglena use a different terminal enzyme,

L-galactonolactone dehydrogenase (GLDH). The evolutionary processes leading to these differing

pathways and their contribution to the cellular roles of ascorbate remain unclear. Here we present

molecular and biochemical evidence demonstrating that GULO was functionally replaced with GLDH

in photosynthetic eukaryote lineages following plastid acquisition. GULO has therefore been lost

repeatedly throughout eukaryote evolution. The formation of the alternative biosynthetic pathways

in photosynthetic eukaryotes uncoupled ascorbate synthesis from hydrogen peroxide production

and likely contributed to the rise of ascorbate as a major photoprotective antioxidant.

DOI: 10.7554/eLife.06369.001

Introduction
Ascorbate (vitamin C) plays an essential role in eukaryotes as an enzyme co-factor in hydroxylation

reactions, contributing to diverse processes such as the synthesis of collagen and the demethylation of

histones and nucleic acids (Mandl et al., 2009; Blaschke et al., 2013). Ascorbate also plays an

antioxidant role in eukaryotes to help protect against reactive oxygen species (ROS) derived from

metabolic activity. The majority of hydrogen peroxide (H2O2) generated in some organelles is likely

reduced by other antioxidant systems, such as the peroxiredoxins and glutathione peroxidases in the

mitochondria, and catalases in the peroxisome (Mhamdi et al., 2012; Sies, 2014). However, ascorbate

plays an important role in protecting photosynthetic cells against ROS derived from the chloroplast

(Smirnoff, 2011). Ascorbate peroxidase (APX), which is found in both the cytosol and the chloroplast of

photosynthetic eukaryotes, is central to this photoprotective role. Thylakoid- and stroma-localised APX

removes H2O2 produced by photosystem I through the activity of the ascorbate-glutathione cycle and

this process may account for 10% of photosynthetic electron transport flow. Ascorbate also plays

a critical role in preventing lipid peroxidation in the thylakoid membranes and acts as a co-factor for

violaxanthin de-epoxidase in the xanthophyll cycle. In addition, ascorbate in the thylakoid lumen may

prevent photoinhibition in high light by directly donating electrons to the photosynthetic electron

transport chain (Smirnoff, 2011). These roles have been demonstrated in a range of ascorbate

deficient plants that display sensitivity to high light and to oxidants (Smirnoff, 2011).

Photosynthetic eukaryotes arose following the endosymbiotic acquisition of a cyanobacterial

ancestor by a non-photosynthetic eukaryote in the Archaeplastida (Plantae) lineage (Keeling, 2010).

Several other eukaryote lineages, including the diatoms, haptophytes and euglenids, subsequently
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gained plastids through a secondary endosymbiosis with either a red or green alga. These plastid

endosymbioses were accompanied by lateral gene transfer on a massive scale from the symbiont to the

host nuclear genome (known as endosymbiotic gene transfer or EGT), giving rise to the complex

physiologies of photosynthetic eukaryotes (Timmis et al., 2004). The plastids in the major

photosynthetic eukaryote lineages are all ultimately derived from the primary endosymbiosis. Whilst

acquisition of a photosynthetic endosymbiont may have been beneficial to the host cell in many ways,

the plastid is also a major source of potentially damaging ROS (Dorrell and Howe, 2012). There is

evidence for extensive leakage of H2O2 out of plastids via aquaporins, particularly at high light intensities

(Mubarakshina et al., 2010; Naydov et al., 2012). Plastid acquisition is therefore associated with

a greatly increased requirement for cellular antioxidant systems to prevent photodamage. Cyanobac-

teria do not possess APX or any of the known enzymes for ascorbate biosynthesis and minimise photo-

oxidative stress using alternative mechanisms, such as peroxiredoxins, catalases and glutathione

peroxidases (Zámocký et al., 2010; Gest et al., 2013). This suggests that ascorbate was most likely

recruited to its photoprotective role after the acquisition of the plastid in ancestral Archaeplastida (Gest

et al., 2013), although the evolutionary origins of ascorbate biosynthesis are unclear.

There is no clear evidence for ascorbate biosynthesis in prokaryotes (see ‘Materials and

methods’), suggesting that the ability to synthesise ascorbate evolved in eukaryotes. The three

eukaryote lineages in which ascorbate biosynthesis has been examined extensively (animals,

plants and Euglena) all exhibit different biosynthetic pathways (Figure 1). These pathways may

have arisen due to convergent evolution, or may represent modifications of an ancestral

pathway. An understanding of these evolutionary relationships will provide insight into the

cellular roles of ascorbate in eukaryotes, particularly in relation to plastid acquisition in the

photosynthetic lineages.

eLife digest Animals, plants, algae and other eukaryotic organisms all need vitamin C to enable

many of their enzymes to work properly. Vitamin C also protects plant and algal cells from damage

by molecules called reactive oxygen species (ROS), which can be produced when these cells harvest

energy from sunlight in a process called photosynthesis. Photosynthesis occurs inside structures

called chloroplasts, and has evolved on multiple occasions in eukaryotes when non-photosynthetic

organisms acquired chloroplasts from other algae and then had to develop improved defences

against ROS.

There are several steps involved in the production of vitamin C. In many animals, an enzyme called

GULO carries out the final step by converting a molecule known as an aldonolactone into vitamin C;

this reaction also produces ROS as a waste product. The GULO enzyme is missing in humans,

primates and some other groups of animals, so these organisms must get all the vitamin C they need

from their diet.

Plants and algae use a different enzyme—called GLDH—to make vitamin C from aldonolactone.

GLDH is very similar to GULO, but it does not produce ROS as a waste product. It is not clear how

the different pathways have evolved, or why some animals have lost the ability to make their own

vitamin C.

Here, Wheeler et al. used genetics and biochemistry to investigate the evolutionary origins of

vitamin C production in a variety of eukaryotic organisms. This investigation revealed that although

GULO is missing from the insects and several other groups of animals, it is present in the sponges

and many other eukaryotes. This suggests that GULO evolved in early eukaryotic organisms and has

since been lost by the different groups of animals. On the other hand, GLDH is only found in plants

and the other eukaryotes that can photosynthesize.

Wheeler et al.’s findings suggest that GULO has been lost and replaced by GLDH in all plants and

algae following their acquisition of chloroplasts. GDLH allows plants and algae to make vitamin C

without also producing ROS, which could explain why vitamin C has been able to take on an extra

role in these organisms. The results allow us to better understand the functions of vitamin C in

photosynthetic organisms and the processes associated with the acquisition of chloroplasts during

evolution.

DOI: 10.7554/eLife.06369.002
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Figure 1. Major ascorbate biosynthetic pathways in eukaryotes. The scheme depicts the three major ascorbate

biosynthetic pathways found in eukaryotes (Shigeoka et al., 1979; Wheeler et al., 1998; Linster and Van

Schaftingen, 2007). The plant pathway (also known as the Smirnoff-Wheeler or D-mannose/L-galactose pathway)

involves no inversion of the carbon chain (i.e., C1 of D-glucose becomes C1 of L-ascorbate), whereas the euglenid

and animal pathways involve inversion of the carbon chain in the conversion from uronic acid to aldonolactone

(i.e., C1 of D-glucose becomes C6 of L-ascorbate). Our analyses focus on enzymes with a dedicated role in ascorbate

biosynthesis (shown in red): GULO—L-GulL oxidase; VTC2—GDP-L-galactose phosphorylase; VTC4—L-galactose-1-

phosphate phosphatase; L-galDH—L-galactose dehydrogenase; GLDH—L-GalL dehydrogenase. The other

enzymes are: PGM—phosphoglucomutase; UGP—UDP-D-glucose pyrophosphorylase; UGDH—UDP-D-glucose

Figure 1. continued on next page
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Animals synthesise ascorbate via D-glucuronic acid and L-gulonolactone (L-GulL), with L-gulonolactone

oxidase (GULO) catalysing the oxidation of L-GulL to ascorbate. Many animal lineages have lost the

ability to synthesise ascorbate, including haplorhine primates, guinea pigs, teleost fish, some bats and

passerine birds. In all of the animal ascorbate auxotrophs that have been examined, the gene

encoding GULO is lost (Nishikimi et al., 1992, 1994; Cui et al., 2011a; Drouin et al., 2011). GULO

uses molecular O2 as its electron acceptor, resulting in H2O2 production, which may have contributed

to selective pressure to lose this enzyme in some animals (Bánhegyi et al., 1996; Mandl et al., 2009).

The inability of many invertebrates to synthesise ascorbate led to early speculation that ascorbate

synthesis may have evolved later in metazoan evolution (Chatterjee, 1973). However, whilst the loss

of GULO in vertebrate lineages has been extensively examined (Yang, 2013), little is known about its

distribution in invertebrates or the non-metazoan members of the holozoa. This information is required

to identify the selective pressures underlying the evolution of ascorbate auxotrophy in animals.

Two alternative routes to ascorbate biosynthesis have been identified in photosynthetic

eukaryotes, which both employ L-galactonolactone dehydrogenase (GLDH) as the terminal enzyme

instead of GULO. A pathway via D-galacturonic acid and L-galactonolactone (L-GalL) was identified in

Euglena (Shigeoka et al., 1979). This pathway is analogous to the animal pathway and also appears to

be functional in some stramenopile algae (Helsper et al., 1982; Grün and Loewus, 1984). In contrast,

ascorbate biosynthesis in land plants was found to occur via a different route using D-mannose and

L-galactose (Wheeler et al., 1998). Green algae also use the ‘plant pathway’ (Running et al., 2003;

Urzica et al., 2012), but evidence is lacking for the nature of ascorbate biosynthesis in many other

evolutionarily important lineages, most notably the rhodophytes (red algae).

This paper focuses on the distribution of the three major pathways of ascorbate biosynthesis

described above. Alternative routes of ascorbate biosynthesis have been described in trypanosomes

and also in the fungi, which synthesise a range of ascorbate analogues (see ‘Materials and methods’)

(Loewus, 1999; Logan et al., 2007). There is some evidence for the operation of alternative routes to

ascorbate in land plants (Wolucka and Van Montagu, 2003; Lorence et al., 2004; Badejo et al.,

2012), although molecular genetic evidence from Arabidopsis indicates that the D-mannose/

L-galactose pathway is the primary route of ascorbate biosynthesis (see ‘Materials and methods’)

(Conklin et al., 1999; Dowdle et al., 2007).

The three major pathways of ascorbate biosynthesis therefore all utilise different routes to

synthesise an aldonolactone precursor (L-gulonolactone, L-GulL or L-galactonolactone, L-GalL), which

is converted to ascorbate by either GULO (animal pathway) or GLDH (plant and euglenid pathways)

(Shigeoka et al., 1979; Wheeler et al., 1998; Loewus, 1999). GULO and GLDH exhibit significant

sequence similarity and are both members of the vanillyl alcohol oxidase (VAO) family of flavoproteins

(Leferink et al., 2008). These similar enzymes exhibit important biochemical differences. GULO can

oxidise L-GulL and L-GalL, whereas GLDH is highly specific for L-GalL (Smirnoff, 2001). GULO localises

to the lumen of the endoplasmic reticulum (ER), whereas GLDH is associated with complex I in the

mitochondrial electron transport chain (Schertl et al., 2012). Importantly, GLDH does not generate

H2O2, as it uses cytochrome c rather than O2 as an electron acceptor.

Despite the importance of ascorbate in eukaryote physiology, it is not known how the different

pathways of ascorbate biosynthesis arose in animals, plants and algae or relate to its differing cellular

roles. This manuscript examines the origins of ascorbate biosynthesis in eukaryotes and seeks to

address the following important gaps in our current knowledge: (1) what is the wider distribution of

GULO loss and ascorbate auxotrophy in the metazoa? (2) do all photosynthetic eukaryotes use an

alternative terminal enzyme to animals? (3) why do two different pathways using GLDH exist in

photosynthetic eukaryotes? (4) which pathway is used in the rhodophytes? Using a combination of

molecular and biochemical analyses, we present evidence that GULO is an ancestral gene in

eukaryotes that has been functionally replaced by GLDH in the photosynthetic lineages, resulting in

the development of their alternative biosynthetic pathways.

Figure 1. Continued

dehydrogenase; UGUR—UDP-glucuronidase; GlcUAR—D-glucuronate reductase; SMP30—regucalcin/lactonase;

GAE—UDP-D-glucuronate-4-epimerase; GalUAR—D-galacturonate reductase. Enzyme names are not listed for steps

where multiple enzymes may be involved or where specific enzymes have not been identified.

DOI: 10.7554/eLife.06369.003
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Results

Distribution of GULO and GLDH in eukaryote genomes
To examine the origins of ascorbate biosynthesis in eukaryotes we analysed the distribution of GULO

and GLDH in eukaryote genomes. We found that GULO and GLDH have a mutually exclusive

distribution (Figure 2). GULO is absent from many metazoan genomes, including all insects,

supporting earlier biochemical evidence that insects are predominately ascorbate auxotrophs

(Supplementary file 1) (Chatterjee, 1973; Dadd, 1973). However, GULO is present in basally derived

metazoans, including sponges and cnidarians, and is also present in a filasterean (Capsaspora

owczarzaki) and in fungi (Supplementary file 1). This suggests that ascorbate synthesis via GULO is an

ancestral trait in the Opisthokonta that has been lost in many lineages.

GULO is also present the Apusomonadida (Thecamonas trahens), a sister group to the

Opisthokonts, and in members of the Amoebozoa and Excavata. Surprisingly, we also found GULO

in basally derived Archaeplastida including the glaucophyte, Cyanophora paradoxa, and the

rhodophytes Galdieria sulphuraria and Galdieria phlegrea. The glaucophytes occupy a key position

in the evolution of photosynthetic eukaryotes as they diverged from the other Archaeplastida before

the split of the red and green algal lineages and have highly unusual chloroplasts (termed cyanelles)

that retain several features of the cyanobacterial endosymbiont (Price et al., 2012). GULO is absent

from all other Archaeplastida genomes, although an enzyme family exhibiting weak similarity to GULO

has been reported in Arabidopsis (Maruta et al., 2010). However, this enzyme forms a distinct

phylogenetic clade from all other GULO and GLDH sequences and its role in de novo ascorbate

biosynthesis remains unclear.

GLDH was found in all Archaeplastida genomes, except for Cyanophora and Galdieria, and in all

photosynthetic lineages that have acquired a plastid via secondary endosymbiosis (including

stramenopiles, cryptophytes, haptophytes, chlorarachniophytes and euglenids). GLDH was present

in several non-photosynthetic organisms including the oomycetes, the foraminifera and in the

choanoflagellates, Monosiga brevicollis and Salpingoeca rosetta. The evolutionary history of algal

plastids acquired by secondary endosymbiosis remains uncertain and there is some evidence that non-

photosynthetic stramenopile (e.g., oomycetes) and rhizarian (e.g., foraminifera) lineages may have

once acquired a plastid that was subsequently lost (Tyler et al., 2006; Keeling, 2010; Glöckner et al.,

2014).

Further identification of GLDH or GULO in the transcriptomes of 165 eukaryotes within the Marine

Microbial Eukaryote Trancriptome dataset (Keeling et al., 2014) confirmed that GLDH was found

primarily in photosynthetic organisms (Supplementary file 2), but also in the non-photosynthetic

stramenopiles such as oomycetes, biocosoecids and labryinthulids and in an acanthoecid choano-

flagellate. The presence of GULO was restricted to non-photosynthetic organisms, including the

heterotrophic flagellate Palpitomonas bilix, which is a non-photosynthetic relative of the Cryptophyte

algae (Yabuki et al., 2014). The exception was the presence of GULO in the chromerids, Chromera

velia and Vitrella brassicaformis, which are photosynthetic relatives of the Apicomplexa (Janouskovec

et al., 2010).

Further searches of Expressed Sequence Tag (EST) and Transcriptome Shotgun Assembly (TSA)

databases identified a GULO sequence in the green alga, Chlorokybus atmophyticus (JO192417.1)

(Leliaert et al., 2012; Timme et al., 2012). Chlorokybus represents a basal lineage in the charophyte

algae, which are a sister group to the land plants (Figure 2—figure supplement 1). GLDH was

identified in the other charophytes Klebsormidium flaccidum, Nitella mirabilis and Nitella hyalina

(JO285109.1, JV744884.1, JO253095.1). These searches also revealed the presence of GULO in the

craspedid choanoflagellate, Monosiga ovata (DC478225.1). The Craspedida subgroup of the

choanoflagellates is divided into two major clades; clade I contains M. brevicollis and S. rosetta

(which both possess GLDH) and clade II contains M. ovata (Jeuck et al., 2014).

We conclude that nearly all photosynthetic eukaryotes use GLDH rather than GULO as the terminal

enzyme in ascorbate biosynthesis. The exceptions are the basally derived Archaeplastida

(Cyanophora, Galdieria and Chlorokybus) and the chromerids (Figure 2—figure supplement 2).

No photosynthetic organisms were found to lack both GULO and GLDH, although both genes were

absent in many non-photosynthetic organisms, including all insects, Daphnia, Paramecium and

Dictyostelium. The genomes of many parasitic groups also appear to lack both enzymes including the
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Figure 2. Coulson plot indicating the taxonomic distribution of the different ascorbate pathways. 40 eukaryote

genomes were analysed for the presence of genes in the ascorbate biosynthetic pathways. The two potential

terminal enzymes in the pathway are boxed. GLDH is common to both the ‘plant’ and ‘euglenid’ type pathways.

A schematic tree depicts the currently accepted phylogenetic relationships between organisms. The predicted route

of ascorbate biosynthesis in each organism is shown. Note that ‘euglenid’ and ‘rhodophyte’ type pathways cannot

currently be distinguished from sequence analysis alone and the predictions are based on biochemical evidence.

Asterisk denotes a genome assembly was not available for Euglena gracilis and its transcriptome was analysed

(‘Materials and methods’). Grey circles in VTC4 represent the presence of a highly similar enzyme, myo-inositol-1-

phosphate phosphatase that exhibits L-galactose-1-phosphatase activity. GULO in trypanosomes and yeasts acts to

oxidise the alternative substrates L-galactonolactone or D-arabinonolactone respectively. VTC3 is not a biosynthetic

enzyme, but represents a dual function Ser/Thr protein kinase/protein phosphatase 2C that may play a regulatory

role in the plant pathway (Conklin et al., 2013). Black cross represents a pseudogene encoding a non-functional

Figure 2. continued on next page
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diplomonads, parabasalids and apicomplexa (e.g., Giardia intestinalis, Trichomonas vaginalis and

Plasmodium falciparum). Since all documented pathways of ascorbate biosynthesis require either

GULO or GLDH, organisms lacking both of these enzymes are likely to be ascorbate auxotrophs

(Chatterjee, 1973).

Phylogenetic analyses of GULO and GLDH
A maximum likelihood tree of GULO and GLDH sequences was produced using the other members of

the VAO family as an outgroup to root the tree. GLDH is highly conserved and the phylogenetic

analyses strongly support a monophyletic origin for all GLDH sequences (100% bootstrap support,

posterior probability = 1) (Figure 3). The monophyly of eukaryote GULO sequences is well supported

(85% bootstrap support, posterior probability = 1). This clade includes trypanosome L-GalL oxidase

and ascomycete D-arabinonolactone oxidase (Huh et al., 1994; Logan et al., 2007), indicating that

although these enzymes exhibit altered substrate specificity they should be considered within the

GULO clade for our evolutionary analyses. There is also moderate support for the monophyly of

GULO and GLDH as a clade within the VAO family, supporting hypotheses that these enzymes may

have originated from a gene duplication event. GLDH is highly unusual amongst the VAO flavoprotein

family in that it does not use O2 as an electron acceptor, but mutation of a single highly conserved

alanine residue in GLDH is required to convert it from a dehydrogenase to an oxidase (Leferink et al.,

2009). The phylogenies within the GULO clade and the GLDH clade are poorly resolved, and so the

trees do not provide evidence on the likelihood of lateral gene transfer, such as endosymbiotic gene

transfer (EGT) or horizontal gene transfer (HGT), of either gene. Further phylogenetic analyses,

individually examining each gene using unrooted trees with much greater taxonomic sampling, were

unable to provide greater resolution (Figure 3—figure supplement 1).

Distribution of GLDH-dependent pathways in photosynthetic organisms
Many of the enzymes preceding GULO or GLDH in the animal and euglenid pathways play other roles

within the cell, for example, in uronic acid metabolism or providing pentose intermediates (Linster

and Van Schaftingen, 2007). The presence or absence of these genes is therefore not solely related

to ascorbate biosynthesis. However, the plant pathway of ascorbate biosynthesis contains a number of

dedicated enzyme steps, allowing a much clearer examination of its distribution. This also enables

a distinction to be made between the plant- and euglenid-type pathways, as both utilise GLDH as the

terminal enzyme. Plants and green algae use GDP-L-galactose phosphorylase (VTC2) and L-galactose

dehydrogenase to generate L-GalL (Gatzek et al., 2002; Running et al., 2003; Dowdle et al., 2007;

Laing et al., 2007; Linster et al., 2007), whereas euglenids use D-galacturonate reductase (Figure 1)

(Ishikawa et al., 2006). We found that L-galactose dehydrogenase is present in all rhodophytes and

Viridiplantae, except the prasinophytes Ostreococcus and Micromonas (see ‘Materials and methods’).

Sequences exhibiting similarity to L-galactose dehydrogenase were also found in the diatoms and in

some metazoa, but as some of these species are ascorbate auxotrophs, it appears that this enzyme

may play alternative metabolic roles. VTC2 is found exclusively in the Viridiplantae (including

Chlorokybus), indicating that the definitive ‘plant’ pathway is restricted to this lineage (Figure 2;

Supplementary files 3, 4). Biochemical evidence from euglenids and stramenopiles (Shigeoka et al.,

1979; Helsper et al., 1982; Grun and Loewus, 1984) suggests that organisms that lack VTC2 but

possess GLDH are likely to operate a ‘euglenid’ pathway, with D-galacturonic acid acting as the

precursor of L-GalL. However, it is not clear whether this is also the case in the rhodophytes. All

Figure 2. Continued

enzyme. Organisms with sequenced genomes that were found to lack both of the terminal enzymes in the known

pathways (GULO and GLDH) are likely to be ascorbate auxotrophs and were not included in the plot. These include

Giardia intestinalis, Trichomonas vaginalis, Entamoeba invadens, Plasmodium falciparum and Perkinsus marinus.

DOI: 10.7554/eLife.06369.004

The following figure supplements are available for figure 2:

Figure supplement 1. Distribution of GULO and GLDH in the Archaeplastida.

DOI: 10.7554/eLife.06369.005

Figure supplement 2. Distribution of the different ascorbate pathways.

DOI: 10.7554/eLife.06369.006
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Figure 3. Phylogenetic analysis of L-gulonolactone oxidase and L-galactonolactone dehydrogenase. A maximum

likelihood phylogenetic tree demonstrating the relationships between aldonolactone oxidoreductases involved in

ascorbate biosynthesis. A multiple sequence alignment of 263 amino acid residues was used with alditol oxidases

from the vanillyl alcohol oxidase (VAO) family acting as the outgroup. Photosynthetic organisms are shown in green.

Figure 3. continued on next page
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rhodophytes possess a sequence that is highly similar to characterised L-galactose dehydrogenases from

plants and bacteria (Gatzek et al., 2002; Hobbs et al., 2014) and L-galactose residues are a major

constituent of red algal polysaccharides (Percival, 1979). We therefore examined whether rhodophytes

could synthesise ascorbate via a modified ‘plant’ pathway using an alternative route to L-galactose.

Biochemical analysis of pathways in rhodophytes
We used the macroalga, Porphyra umbilicalis, to examine whether rhodophytes can utilise L-galactose

in ascorbate synthesis. We detected NAD+-dependent L-galactose dehydrogenase activity in

Porphyra thallus extracts (Figure 4A). Feeding 10 mM L-galactose to Porphyra thallus slices increased

the concentration of ascorbate (detected as dehydroascorbate by GC-MS) (Figure 4B). As red algae

synthesise GDP-L-galactose from GDP-D-mannose (Su and Hassid, 1962), rhodophytes likely use

a modified ‘plant pathway’ to synthesise ascorbate, employing an unidentified enzyme activity to

generate L-galactose from GDP-L-galactose instead of VTC2.

We then examined ascorbate biosynthesis in Galdieria, which differs from all other rhodophytes

(Supplementary file 4) in that it possesses GULO rather than GLDH. L-galactose, L-GalL and L-GulL

were all effective precursors of ascorbate in G. sulphuraria (Figure 4C), suggesting that L-galactose is

converted to L-GalL, which may then be converted to ascorbate by GULO. A positional isotopic

labelling approach indicated that label from D-[1-13C]-glucose was incorporated primarily into carbon

1 (C1) of ascorbate (Figure 4D, Figure 4—figure supplement 1). This labelling pattern is expected

for the plant pathway, while the reduction of a uronic acid intermediate in the animal or euglenid

pathways would result in the transfer of label from C1 of glucose into C6 of ascorbate/

dehydroascorbate (Loewus, 1999). G. sulphuraria therefore uses a similar pathway to other

rhodophytes, employing GULO instead of GLDH.

In combination, these data identify a clear difference between the Archaeplastida and the

photosynthetic lineages that have acquired a plastid via secondary endosymbiosis. Whilst both groups

use GLDH as the terminal enzyme for ascorbate synthesis, they differ in the route to L-GalL, The

Archaeplastida generate L-GalL via L-galactose (without inversion of the carbon chain of glucose),

whereas photosynthetic eukaryotes with secondary plastids synthesise L-GalL via D-galacturonate,

resulting in inversion of the carbon chain.

Distribution of ascorbate-dependent antioxidant systems
We have found that nearly all photosynthetic eukaryotes use GLDH to synthesise ascorbate,

suggesting that this distribution may be linked to the photoprotective role of ascorbate. We therefore

determined the distribution of ascorbate-dependent antioxidant mechanisms in eukaryote genomes.

Three main isoforms of APX are found in eukaryotes (APX, APX-R and APX-CCX, a hybrid enzyme

containing both ascorbate and cytochrome c peroxidase domains) (Zamocky et al., 2010; Lazzarotto

et al., 2011; Fawal et al., 2013). APX and APX-R are found in nearly all photosynthetic eukaryotes

and in the choanoflagellates, M. brevicollis and S. rosetta. Euglena and Emiliania do not possess APX

or APX-R, although both possess APX-CCX, which is also found in some fungi and in Capsaspora

(Figure 5). The only photosynthetic eukaryote in this analysis that lacks any isoform of APX was

C. paradoxa. Cyanophora also lacks all of the remaining enzymes of the plant ascorbate-glutathione

cycle: monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and

glutathione reductase (GR). The ascorbate-dependent xanthophyll cycle is not present in

glaucophytes and so Cyanophora does not require ascorbate for non-photochemical quenching

(Figure 5). Moreover, the cellular concentration of ascorbate in Cyanophora is either very low or

absent, as we could not detect ascorbate in Cyanophora extracts using GC-MS (data not shown). It is

Figure 3. Continued

There is strong support for a monophyletic origin for GLDH in eukaryotes. Bootstrap values >80% are shown above

nodes (100 bootstraps) and Bayesian posterior probabilities >0.95 are shown below (10000000 generations), except

for selected key nodes (circled) where all values are displayed.

DOI: 10.7554/eLife.06369.007

The following figure supplement is available for figure 3:

Figure supplement 1. Phylogenetic analysis of L-galactonolactone dehydrogenase.

DOI: 10.7554/eLife.06369.008
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possible that ascorbate analogues are present that we could not identify. However, in combination

with the lack of the plant ascorbate-glutathione cycle and the xanthophyll cycle, we conclude that

Cyanophora is unlikely to rely on ascorbate to detoxify peroxides derived from photosynthesis.

Cyanophora does however contain several glutathione peroxidases, peroxiredoxins and catalase, as

well as a unique peroxidase (symerythrin) similar to rubrerythrin of prokaryotes (Cooley et al., 2011).

These data suggest that glaucophytes rely on alternative mechanisms to detoxify peroxides derived

from photosynthesis. As cyanobacteria also do not appear to use ascorbate for photoprotection

Figure 4. Biochemical evidence for a modified D-mannose/L-galactose pathway in rhodophytes. (A) Crude extracts

of Porphyra umbilicalis thallus demonstrate L-galactose dehydrogenase activity using 5 mM L-galactose (L-Gal) as

a substrate. No activity was demonstrated with 5 mM L-fucose (6-deoxy-L-galactose) as a substrate. The result is

representative of three different enzyme preparations. (B) Feeding 10 mM L-Gal to Porphyra thallus for 24 hr resulted

in an accumulation of ascorbate (detected as dehydroascorbate—DHA). D-mannose (10 mM) did not cause an

increase in ascorbate in Porphyra, but exogenous D-mannose does not elevate ascorbate in land plants even though

it is an intermediate in ascorbate biosynthesis. The bar chart shows mean peak areas of selected fragments (±s.d.).
n = 3. (C) Feeding ascorbate precursors (25 mM) to Galdieria sulphararia from both the plant and animal pathways

results in increased cellular ascorbate (detected as dehydroascorbate using GC-MS) (±s.d.). The extent of the

increase in cellular ascorbate is influenced by the rate of conversion of the intermediate and the rate of its uptake

into the cell. n = 3. (D) Feeding D-[1-13C]-glucose (25 mM) to Galdieria sulphararia results in enrichment of 13C in the

316/317 m/z fragment of dehydroascorbate (which includes C1), but not in the 245/246 m/z or 157/158 m/z fragment

(which exclude C1) (±s.d.). In contrast, feeding D-[6-13C]-glucose (25 mM) labels all fragments, suggesting that they

all include C6. In combination, this labelling pattern indicates plant-like non-inversion of the carbon chain in the

conversion of hexoses to ascorbate. n = 3.

DOI: 10.7554/eLife.06369.009

The following figure supplement is available for figure 4:

Figure supplement 1. Positional isotopic labelling of ascorbate biosynthesis.

DOI: 10.7554/eLife.06369.010
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(Bernroitner et al., 2009; Latifi et al., 2009), the photoprotective role of ascorbate may therefore

have emerged in the Archaeplastida after the divergence of the glaucophytes.

Discussion

Distribution of pathways in eukaryotes
Ascorbate (vitamin C) is a very familiar metabolite to humans, so it is perhaps surprising that so many

aspects of its biosynthesis and metabolism remain uncharacterised. The biosynthetic pathway of

Figure 5. Coulson plot showing the distribution of photoprotective ascorbate-dependent enzymes. Eukaryote

genomes were analysed for the presence of enzymes from the plant ascorbate-glutathione cycle, the xanthophyll

cycle and other ascorbate-dependent enzymes. We found that eukaryotes possess two distinct isoforms of GSH

reductase. PeroxiBase was used to distinguish between the different forms of ascorbate peroxidase (Fawal et al.,

2013). Boxes highlight the terminal enzymes in the biosynthetic pathway and the ascorbate peroxidase family

(APX, APX-R and APX-CCX). MDHAR—monodehydroascorbate reductase; DHAR—dehydroascorbate reductase;

GR-I—glutathione reductase isoform I; GR-II—glutathione reductase isoform II; APX—ascorbate peroxidase;

APX-R—ascorbate peroxidase-related; APX-CCX—hybrid ascorbate peroxidase/cytochrome c peroxidase;

VDE—violaxanthin de-epoxidase; VDE-like—violaxanthin de-epoxidase like; AO—ascorbate oxidase.

DOI: 10.7554/eLife.06369.011
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ascorbate in plants, which supplies the vast majority of ascorbate in the human diet, remained elusive

for many years (Wheeler et al., 1998) and the major role of ascorbate in DNA demethylation emerged

only very recently (Blaschke et al., 2013). In order to better understand the cellular roles of ascorbate,

we have examined the distribution of the three major pathways of ascorbate biosynthesis in

eukaryotes. We identify that the Opisthonkonts (animals and fungi), the Amoebozoa and the non-

photosynthetic representatives of the Excavata and CCTH (Hacrobia) use GULO for ascorbate

biosynthesis. In contrast, the photosynthetic organisms in the Archaeplastida, CCTH (Hacrobia), SAR

and the photosynthetic members of the Excavata (euglenids) use GLDH. In these photosynthetic

organisms, the combination of molecular and biochemical evidence suggests that the non-inversion

pathway via L-galactose (plant pathway) is restricted to Archaeplastida, whereas the inversion

pathway via D-galacturonate (euglenid pathway) is used by photosynthetic eukaryotes that acquired

plastids via secondary endosymbiosis. The important exceptions to these trends are: firstly, that GLDH

is found in several non-photosynthetic organisms, notably in some choanoflagellates (Opisthokonts)

and stramenopiles and secondly, that GULO is found in several basally derived members of the

Archaeplastida.

The evolutionary origins of GULO and GLDH
The processes underlying the distribution of the different terminal enzymes are therefore central to

our understanding of the evolution of ascorbate biosynthesis. The mutually exclusive distribution of

two highly conserved and functionally similar genes in eukaryotes may be explained by either of two

evolutionary scenarios: an ancient gene duplication in the last common eukaryote ancestor (ancient

paralogy) followed by differential loss of either gene, or lateral gene transfer of a novel gene followed

by functional replacement of the ancestral gene (Keeling and Inagaki, 2004). It is likely that one of

these evolutionary scenarios underlies the distribution of GULO and GLDH amongst eukaryotes

(Figure 6).

The model of ancient paralogy requires that both genes were present in the last common

eukaryote ancestor, where they both presumably contributed to ascorbate biosynthesis, and were

then differentially lost by every eukaryote lineage. This requires that these two functionally similar

enzymes co-existed in multiple lineages throughout eukaryote evolution without significant functional

divergence. The distribution of GULO and GLDH in the Archaeplastida and in the choanoflagellates

suggests that these enzymes may have coexisted for a time in these lineages (Figure 2—figure

supplement 1). However, there are no clear examples of extant eukaryotes that possess both

enzymes, which would be expected if they have co-existed extensively throughout eukaryote

evolution. The ancient paralogy model also requires extensive loss of both GULO and GLDH. There is

clear evidence for multiple independent losses of GULO in animals and indications that GULO activity

may be deleterious under certain conditions, providing a potential selective pressure for gene loss

(Bánhegyi et al., 1996; Hiller et al., 2012). Similar evidence for the loss of GLDH in eukaryotes is

lacking. In addition, Arabidopsis mutants that lack GLDH cannot correctly assemble mitochondrial

complex I (Pineau et al., 2008), suggesting that loss of GLDH is likely to have many wider impacts on

metabolism.

The broad distribution of GULO supports an ancient evolutionary origin for this gene. It is present

in all of the eukaryote supergroups, including basally-derived lineages within the CCTH (Hacrobia) and

Archaeplastida and also in the Apusomonads. Although GLDH is also present in most of the eukaryote

supergroups (except the Amoebozoa), its distribution is primarily restricted to lineages that have

acquired a plastid or to isolated lineages (e.g., choanoflagellates). Whilst we cannot discount an

ancient origin for GLDH in the last common eukaryote ancestor, its distribution may also be

reasonably explained by the lateral gene transfer model.

In the lateral gene transfer scenario, either GULO or GLDH could represent a novel gene that arose

in a specific lineage and was then acquired by other eukaryotes through horizontal gene transfer

(HGT) or endosymbiotic gene transfer (EGT). However, the distribution of GULO cannot be

reasonably explained by lateral gene transfer, as this requires HGT on a massive scale specifically into

non-photosynthetic eukaryotes. In contrast, the distribution of GLDH can be largely explained by EGT

during plastid acquisition. GLDH may have arisen specifically in ancestral Archaeplastida after the

divergence of the glaucophytes and functionally replaced the ancestral gene (GULO). GLDH could

then have been transferred to the other photosynthetic lineages via EGT, resulting in the replacement

of GULO in lineages that acquired their plastids via secondary endosymbiosis (Figure 7). The presence
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of GLDH in some non-photosynthetic eukaryotes

may be explained by the evolutionary acquisition

of a plastid that was subsequently lost. For

example, there is some evidence to support

plastid loss in non-photosynthetic stramenopiles,

although the number and timing of plastid

acquisition events via secondary endosymbiosis

remains a subject of significant debate (Keeling,

2010). The choanoflagellates have not acquired

a plastid at any stage, but there is evidence for

large scale horizontal gene transfer (HGT) from

algae into this lineage, including the HGT of APX

(Nedelcu et al., 2008). Choanoflagellates may

therefore have acquired GLDH via HGT along

with these other algal genes. EGT of GLDH is

a more parsimonious scenario than ancient

paralogy, as it requires fewer independent loss

events. However, the poor resolution of the

phylogenies within the GLDH clade means that

direct evidence for either EGT or HGT between

lineages is lacking.

Evolution of alternative pathways
Both the ancient paralogy and EGT evolutionary

scenarios are plausible in the wider context of

ascorbate biosynthesis. However, the EGT sce-

nario provides a clear rationale to explain why

photosynthetic eukaryotes with primary plastids

exhibit a different pathway from those with

secondary plastids. Our biochemical evidence

suggests that ancestral Archaeplastida devel-

oped a non-inversion pathway via L-galactose

that employed the broad specificity of GULO to

oxidise L-GalL. The development of GLDH in

ancestral Archaeplastida would have led to the

eventual replacement of GULO in all red and

green algal lineages, except Galdieria and

Chlorokybus, resulting in the non-inversion

plant-type pathway found in extant Archaeplas-

tida. In the photosynthetic eukaryotes with secondary plastids, it is likely that the host initially

synthesised ascorbate via an animal-type pathway (involving inversion of chain and GULO) and that

the red or green algal symbiont used a plant-type pathway (involving non-inversion of the carbon

chain and GLDH). However, neither pathway appears to operate in photosynthetic eukaryotes with

secondary plastids, which instead use a euglenid-type pathway. We propose that EGT of GLDH from

the symbiont could have resulted in functional replacement of GULO in the animal-type pathway of

the host, leading to a hybrid biosynthetic pathway that employed D-galacturonate rather than

D-glucuronate as an intermediate in order to provide L-GalL as a substrate for GLDH. The hybrid

pathway therefore involves inversion of the carbon chain of D-glucose and GLDH. The generation of

a hybrid pathway suggests that photosynthetic eukaryotes with secondary plastids only acquired

GLDH by EGT rather than the entire plant pathway.

In conclusion, the distribution of GULO and GLDH in eukaryotes may be explained by either of two

evolutionary models; ancient paralogy followed by differential gene loss or EGT of GLDH followed by

GULO loss. We favour the EGT scenario as the most parsimonious and the most consistent with the

biochemical evidence, but we cannot rule out either scenario based on the current evidence.

Therefore our evolutionary analyses do not allow us to definitively identify the origin of GLDH.

Figure 6. Evolutionary scenarios for GULO and GLDH.

The scheme illustrates two most likely evolutionary

scenarios responsible for the distribution of GULO and

GLDH in eukaryotes. In the ancient paralogy scenario,

an ancient gene duplication in the last common

eukaryote ancestor results in the presence of two

functionally similar genes, GULO and GLDH, followed

by differential loss of either gene in each lineage. In the

endosymbiotic gene transfer (EGT) scenario, GULO

represents the ancestral gene and GLDH represents

a novel gene that arose in a specific lineage. EGT of

GLDH (red dashed arrow) to other photosynthetic

lineages (green ovals) enables functional replacement of

the ancestral gene. Note that GULO represents an

ancestral gene in both of these evolutionary scenarios.

DOI: 10.7554/eLife.06369.012
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However, they do enable clear conclusions to be made on the loss ofGULO. Both evolutionary models

support GULO as an ancestral gene in the last common eukaryote ancestor, indicating that GULO has

been lost in almost all photosynthetic eukaryotes. Therefore, we can conclude that photosynthetic

eukaryotes encountered strong selective pressure to replace the function of GULO in ascorbate

biosynthesis.

Selective pressures underlying evolution of ascorbate biosynthesis
The critical role of ascorbate in photoprotection has been demonstrated in a diversity of

photosynthetic eukaryotes, including land plants, green algae, diatoms and euglenids (Lavaud and

Kroth, 2006; Ishikawa et al., 2010; Mellado et al., 2012; Urzica et al., 2012). Our analyses indicate

Figure 7. A proposed evolutionary model of ascorbate biosynthesis. The scheme illustrates the proposed events in

the EGT evolutionary model of eukaryote ascorbate biosynthesis. In this scenario, ancestral eukaryotes synthesised

ascorbate via GULO. GLDH arose in the Archaeplastida following primary endosymbiosis of a cyanobacterium, after

the divergence of the glaucophyte lineage. GLDH functionally replaced GULO in the red and green algal lineages,

coinciding with the rise of the photoprotective role of ascorbate. Plastid acquisition via secondary endosymbiosis of

either a green or red alga resulted in endosymbiotic gene transfer of GLDH and replacement of GULO. As these

organisms became the dominant primary producers in many ecosystems, a series of trophic interactions (dotted

lines) resulted in the loss of GULO in non-photosynthetic organisms, either by providing a ready supply of dietary

ascorbate (resulting in ascorbate auxotrophy in heterotrophic organisms) or through putative horizontal gene

transfer of GLDH (e.g., choanoflagellates). For clarity, not all potential trophic interactions are shown.

DOI: 10.7554/eLife.06369.013
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that many photosynthetic eukaryotes possessed GULO prior to plastid acquisition, whereas almost all

extant photosynthetic lineages use GLDH to synthesise ascorbate. The selective pressure to replace

GULO in ascorbate biosynthesis following plastid acquisition could therefore be linked to the

photoprotective role of ascorbate. One intriguing possibility is that the production of H2O2 by GULO

may have limited the ability of the host cell to protect itself against ROS derived from the chloroplast.

Ancestral eukaryotes developed multiple antioxidant mechanisms to protect themselves from ROS

derived from organelles such as the peroxisome and the mitochondria. However, the acquisition of

a photosynthetic cyanobacterial endosymbiont in the Archaeplastida would have resulted in a greatly

increased requirement for cellular antioxidants to protect the host cell from H2O2 secreted by the

plastid. Ascorbate, synthesised in the host cell but not in the cyanobacterial endosymbiont, appears to

have been recruited to this role after the divergence of the glaucophytes. The recruitment of

ascorbate as a major cellular antioxidant in photosynthetic eukaryotes may have led to an increased

requirement for ascorbate biosynthesis. However, ascorbate biosynthesis via GULO results in the

production of H2O2 in the ER lumen. In mammalian cells, this results in a damaging depletion and

oxidation of the glutathione pool when ascorbate synthesis is increased by feeding L-GulL (Bánhegyi

et al., 1996; Puskás et al., 1998). Ancestral photosynthetic eukaryotes may have been unable to

balance their increasing requirements for ascorbate biosynthesis with maintenance of the redox status

within the ER, providing selective pressure to uncouple ascorbate biosynthesis from H2O2 production.

This hypothesis is consistent with the presence of GULO rather than GLDH in the glaucophytes.

As glaucophytes do not appear to use ascorbate for photoprotection, ascorbate biosynthesis would not

have been subjected to the same selective pressures as other photosynthetic eukaryotes. This rationale

may also apply to the retention ofGULO inGaldieria, which is likely to have both possessed bothGULO

and GLDH. Galdieria is photosynthetic and expresses a functional APX (Sano et al., 2001), but it is very

sensitive to even moderate light intensities and grows primarily in an endolithic environment utilising

heterotrophic carbon sources (Oesterhelt et al., 2007). Thus, photo-oxidative stress in this

environment may be minimal, reducing the selective pressure in Galdieria to replace GULO.

Evolution of ascorbate auxotrophy in animals
The evolution of vitamin auxotrophy underpins many important nutritional and ecological interactions

between organisms (Helliwell et al., 2013). The selective pressures resulting in GULO loss in animals

represent a combination of the costs of ascorbate synthesis (including detoxification of H2O2 derived

from GULO), the physiological requirements for ascorbate and the ecological factors that determine

the supply of dietary ascorbate throughout their life cycle. The development of the photoprotective

role of ascorbate in photosynthetic eukaryotes would have significantly altered its availability to many

heterotrophic organisms. The leaves of land plants have particularly high cellular concentrations of

ascorbate relative to other photosynthetic eukaryotes (Gest et al., 2013), which may result from their

inability to remove intracellular H2O2 via diffusion to an aquatic medium. Our dataset reveals that in

almost all documented cases of ascorbate auxotrophy in animals, the major source of dietary

ascorbate derives from GLDH rather than GULO (Table 1). This is the case even for insectivorous

animals, as insects appear to lack GULO and must also obtain ascorbate in their diet, primarily from

land plants. Thus, the replacement of GULO with GLDH in photosynthetic organisms may have

ultimately been an important contributory factor in the loss of GULO in many animal auxotrophs.

The pseudogenisation ofGULO in primates, bats and guinea pigs is one of the best known examples

of evolutionary gene loss (Drouin et al., 2011). Through a wider analysis of ascorbate biosynthesis, we

have identified that GULO has also been lost in photosynthetic eukaryotes. Photosynthetic eukaryotes

functionally replaced GULO with an alternative terminal enzyme, GLDH, which uncoupled ascorbate

biosynthesis from H2O2 production and potentially aided the important photoprotective role of

ascorbate. These developments in photosynthetic eukaryotes may have ultimately contributed to the

loss of GULO in many herbivorous animals, by influencing their supply of dietary ascorbate.

Materials and methods

Bioinformatics
A broad range of eukaryote genomes were selected for detailed analyses (Supplementary file 5).

Sequence similarity searches were used to identify candidate genes involved in ascorbate

biosynthesis. Genomic searches were initially performed using BLASTP with mouse or Arabidopsis
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proteins. All instances of protein absence were confirmed using TBLASTN against the genome with

additional searches using sequences from closely related organisms. Sequence similarity searches of

transcriptomic datasets were used to identify trends in the presence of ascorbate biosynthesis genes,

but were not used to infer absence. Proteins recovered from sequence similarity searches were

identified using a combination of BLAST score, manual inspection of conserved residues in multiple

sequence alignments and their position in phylogenetic trees generated by both neighbour-joining

and maximum likelihood method within the MEGA5 software package (Tamura et al., 2011).

For detailed phylogenetic analysis of GULO and GLDH, multiple sequence alignments were

generated using MUSCLE. Poorly aligned regions were removed by manual inspection and the

alignments were further refined using GBLOCKS 0.91b to remove ambiguously aligned sites (Talavera

and Castresana, 2007), resulting in an alignment of 263 amino acids. ProtTest (Abascal et al., 2005)

was used to determine the best substitution model (WAG with gamma and invariant sites) (Whelan

and Goldman, 2001). Maximum likelihood phylogenetic trees were generated using PhyML3.0

software with 100 bootstraps. Bayesian posterior probabilities were calculated using BEAST v1.8

(Drummond et al., 2012), running for 10,000,000 generations, with a burn-in of 1,000,000

generations. As the phylogenetic relationships within the GLDH clade were not well resolved, further

unrooted phylogenetic analyses of GLDH were performed using an individual multiple sequence

alignment to allow more positions to be used.

Biochemical analyses of ascorbate metabolism in rhodophytes
Galdieria sulphararia 074G was grown in Galdieria Medium (GM) (CCCryo, Potsdam-Golm, Germany)

at 30˚C, light intensity 50 μmol m−2 s−1. Porphyra umbilicalis was collected from Maer Rocks, Exmouth,

UK (50˚ 36′ 31.6′′ N 3˚ 23′ 27.0′′ W). L-Galactose dehydrogenase activity was measured in ammonium

sulphate (50% saturation) precipitates of Porphyra thallus protein extracts (Gatzek et al., 2002). To

Table 1. Dietary sources of ascorbate in animal auxotrophs

Animal auxotroph

Primary dietary source

of ascorbate

Ultimate dietary source

of ascorbate

Enzyme for

ascorbate synthesis References

Primates Land plants GLDH (Milton and Jenness, 1987)

Guinea pig Land plants GLDH

Bats Land plants GLDH (Birney et al., 1976; Milton and
Jenness, 1987; Cui et al., 2011b)

Insects Land plants GLDH

Fish Phytoplankton GLDH

Blood GULO

Passerine birds Land plants GLDH (Drouin et al., 2011)

Insects Land plants GLDH

Small vertebrates GULO

Teleost fish Zooplankton (crustacea) Phytoplankton GLDH (Dabrowski, 1990)

Phytoplankton GLDH

Crustacea Phytoplankton GLDH (Desjardins et al., 1985; Hapette and
Poulet, 1990)

Phytophagous insects Land plants GLDH (Pierre, 1962; Dadd, 1973)

Major sources of dietary ascorbate were identified in known animal auxotrophs. This information allows us to assess which terminal enzyme contributed to

the production of dietary ascorbate. In nearly all cases the major source of dietary ascorbate is most likely to have been derived from GLDH. Phylogenetic

analyses suggest GULO has been lost on multiple independent occasions throughout the Chiroptera (bats). Although ancestral bats may have been

primarily insectivores, various sources of dietary ascorbate may have contributed to GULO loss. The passerine birds that are unable to synthesise

ascorbate are primarily herbivores or insectivores. However, some members of the Lanius genus (shrikes) feed also on small vertebrates, in addition to

insects. Most teleost fish are believed to be ascorbate auxotrophs due to loss of GULO. As zooplankton (primarily crustacea) are also ascorbate auxtrophs,

phytoplankton are likely to be the ultimate source of dietary ascorbate. Reports suggest the ability of crustacea to synthesise ascorbate is either absent or

very weak, although the taxonomic sampling and currently available genomic resources are limited. Most, but not all, phytophagous insects have a dietary

requirement for ascorbate, and we did not find GULO in any insect genomes. Note also that some species of insect (e.g., cockroaches) may obtain

ascorbate from eukaryote endosymbionts, which may allow them to survive on ascorbate-poor diets.

DOI: 10.7554/eLife.06369.014
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determine the impact of exogenous precursors on ascorbate, Galdieria cultures or slices of Porphyra

thallus were incubated with sugars or aldonic acid lactones (25 mM Galdieria, 10 mM Porphyra) for

24 hr in GM or artificial sea water (Instant Ocean, Aquarium Systems, Sarrebourg, France). Galdieria

cultures (15 ml) were harvested by centrifugation and extracted with 0.5 ml 80% methanol containing

0.1% formic acid using sonication in the presence of glass beads. Porphyra thallus was powdered in

liquid nitrogen followed by homogenisation in 80% methanol (0.1 g thallus in 0.5 ml extractant).

Homogenates were centrifuged (10 min at 16,000×g, 4˚C). Supernatants (100 μl) were dried into glass

vials, methoximated trimethylsilyl derivatives were prepared (Lisec et al., 2006) and analysed by

accurate mass GC-EI-qToF MS (Agilent 7200, Agilent Technologies, Santa Clara, CA, USA).

Derivatives were injected (0.2–0.4 μl, 1/2 to 1/50 split ratio) onto a Zebron SemiVolatiles GC column

(30 m analytical + 10 m guard length, 0.25 mm internal diameter, 0.25 μm film thickness,

Phenomenex, Macclesfield, UK) using He carrier gas (1.2 ml min−1). Injector temperature was 250˚C

and column temperature program was 70˚C for 4 min, followed by an increase to 310˚C at 15˚C/min.

The column was held at the final temperature for 6 min. Compounds were fragmented at 70 eV and

MS spectra were collected (50–600 amu at 5 spectra s−1). Ascorbate is oxidised to dehydroascorbate

(DHA) during derivatisation and DHA was identified by co-chromatography and comparison of

accurate mass spectra with an ascorbate standard. The position of stable isotope incorporation from

[1-13C]-D-glucose and [6-13C]-D-glucose into ascorbate was identified using mass spectra obtained

from injection of [1-13C]-ascorbate derivatives. C6 of DHA was found in fragments with m/z values of

157.046 and 245.1029, while m/z 316.1038 contained C1 and C6. 13C enrichment was assessed by the

relative abundance of m + 1 for each fragment relative to the 12C ascorbate standard.13C-labelled

compounds were obtained from Omicron Biochemicals (South Bend, IN, USA) and all other chemicals

were from Sigma–Aldrich (Dorset, UK).

Molecular analyses
Reverse transcriptase PCR was used to verify the expression of GULO in C. paradoxa (CCAP 981/1)

and confirm its coding sequence. RNA was prepared using the TRIzol method (Invitrogen, Paisley, UK)

from C. paradoxa cultures grown in standard medium (MWC), at 20˚C, 16:8 light:dark, light

intensity 50 μmol m−2 s−1. Reverse-transcriptase PCR was performed using a gene specific primer

(GGAACTCCTCGAACTTGGGG) for reverse transcription, followed by amplification of a 1017 base

pair region using the following PCR primers: GTCGCCCCTTCTGAGCATAG (forward) and

CATGAGCGCGTCGAAGTCT (reverse). NCBI accession number KJ957823.

Euglena transcriptome sequencing
Euglena gracilis (strain Z) was grown in Koren-Hutner medium (KH) under continuous illumination

(24 μmol m−2 s−1) at 26˚C. RNA was harvested by the TRIzol method and used to prepare cDNA.

Paired end reads were generated by Illumina sequencing technology resulting in a total of

193,472,913 reads. De novo assembly was carried out using Trinity (Haas et al., 2013), followed by

further clustering with TGICL (Pertea et al., 2003).

Alternative routes for ascorbate biosynthesis
The three major routes of ascorbate biosynthesis described in Figure 1 are well supported by

biochemical and molecular evidence. However, there is some evidence to suggest that some classes

of eukaryotes may use alternative routes to ascorbate or use multiple routes. These pathways are

reviewed comprehensively elsewhere (Loewus, 1999; Smirnoff, 2000; Linster et al., 2007) but the

implications for our findings are highlighted below.

Land plants
Ascorbate in land plants is synthesised predominately via a non-inversion pathway through GDP-D-

mannose and L-galactose in which carbon atom 1 (C1) of the precursor hexose remains as C1 in

ascorbate (Loewus and Jang, 1958; Loewus, 1999). Genetic evidence from a range of ascorbate-

deficient Arabidopsis mutants indicates that the D-mannose/L-galactose pathway is the primary route

of ascorbate biosynthesis (Conklin et al., 1999, 2006; Dowdle et al., 2007; Smirnoff, 2011). For

example, Arabidopsis vtc2 vtc5 double mutants lacking GDP-L-Gal phosphorylase activity are not

viable unless supplemented with ascorbate, suggesting no other route can supply sufficient ascorbate

to rescue this defect (Dowdle et al., 2007). However, a number of other routes to ascorbate in plants
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have been proposed. Plants can potentially use D-galacturonate as an ascorbate precursor, and this

alternative route may contribute to ascorbate synthesis in certain tissue types, such as fruits

(Isherwood and Mapson, 1956; Badejo et al., 2012). GDP-L-gulose, formed during the activity of

GDP-mannose epimerase in vitro (Wolucka and Van Montagu, 2003), could provide L-GulL, which

could contribute to ascorbate synthesis via the GULO-like enzymes found in land plants (Maruta

et al., 2010). Overexpression of Arabidopsis GULO-like genes in tobacco cell lines increased cellular

ascorbate concentration in the presence of exogenous L-GulL (Maruta et al., 2010). Oxidation of

myo-inositol is another potential source of L-GulL (Lorence et al., 2004; Lisko et al., 2013). However,

more definitive biochemical and genetic evidence for these alternative pathways is required in order

to assess whether these pathways contribute significantly to ascorbate biosynthesis in plants. The

evidence for the alternative pathways is largely based on increased ascorbate production after ectopic

expression of genes or addition of exogenous substrates. This approach leaves open the possibility

that these pathways are not active in wild type plants. The critical experiments, in which the proposed

enzymes are mutated or knocked out, have not been reported.

Our evolutionary analyses indicate that GULO and GLDH co-existed in ancestral Archaeplastida,

suggesting that multiple pathways of ascorbate biosynthesis were operational in these organisms. Whilst

the ‘plant pathway’ via GLDH is clearly the primary biosynthetic route in extant land plants, the presence

of minor alternative pathways such as those listed above may reflect this ancestry of shared pathways.

Prasinophytes
The genomes of the prasinophyte algae Ostreococcus and Micromonas are unusual amongst the

Viridiplantae in that they lack L-galactose dehydrogenase and GDP-mannose pyrophosphorylase

(Urzica et al., 2012). However, it is likely that these prasinophytes can generate GDP-D-mannose,

either through an unidentified alternative enzyme activity (as proposed in brown algae [Michel et al.,

2010]) or through the transferase activity of VTC2. Furthermore, we identified L-fucose (6-deoxy-L-

galactose) dehydrogenase in all Ostreococcus and Micromonas genomes. L-fucose dehydrogenase

also exhibits activity with L-galactose (Schachter et al., 1969) and it therefore may functionally replace

L-galactose dehydrogenase in these prasinophytes. Analysis of the Marine Microbial Eukaryote

Transcriptome dataset revealed that L-fucose dehydrogenase is present in many other prasinophytes

including members of the Prasinococcales, Pycnococcaceae and the Pyramimonadaceae. The only

prasinophyte identified with L-galactose dehydrogenase was Nephroselmis pyriformis (Nephroselmi-

dophyceae). The Chlorodendrophyceae lineage containing Tetraselmis spp. also possess L-galactose

dehydrogenase.

Trypanosomes
GULO from trypanosomes exhibits activity with D-AraL or L-GalL but not L-GulL, and is therefore referred

to as L-GalL oxidase (Wilkinson et al., 2005; Logan et al., 2007; Kudryashova et al., 2011). The source

of L-GalL in trypanosomes has not been determined. We did not find evidence for L-galactose

dehydrogenase or the other enzymes in the D-mannose/L-galactose pathway in trypanosome genomes.

Fungi
The fungi synthesise a range of ascorbate analogues, including 6-deoxy-L-ascorbate, ascorbate

glycosides and the five carbon analogue, D-erythroascorbate (Loewus, 1999). Yeasts synthesise

D-erythroascorbate from D-arabinose via D-AraL and these final steps are therefore analogous to the

D-mannose/L-galactose pathway. Deletion of ALO1 encoding D-AraL oxidase in Saccharomyces

cerevisiae results in increased sensitivity to oxidative stress but the mutants are still viable (Huh et al.,

1994). Until both the biosynthesis and the physiological roles of these analogues are better understood,

it is difficult to understand how the biosynthesis of the fungal ascorbate analogues may have evolved.

Prokaryotes
There is little evidence to suggest that prokaryotes synthesise ascorbate de novo. GULO and GLDH

are essentially absent from prokaryotes. Extensive sequence similarity searches identified a single

GULO sequence in the cyanobacterium Rivularia sp PCC 7116 (WP_015122198.1), but all other

cyanobacteria lack GULO. An enzyme exhibiting L-GulL dehydrogenase activity has been cloned from

Mycobacterium tuberculosis and a similar enzyme is present in a range of other prokaryotes (Wolucka

and Communi, 2006). While the presence of this enzyme suggests some prokaryotes have the

capacity for ascorbate synthesis, specific evidence for in vivo ascorbate biosynthesis is lacking. There

is a single report indicating that some cyanobacteria contain very low concentrations of ascorbate
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(Tel-Or et al., 1986), although the analytical method used (2,4-dinitrophenylhydrazine) may not be

sufficiently specific for ascorbate at these concentrations (Roe, 1961). Prokaryotes lack ascorbate

peroxidase and it is likely that early reports of ascorbate peroxidase activity in cyanobacteria were due

to the activity of other forms of peroxidase (Bernroitner et al., 2009).

Chromerids
The chromerids are photosynthetic relatives of the apicomplexa (Janouskovec et al., 2010) and are

the only organisms in our analyses that have acquired a plastid via secondary endosymbiosis and

retained GULO. C. velia utilises the xanthophyll cycle for non-photochemical quenching (Kotabová

et al., 2011), suggesting that ascorbate performs a photoprotective role in chromerids by acting as

a co-factor for violaxanthin de-epoxidase (VDE). We found homologues of VDE and VDE-like proteins

in the C. velia transcriptome, as well as monodehydroascorbate reductase (MDHAR). The presence of

GULO rather than GLDH in C. velia may relate to the unusual mitochondria of apicomplexans.

Apicomplexans lack complex I of the mitochondrial electron transport chain (Danne et al., 2013),

which may have influenced their ability to acquire and/or utilise GLDH, as GLDH is incorporated into

complex I in land plants (Schertl et al., 2012). However, the genomes of the parasitic apicomplexa all

appear to lack both GULO and GLDH. It should be noted that dinoflagellates also lack mitochondrial

complex I but possess GLDH (Supplementary file 2).
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substrate specificity to GULO, but exhibits a high degree of sequence similarity and has been classed

as GULO in the table.
DOI: 10.7554/eLife.06369.015

· Supplementary file 2. Identification of GULO and GLDH in marine microbial eukaryote

transcriptomes. Data from the Marine Microbial Eukaryote Transcriptome Sequencing Project

(MMETSP, http://marinemicroeukaryotes.org/) were analysed for the terminal enzymes in ascorbate

biosynthesis. This dataset contains 679 transcriptomes from 320 different species. Sequence similarity

searches used a stringent length cut off to avoid ambiguous results from incompletely sequenced gene

products (minimum length 300 amino acids). Using these criteria, we identified GULO or GLDH in 165

species. Although the absence of a gene in a transcriptome cannot be used to infer absence, we found

no examples of organisms that possess both GULO and GLDH, even when a more relaxed length

criterion was used (minimum length 100 amino acids). Note that the underlined GLDH sequences from

the ciliatesMyrionecta and Strombidinopsis are 100% identical to sequences recovered from their prey

(respectively Geminigera cryophila and Isochrysis galbana). These sequences may therefore be due to

contamination. Alternatively, as both these ciliates exhibit kleptoplasty, the presence of algal GLDH

sequences in the ciliate transcriptome may also represent examples of plastid-related nuclear genes

that are retained and transcribed to aid plastid function (Johnson et al., 2007). In the latter scenario,

these ciliates could therefore use GLDH to temporarily synthesise ascorbate during plastid acquisition.
DOI: 10.7554/eLife.06369.016

· Supplementary file 3. Identification of VTC2 in marine microbial eukaryote transcriptomes. Data

from the Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) was analysed for

VTC2, encoding GDP-L-galactose phosphorylase, the first committed step in land plant ascorbate

biosynthesis. Sequence similarity searches used a stringent cut off to avoid ambiguous results from

incompletely sequenced gene products (minimum length 300 amino acids). VTC2 was identified in 37

species, all of which belong to the Chlorophyta. Genes exhibiting weak similarity to GDP-L-galactose

phosphorylase, which may represent homologues of GDP-D-glucose phosphorylase (Adler et al.,

2011), were not included in these results.
DOI: 10.7554/eLife.06369.017

· Supplementary file 4. Distribution of ascorbate biosynthetic genes in Archaeplastida tran-

scriptomes. Rhodophyte transcriptomes from the Marine Microbial Eukaryote Transcriptome

Sequencing Project (MMETSP) or Genbank (Chan et al., 2011, 2012) were examined for the

presence of ascorbate biosynthesis genes. The rhodophytes transcriptomes all exhibit the pathway

found in the genomes of Cyanidioschyzon merolae, Chondrus crispus and Porphyridium purpureum,

possessing GLDH rather than GULO. C. atmophyticus is a green alga belonging to the Streptophyte

lineage containing land plants and charophyte algae. The Chlorokybus transcriptome appears unique

amongst the Viridiplantate in that it contains GULO rather than GLDH. All of the other enzymes of the

plant pathway are present.
DOI: 10.7554/eLife.06369.018

· Supplementary file 5. Genome resources used in this study. A list of the eukaryote genomes used to

study the distribution of genes relating to ascorbate biosynthesis and metabolism.
DOI: 10.7554/eLife.06369.019
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Keeling
PJ
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Publicly available at the NCBI
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Kotabová E, Kaňa R, Jarešová J, Prášil O. 2011. Non-photochemical fluorescence quenching in Chromera velia is
enabled by fast violaxanthin de-epoxidation. FEBS Letters 585:1941–1945. doi: 10.1016/j.febslet.2011.05.015.

Kudryashova EV, Leferink NG, Slot IG, van Berkel WJ. 2011. Galactonolactone oxidoreductase from Trypanosoma
cruzi employs a FAD cofactor for the synthesis of vitamin C. Biochimica Et Biophysica Acta 1814:545–552. doi: 10.
1016/j.bbapap.2011.03.001.

Laing WA, Wright MA, Cooney J, Bulley SM. 2007. The missing step of the L-galactose pathway of ascorbate
biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proceedings of the
National Academy of Sciences of USA 104:9534–9539. doi: 10.1073/pnas.0701625104.

Latifi A, Ruiz M, Zhang CC. 2009. Oxidative stress in cyanobacteria. FEMS Microbiology Reviews 33:258–278.
doi: 10.1111/j.1574-6976.2008.00134.x.

Lavaud J, Kroth PG. 2006. In diatoms, the transthylakoid proton gradient regulates the photoprotective non-
photochemical fluorescence quenching beyond its control on the xanthophyll cycle. Plant & Cell Physiology 47:
1010–1016. doi: 10.1093/pcp/pcj058.

Lazzarotto F, Teixeira FK, Rosa SB, Dunand C, Fernandes CL, Fontenele Ade V, Silveira JA, Verli H, Margis R,
Margis-Pinheiro M. 2011. Ascorbate peroxidase-related (APx-R) is a new heme-containing protein functionally
associated with ascorbate peroxidase but evolutionarily divergent. New Phytologist 191:234–250. doi: 10.1111/j.
1469-8137.2011.03659.x.

Wheeler et al. eLife 2015;4:e06369. DOI: 10.7554/eLife.06369 22 of 25

Research article Genomics and evolutionary biology | Plant biology

http://dx.doi.org/10.1038/nprot.2013.084
http://dx.doi.org/10.1038/nprot.2013.084
http://dx.doi.org/10.1080/01483919008049549
http://dx.doi.org/10.1016/j.tig.2013.03.003
http://dx.doi.org/10.1104/pp.69.2.465
http://dx.doi.org/10.1016/j.celrep.2012.08.032
http://dx.doi.org/10.1021/bi500656m
http://dx.doi.org/10.1111/j.1432-1033.1994.1073b.x
http://dx.doi.org/10.1111/j.1432-1033.1994.1073b.x
http://dx.doi.org/10.1042/BJ20091406
http://dx.doi.org/10.1271/bbb.60327
http://dx.doi.org/10.1073/pnas.1003335107
http://dx.doi.org/10.1016/j.ejop.2014.06.001
http://dx.doi.org/10.1038/nature05496
http://dx.doi.org/10.1098/rstb.2009.0103
http://dx.doi.org/10.1371/journal.pbio.1001889
http://dx.doi.org/10.1073/pnas.0404505101
http://dx.doi.org/10.1016/j.febslet.2011.05.015
http://dx.doi.org/10.1016/j.bbapap.2011.03.001
http://dx.doi.org/10.1016/j.bbapap.2011.03.001
http://dx.doi.org/10.1073/pnas.0701625104
http://dx.doi.org/10.1111/j.1574-6976.2008.00134.x
http://dx.doi.org/10.1093/pcp/pcj058
http://dx.doi.org/10.1111/j.1469-8137.2011.03659.x
http://dx.doi.org/10.1111/j.1469-8137.2011.03659.x
http://dx.doi.org/10.7554/eLife.06369


Leferink NG, Fraaije MW, Joosten HJ, Schaap PJ, Mattevi A, van Berkel WJ. 2009. Identification of a gatekeeper
residue that prevents dehydrogenases from acting as oxidases. The Journal of Biological Chemistry 284:
4392–4397. doi: 10.1074/jbc.M808202200.

Leferink NG, Heuts DP, Fraaije MW, van Berkel WJ. 2008. The growing VAO flavoprotein family. Archives of
Biochemistry and Biophysics 474:292–301. doi: 10.1016/j.abb.2008.01.027.

Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O. 2012. Phylogeny and
molecular evolution of the Green algae. Critical Reviews in Plant Sciences 31:1–46. doi: 10.1080/07352689.2011.
615705.

Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, Brenner C, Clarke SG. 2007. Arabidopsis VTC2
encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to
ascorbic acid in plants. The Journal of Biological Chemistry 282:18879–18885. doi: 10.1074/jbc.M702094200.

Linster CL, Van Schaftingen E. 2007. Vitamin C. Biosynthesis, recycling and degradation in mammals. The FEBS
Journal 274:1–22. doi: 10.1111/j.1742-4658.2006.05607.x.

Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. 2006. Gas chromatography mass spectrometry-based
metabolite profiling in plants. Nature Protocols 1:387–396. doi: 10.1038/nprot.2006.59.

Lisko KA, Hubstenberger JF, Phillips GC, Belefant-Miller H, McClung A, Lorence A. 2013. Ontogenetic changes in
vitamin C in selected rice varieties. Plant Physiology and Biochemistry 66:41–46. doi: 10.1016/j.plaphy.2013.01.
016.

Loewus FA. 1999. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi.
Phytochemistry 52:193–210. doi: 10.1016/S0031-9422(99)00145-4.

Loewus FA, Jang R. 1958. The conversion of C14-labeled sugars to L-ascorbic acid in ripening strawberries. II.
Labeling patterns in the free sugars. The Journal of Biological Chemistry 232:505–519.

Logan FJ, Taylor MC, Wilkinson SR, Kaur H, Kelly JM. 2007. The terminal step in vitamin C biosynthesis in
Trypanosoma cruzi is mediated by a FMN-dependent galactonolactone oxidase. The Biochemical Journal 407:
419–426. doi: 10.1042/BJ20070766.

Lorence A, Chevone BI, Mendes P, Nessler CL. 2004. myo-inositol oxygenase offers a possible entry point into
plant ascorbate biosynthesis. Plant Physiology 134:1200–1205. doi: 10.1104/pp.103.033936.

Mandl J, Szarka A, Banhegyi G. 2009. Vitamin C: update on physiology and pharmacology. British Journal of
Pharmacology 157:1097–1110. doi: 10.1111/j.1476-5381.2009.00282.x.

Maruta T, Ichikawa Y, Mieda T, Takeda T, Tamoi M, Yabuta Y, Ishikawa T, Shigeoka S. 2010. The contribution of
Arabidopsis homologs of L-gulono-1,4-lactone oxidase to the biosynthesis of ascorbic acid. Bioscience,
Biotechnology, and Biochemistry 74:1494–1497. doi: 10.1271/bbb.100157.

Mellado M, Contreras RA, Gonzalez A, Dennett G, Moenne A. 2012. Copper-induced synthesis of ascorbate,
glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta). Plant Physiology and
Biochemistry 51:102–108. doi: 10.1016/j.plaphy.2011.10.007.

Mhamdi A, Noctor G, Baker A. 2012. Plant catalases: peroxisomal redox guardians. Archives of Biochemistry and
Biophysics 525:181–194. doi: 10.1016/j.abb.2012.04.015.

Michel G, Tonon T, Scornet D, Cock JM, Kloareg B. 2010. Central and storage carbon metabolism of the brown
alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in Eukaryotes. The
New Phytologist 188:67–81. doi: 10.1111/j.1469-8137.2010.03345.x.

Milton K, Jenness R. 1987. Ascorbic-acid content of Neotropical plant-parts available to wild monkeys and bats.
Experientia 43:339–342. doi: 10.1007/Bf01945577.

Mubarakshina MM, Ivanov BN, Naydov IA, Hillier W, Badger MR, Krieger-Liszkay A. 2010. Production and
diffusion of chloroplastic H2O2 and its implication to signalling. Journal of Experimental Botany 61:3577–3587.
doi: 10.1093/jxb/erq171.

Naydov IA, Mubarakshina MM, Ivanov BN. 2012. Formation kinetics and H2O2 distribution in chloroplasts and
protoplasts of photosynthetic leaf cells of higher plants under illumination. Biochemistry Biokhimiia 77:143–151.
doi: 10.1134/S0006297912020046.

Nedelcu AM, Miles IH, Fagir AM, Karol K. 2008. Adaptive eukaryote-to-eukaryote lateral gene transfer: stress-
related genes of algal origin in the closest unicellular relatives of animals. Journal of Evolutionary Biology 21:
1852–1860. doi: 10.1111/j.1420-9101.2008.01605.x.

Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K. 1994. Cloning and chromosomal mapping of the
human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis
missing in man. The Journal of Biological Chemistry 269:13685–13688.

Nishikimi M, Kawai T, Yagi K. 1992. Guinea pigs possess a highly mutated gene for L-gulono-gamma-lactone
oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this species. The Journal of Biological
Chemistry 267:21967–21972.

Oesterhelt C, Schmalzlin E, Schmitt JM, Lokstein H. 2007. Regulation of photosynthesis in the unicellular
acidophilic red alga Galdieria sulphuraria. The Plant Journal 51:500–511. doi: 10.1111/j.1365-313X.2007.
03159.x.

Percival E. 1979. Polysaccharides of green, red and brown seaweeds - their basic structure, biosynthesis and
function. British Phycological Journal 14:103–117. doi: 10.1080/00071617900650121.

Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J,
Quackenbush J. 2003. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large
EST datasets. Bioinformatics 19:651–652. doi: 10.1093/bioinformatics/btg034.

Pierre LL. 1962. Synthesis of ascorbic acid by the normal fatbody of the cockroach, Leucophaea maderae (F.), and
by its symbionts. Nature 193:904–905. doi: 10.1038/193904b0.

Wheeler et al. eLife 2015;4:e06369. DOI: 10.7554/eLife.06369 23 of 25

Research article Genomics and evolutionary biology | Plant biology

http://dx.doi.org/10.1074/jbc.M808202200
http://dx.doi.org/10.1016/j.abb.2008.01.027
http://dx.doi.org/10.1080/07352689.2011.615705
http://dx.doi.org/10.1080/07352689.2011.615705
http://dx.doi.org/10.1074/jbc.M702094200
http://dx.doi.org/10.1111/j.1742-4658.2006.05607.x
http://dx.doi.org/10.1038/nprot.2006.59
http://dx.doi.org/10.1016/j.plaphy.2013.01.016
http://dx.doi.org/10.1016/j.plaphy.2013.01.016
http://dx.doi.org/10.1016/S0031-9422(99)00145-4
http://dx.doi.org/10.1042/BJ20070766
http://dx.doi.org/10.1104/pp.103.033936
http://dx.doi.org/10.1111/j.1476-5381.2009.00282.x
http://dx.doi.org/10.1271/bbb.100157
http://dx.doi.org/10.1016/j.plaphy.2011.10.007
http://dx.doi.org/10.1016/j.abb.2012.04.015
http://dx.doi.org/10.1111/j.1469-8137.2010.03345.x
http://dx.doi.org/10.1007/Bf01945577
http://dx.doi.org/10.1093/jxb/erq171
http://dx.doi.org/10.1134/S0006297912020046
http://dx.doi.org/10.1111/j.1420-9101.2008.01605.x
http://dx.doi.org/10.1111/j.1365-313X.2007.03159.x
http://dx.doi.org/10.1111/j.1365-313X.2007.03159.x
http://dx.doi.org/10.1080/00071617900650121
http://dx.doi.org/10.1093/bioinformatics/btg034
http://dx.doi.org/10.1038/193904b0
http://dx.doi.org/10.7554/eLife.06369


Pineau B, Layoune O, Danon A, De Paepe R. 2008. L-galactono-1,4-lactone dehydrogenase is required for the
accumulation of plant respiratory complex I. The Journal of Biological Chemistry 283:32500–32505. doi: 10.1074/
jbc.M805320200.

Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber AP, Schwacke R, Gross J, Blouin NA, Lane C, Reyes-Prieto A,
Durnford DG, Neilson JA, Lang BF, Burger G, Steiner JM, Löffelhardt W, Meuser JE, Posewitz MC, Ball S, Arias MC,
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