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Abstract: Despite extensive preclinical research on immunotherapeutic approaches, malignant
glioma remains a devastating disease of the central nervous system for which standard of care
treatment is still confined to resection and radiochemotherapy. For peripheral solid tumors, immune
checkpoint inhibition has shown substantial clinical benefit, while promising preclinical results
have yet failed to translate into clinical efficacy for brain tumor patients. With the advent of high-
throughput sequencing technologies, tumor antigens and corresponding T cell receptors (TCR) and
antibodies have been identified, leading to the development of chimeric antigen receptors (CAR),
which are comprised of an extracellular antibody part and an intracellular T cell receptor signaling
part, to genetically engineer T cells for antigen recognition. Due to efficacy in other tumor entities,
a plethora of CARs has been designed and tested for glioma, with promising signs of biological
activity. In this review, we describe glioma antigens that have been targeted using CAR T cells
preclinically and clinically, review their drawbacks and benefits, and illustrate how the emerging field
of transgenic TCR therapy can be used as a potent alternative for cell therapy of glioma overcoming
antigenic limitations.
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1. Introduction

Despite intensive research over the last decades, standard of care (SOC) treatment for
malignant gliomas is still restricted to resection and radiochemotherapy. The tremendous
clinical effects of immune checkpoint inhibition (ICI) have revolutionized therapy for
many cancer entities such as melanoma but have not conferred clinical benefit to brain
tumor patients, yet despite promising preclinical results [1,2]. However, none of the phase
3 clinical trials using checkpoint-inhibiting molecules in gliomas met their primary clinical
endpoints for patients with newly diagnosed or relapsed glioblastoma (GBM) (Checkmate
143, 498) [3–5]. Conversely, more recently, two independent phase 2 trials showed response
of neoadjuvant programmed cell death protein 1 (PD-1) therapy in recurrent and operable
GBM with response-associated distinct immunogenomic features [6–8].

Cellular therapies have become an emerging field in preclinical and clinical cancer
research. The first cellular therapies in solid tumors were conducted in 1980 by Rosenberg
and colleagues using expanded tumor-infiltrating leukocytes (TIL) and high dose inter-
leukin (IL) 2 [9–11]. For brain tumors, TIL therapy in patients with GBM and melanoma
brain metastases has been investigated [12–14]. However, although promising in some
post-hoc analyzed subgroups, the overall outcome of these trials was unsatisfactory even
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though ex vivo TIL cultures from GBM patients have been shown to exert tumor reac-
tivity [15]. As the usage of endogenous T cells comes with a variety of caveats, such as
potential incomplete in vitro reinvigoration of exhausted TIL, limited capacity of TIL to
expand in vivo after a strong preceding in vitro stimulation, and potential predominant
expansion of bystander T cells, the use of genetically modified T cells could circumvent
these obstacles. In recent years, there has been remarkable effort in identifying suitable
targets for cellular glioma immunotherapy [16,17]. Chimeric antigen receptor (CAR) T
cells have shown tremendous effects in non-solid tumors such as multiple myeloma and
leukemia and have recently been approved by the U.S. Food and Drug Administration
(FDA) and European Medicines Agency (EMA). For solid tumors, a plethora of early
CAR T cell clinical trials has recently been initiated [18]. CARs are designed by using an
antibody-derived extracellular recognition domain, a hinging transmembrane domain, and
an intracellular T cell receptor (TCR)-derived signaling domain. The antibody-derived
variable regions are able to recognize extracellular domains and proteins and bypass major
histocompatibility complex (MHC) expression and presentation by tumor cells or profes-
sional antigen presenting cells (APC). Alternatively, modified natural ligands of surface
receptors may be used as extracellular recognition domains. Modifying the intracellular
signaling domain and the addition of co-stimulatory signals has led to the development
of second, third, and fourth-generation CARs [19]. In preclinical studies, several CARs
against glioma-associated target structures have been developed. In this review, we focus
on CAR T cell therapies, highlighting targets for such therapy (Figure 1), we then discuss
early phase clinical trials (Table 1), and elaborate on the benefits and drawbacks of CAR T
cell therapy, especially in comparison to TCR-engineered T cell therapy. Attention will be
turned to the consideration of application routes.
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Table 1. Clinical trials investigating genetically modified cellular therapies in brain tumors.

Clinical Trial Entity Target Start Phase Combination

NCT04196413 Diffuse intrinsic pontine gliomas (DIPG)
+ Spinal diffuse midline glioma (DMG) GD2 Dec 19 1 Fludara, Cyclo

NCT04003649 Recurrent or refractory GBM IL13Ra2 + Ipi Jul 19 1 Nivo + Ipi
NCT02442297 HER2-positive CNS tumors Her2 May 15 1

NCT04510051 Recurrent or refractory brain tumors in
children IL13Ra2 Aug 20 1 Fludara, Cyclo

NCT04099797 GD2-positive brain tumors GD2 Sep 19 1 Fludara, Cyclo

NCT04661384 Leptomeningeal GBM, ependymoma, or
medulloblastoma IL13a2 Dec 20 1

NCT04185038 DIPG/DMG and recurrent or refractory
pediatric CNS tumors B7-H3 Dec 29 1

NCT03638167 EGFR-positive recurrent or refractory
pediatric CNS tumors EGFR806 Aug 18 1

NCT03500991 HER2-positive recurrent or refractory
pediatric CNS tumors HER2 Apr 18 1

NCT03696030 Recurrent brain or leptomeningeal
metastases HER2 Oct 18 1

NCT04903795 * Grade 4 malignant glioma EGFRvIII May 21 1 autologous
activated T cells

NCT04385173 Recurrent and refractory GBM B7-H3 May 20 1 TMZ
NCT04077866 Recurrent or refractory GBM B7-H3 Sep 19 1/2 TMZ

NCT04214392 MPP2-positive recurrent or progressive
GBMa

Chlorotoxin-derived
CAR Jan 20 1

NCT04045847 Recurrent malignant glioma CD147 Aug 19 1
NCT03389230 Recurrent or refractory grade 3–4 glioma Her2 Jan 18 1
NCT02208362 Recurrent or refractory malignant glioma IL13Ra2 Aug 14 1

NCT02575261 # EphA2-positive malignant glioma EphA2 Oct 15 1/2

NCT03726515 $ Newly diagnosed MGMT-unmethylated
GBM EGFRvIII Oct 18 1 Pembro

NCT03170141 ~ GBM several May 17 1 Fludara, Cyclo
NCT03423992 Recurrent malignant gliomas several Feb 18 1
NCT03383978 Recurrent HER2-positive GBM HER2 Dec 17 1

* Not yet recruiting; # withdrawn; $ completed; ~ enrolling by invitation; Cyclo, Cyclophosphamide; DIPG, diffuse intrinsic pontine gliomas;
DMG, diffuse midline glioma; Fludara, Fludarabine; Ipi, Ipilimumab; Nivo, Nivolumab; Pembro, Pembrolizumab; TMZ, temozolomide.

2. Glioma Antigens for CAR-Engineered T Cell Therapy
2.1. IL13Ra2

Interleukin-13 receptor subunit alpha-2 (IL13Ra2) was the first target in GBM to
have been exploited for CAR T cell therapy. As required for tumor-associated targets,
IL13Ra2 is highly expressed in a high frequency on tumor cells of GBM patients [20–22].
In contrast, healthy tissue, except the testis, express low levels of IL13Ra2, making it an
adequate target for targeted therapy. The ubiquitously expressed IL13Ra1 binds IL13
with lower affinity than IL13Ra2, allowing for predominant targeting with modified IL13
variants [23–25]. The first CAR targeting IL13Ra2 was developed in 2004 and included a
so-called zetakine, which was composed of an extracellular altered IL13 domain tethered
to an immunoglobulin transmembrane domain and a CD3-zeta cytoplasmic part [26].
In vitro and in vivo studies in human xenografts showed specific and effective tumor lysis.
Second-generation CARs, which include a co-stimulatory 4-1BB domain, outperformed
the first-generation CARs while not leading to cytotoxicity in non-obese diabetic (NOD)
scid gamma (NSG) mice [27]. Further improvements, such as the addition of an activation-
induced expression of IL15 in CAR T cells, led to increased CAR proliferation, cytokine
production and persistence [28]. The first in-human clinical trial evaluating IL13Ra2-
specific CARs was completed in 2015 and enrolled three patients with recurrent GBM
being treated with an IL13-zetakine CAR product [29]. The CAR product was injected
directly into the resection cavity in 12 doses over 5 weeks. Overall, the treatment was
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well tolerated in these patients with only temporary brain inflammation events, indicating
promising tolerability of T cell products. Of note, a decrease in tumoral IL13Ra2 expression
after CAR therapy was reported in one patient, suggesting therapy-driven antigen loss.
On basis of an outstanding casuistic report on a patient with recurrent GBM treated
with a 4-1BB-modified CAR product [30], intraventricular IL13Ra2 CAR T cell therapy is
currently assessed in a phase 1 clinical trial for ependymoma, GBM, and medulloblastoma
(NCT04661384), while intratumoral delivery is being tested in recurrent or refractory
malignant glioma (NCT02208362).

2.2. Her2

The human epidermal growth factor receptor 2 (Her2) constitutes a GBM-associated
antigen, being expressed in approximately 80% of all GBM patients [31,32]. Her2-specific
CAR T cells demonstrated preclinical efficacy in several tumor models, were shown to
effectively target Her2-positive glioma cells and glioma stem cells, and to lead to regression
of GBM xenografts [31,33–36]. Interestingly, the xenograft study used syngeneic T cells
and GBM cells in a patient-derived xenograft (PDX) model, avoiding allogenic immune
responses. In another study, Ahmed et al. showed sustained regression of medulloblastoma
xenografts in immunodeficient mice using intratumoral adoptive transfer of Her2-specific
CAR T cells. As 40% of medulloblastomas overexpress Her2, CAR T cell therapy might rep-
resent a promising therapeutic option [37]. Recently, Her2-specific CAR NK cells, derived
from the human NK cell line NK-92, have been reported to specifically lyse GBM-derived
cell lines and to show in vivo anti-tumor activity in xenografts and immunocompetent
mouse models [38]. This NK cell-line-based concept is currently investigated in a phase
1 clinical trial (NCT03383978). Overall, the clinical usage of HER2-specific CARs has
been challenged by a case report in 2010 where the administration of a HER2-directed
CAR product in a patient with metastatic colon cancer led to a severe and lethal cytokine
storm [39]. More recently, subsequent clinical studies reported no severe systemic toxic-
ities [40,41]. In GBM, a phase 1 dose escalation study using HER2-specific CAR T cells
derived from virus-specific T cells (VST) showed tolerability with no dose-limiting toxic
effect in 17 patients [42]. However, the HER2-VST CARs did not expand in the peripheral
blood and clinical efficacy was limited with a median OS of 11.1 months. An interim
analysis of a phase 1 clinical trial using locoregional delivery of HER2-specific CAR T cells
recently reported no dose-limiting toxicity of multiple CAR T cell infusions and demon-
strated highly elevated interferon-induced C-X-C motif chemokine ligand 10 (CXCL10)
and CC-chemokine ligand 2 (CCL2) levels in the cerebrospinal fluid (CSF) after CAR T
cell infusion [43]. Magnetic resonance (MR) imaging showed vasogenic edema and local
intensified contrast enhancement, indicating an inflammatory response called pseudopro-
gression. The associated clinical trial is composed of two arms, delivering the CAR T cell
product into the tumor cavity or intraventricularly, respectively (NCT03500991).

2.3. EGFRvIII

The mutated epidermal growth factor receptor variant III (EGFRvIII) results from an
amplification of the wildtype EGFR and is expressed in approximately 30% of all GBM
patients [44–46]. Vaccination or antibody treatment against EGFRvIII has been shown to
induce increased survival and long-term immunological memory in various preclinical
models [47–49], indicating that EGFRvIII can serve as a potent target for cellular therapies.
The feasibility of using EGFRvIII-directed CARs has been extensively studied. In a com-
prehensive study, Morgan et al. screened seven different antibodies for the ability to be
used in a CAR T cell product [50]. CAR T cells based on three of these seven antibodies
were shown to produce effector cytokines in response to EGFRvIII-expressing glioma
cells. In a follow-up study, the authors could show preclinical efficacy of a murine third
generation EGFRvIII-directed CAR product in a syngeneic mouse model [51]. Since this
study was conducted in immunocompetent mice, the authors reported two important key
findings in their preclinical glioma model: first, it was shown that lymphodepletion is
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needed for a response to systemically injected CAR T cells. Second, CAR T cell therapy was
able to induce endogenous long-term immunity against the tumor, even when mice were
rechallenged with tumor cells not expressing EGFRvIII. Another study using EGFRvIII
CAR T cells showed that overexpression of the mircoRNA miR-17-92, a microRNA that
has been reported to enhance T cell survival and interferon (IFN)-γ production and to be
downregulated in GBM-infiltrating T cells, increases EGFRvIII CAR T cell function [52].
Interestingly, EGFR806-CAR T cells, recognizing not only EGFRvIII but also full-length
gene amplified wildtype EGFR, retained their specificity due to specific steric accessibility
of tumor-expressed EGFR [53]. A first in-human study using EGFRvIII-directed CARs was
published in 2017 by O’Rourke and colleagues [54]. The CAR design used for this study
was selected based on a comprehensive preclinical study [55]. Ten patients were treated
with a single peripherally infused dose of the CAR T cell product. Upon recurrence, tissue
analysis post CAR T cell transfer revealed that CAR T cells were effectively trafficking
to the brain. Reduced EGFRvIII expression in infiltrated regions was rather representing
the natural cause of the disease than a sign of immunological escape [56]. However, CAR
T cell infiltration led to an increase in T regulatory cell abundance and increased expres-
sion of inhibitory molecules such as programmed death-ligand 1 (PD-L1), transforming
growth factor ß (TGF-ß), and IL10. More recently, EGFRvIII-specific CAR T cell clinical
trials for intracranial tumors, including GBM, have been closed prior to completion due
to lack of funding, observed toxicity, shift towards next CAR T cell iteration or combina-
torial treatments, or missing objective clinical responses (NCT01454596, NCT02664363,
NCT02209376, NCT03283631).

2.4. GD2

The disialoganglioside GD2 is frequently overexpressed in neuroblastoma with only
restricted expression in healthy tissue, classifying it a tumor-associated antigen. CAR T cell
therapy was able to abrogate tumor progression in a xenograft model [57]. CAR T cells
against GD2 have also shown tremendous preclinical efficacy in PDX models of H3.3.K27M-
mutated midline gliomas [58]. Using second-generation 4-1BB-overexpressing CAR T cells,
tumors were almost cleared from different localizations (pons, thalamus, and spinal cord)
with a small amount of GD2-negative tumor cells remaining. However, accompanying the
strong anti-tumor effect, the authors also observed severe neuroinflammation in immunod-
eficient mice. GD2 CAR T cell therapy is currently tested in a phase 1 trial in diffuse midline
gliomas with retroviral vectors manufactured in the closed CliniMACS Prodigy system
(NCT04196413), in combination with constitutive active IL7 receptor (NCT04099797), or
in recurrent gliomas (NCT03423992). In the terminated above-mentioned phase 1 clinical
trial (NCT04196413) using a retro-viral (14g2a-CD8.BB.z.iCasp9) expressing GD2-chimeric
antigen receptor, three of four patients exhibited marked improvement or resolution of neu-
rological deficits as well as radiographic improvements. Moreover, no on-target off-tumor
toxicity was observed [59].

2.5. Chlorotoxin

Chlorotoxin, a venom-derived peptide, has been described to specifically bind to GBM
cells [60,61]. Recently, researchers developed a chlorotoxin-based CAR with the peptide as
targeting domain that efficiently targeted tumors with heterogenous expression of GBM-
associated antigens such as IL13Rα2, HER2, and EGFR [62]. Of note, the chlorotoxin-based
CAR required matrix metalloproteinase 2 (MMP2) expression on the tumor cells for efficient
binding. Antitumor capacity was assessed in orthotopic GBM PDX models without severe
off-target effects after systemic intravenous or regional intraventricular or intratumoral
CAR T cell delivery. A phase 1 clinical trial assessing CAR T cells with a chlorotoxin tumor-
targeting domain in MMP2-positive recurrent or progressive GBM is currently recruiting
patients (NCT04214392).
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2.6. EphA2

Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that binds ephrin-
A family ligands and its downstream signaling participates in migration, proliferation,
differentiation, and integrin-mediated adhesion [63,64]. It has been described as a glioma-
associated antigen with limited expression in healthy tissue with the exception of some
epithelial cells [65]. Its overexpression has been reported in several tumor types and linked
to decreased overall survival in patients with GBM [66]. Several preclinical studies used
EphA2-directed CAR T cells to treat GBM xenografts and showed potent anti-tumor activity
against glioma-initiating cells [67,68]. Preclinical locoregional delivery of CAR T cells was
validated as effective treatment in medulloblastoma mouse models [69]. However, to date,
to our knowledge, clinical studies evaluating EphA2-directed CAR T cells have not yet
been initiated.

2.7. P32

P32, also known as complement component 1 Q subcomponent-binding protein
(C1QBP), has previously been reported to be expressed in tumor cells and tumor-associated
endothelial cells [70]. More recently, Rousso-Noori et al. reported P32 to be specifically
expressed on murine and human glioma cells [71]. In their study, CAR T cell therapy was
able to reduce tumor growth in xenograft and syngeneic mouse models. The authors used
a combination of intratumoral and intraventricular injection of the CAR T cell product,
leading to sustained infiltration of CAR T cells into the tumor. Conceptualization of clinical
trials investigating P32 as CAR T cell target can be expected.

2.8. CD133

CD133 is a pentaspan transmembrane glycoprotein reported to be predominantly
expressed on cancer, hematopoietic, and neural stem cells [72–74]. Several studies have
reported CD133 to be involved in tumor initiation and resistance to radio- and chemother-
apy [75–77]. Upregulation is considered to be prognostically unfavorable. In a side-by-side
comparison, while different modalities against CD133 showed efficacy in orthotopic GBM
xenografts, CD133-specific CAR-T cells represented the most efficacious [62]. Interestingly,
in hematopoietic stem-cell-humanized NOD scid gamma (NSG) mice, intraventricular in-
jection of CD133-specific CAR T cells was effective and did not lead to reduced frequencies
of CD34 CD133 double positive hematopoietic cells [73]. As of now, no phase 1 clinical trial
using CD133-specific CAR T cells has been initiated.

2.9. CSPG4

Chondroitin sulfate proteoglycan 4 (CSPG4) is a type I transmembrane protein that is
overexpressed in 67% of GBM [78]. GBM with high CSPG4 expression are considered to be
more aggressive than their low expressing counterparts. Specific and cell ratio-dependent
killing was observed when CSPG4-specific CAR T cells were co-cultured with CSPG4-
expressing primary GBM cell lines or when injected intratumorally in human GBM-bearing
nude mice. In these PDX model, no relevant post-treatment antigen loss was observed,
which is suggestive for homogeneous target expression in primary GBM cell lines and
throughout in vivo growth. To our knowledge, thus far, no clinical trials have been initiated
targeting CSPG4 in gliomas.

2.10. B7-H3

B7 Homolog 3 (B7-H3) is a type I transmembrane protein that is overexpressed in
76% of GBM [79]. Using established human glioma cell lines such as U87 in nude mice,
intratumorally injected B7-H3-specific CAR T cells lead to durable responses independent
of applied co-stimulatory domains. Similarly to observations by Nehama et al., Tang et al.
reported increased preclinical survival after intravenous injection of B7-H3-specific CAR
T cells in U87-bearing NOD SCID mice [80]. More recently, B7-H3 has been successfully
co-targeted by B7-H3-CD70 tandem CARs (Tan-CAR) [81]. Compared to single targeting of
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CD70 or B7-H3, respectively, improved preclinical survival was observed when Tan-CAR T
cells were adoptively transferred in non-glioma PDX. Interestingly, B7-H3 co-expression
was also observed in glioma. Currently, three clinical trials investigating B7-H3-specific
CAR T therapy in recurrent or refractory GBM or various other central nervous system
(CNS) tumors are recruiting patients (Table 1).

3. Preclinical Strategies to Overcome Off-Target and On-Target Off-Tumor Side Effects

Beyond potential genotoxicity (due to the risk of oncogenic insertional mutagenesis
by viral expression vectors), immunogenicity (of CAR epitopes), and off-target side effects,
(i.e., interaction of CARs with Fc receptors expressed on myeloid cells inducing antigen-
independent T cell activation), severe on-target off-tumor side effects can occur, because
CAR T cells usually target tumor-associated rather than tumor-specific antigens. For clinical
translation in brain tumors, it is essential to carefully assess potential on-target off-tumor
side effects that can lead to severe neuroinflammation and neurotoxicity. Recently, in an
observational study, Parker and colleagues identified CD19-expressing brain mural cells
as a potential on-target off-site in CD19-specific CAR T cell therapy [82]. Interestingly,
on-target off-site-relevant CD19 expression was found in human brain mural cells but
not in murine systems, highlighting the limitations of studies on off- and on-target side
effects in mouse model systems. One option to overcome on-target off-tumor side effects
is the insertion of additional targetable epitopes in CAR constructs themselves [83]. In a
preclinical study using an acute myeloid leukemia xenograft mouse model, Bonifant et al.
introduced a CD20 domain into their CAR construct, enabling elimination of CAR T cells
via rituximab, a CD20-specific therapeutic antibody, if required [84]. To our knowledge,
such strategy thus far has not been pursued in the context of preclinical brain tumors. The
design of dual CAR constructs could potentially prevent CAR activation distant from the
tumor site. By using a synNotch receptor in a bilateral K562-bearing xenograft model,
Roybal and colleagues could show specific CAR expression on T cells only after delivery of
a first expression-inducing signal [85]. After antigenic ligand encounter, synNotch receptor
activation leads to cleavage of a transcription factor within its intracellular signaling
domain, which enables expression of the CAR specific for a second antigen. Recently,
synNotch CAR T cells that are activated by local and tumor-specific antigen encounters
have shown to lead to a specific and locally restricted anti-tumor response [86]. The authors
used the CNS- or tumor-specific antigens myelin oligodendrocyte glycoprotein (MOG) or
EGFRvIII, respectively, as activating signal for the expression of anti-EphA2 or anti-IL13Ra2
CARs. Using this system, the authors showed tumor microenvironment-restricted CAR
expression, T cell priming, and effective killing of tumor cells in PDX models.

4. Overcoming Resistance to CAR T Cell Therapy

Shared features of resistance to CAR T cell therapy in non-solid tumors and concepts
to overcome these obstacles have comprehensively been discussed elsewhere [87–90]. In
particular, gliomas are signified by a profoundly immunosuppressive microenvironment.
Therefore, CAR T cell combinatorial therapies with immunomodulatory agents seem
obligatory and have been comprehensively discussed elsewhere [91]. In brief, Agliardi et al.
reported that the intratumoral application of IL12 increases response to EGFRvIII CAR T cell
therapy by boosting cytotoxicity and remodeling the tumor microenvironment to a more
proinflammatory state [92]. Anti-GD2 CARs have been modified with an IL15 cytokine
domain and CAR-expressing T cells showed prolonged anti-tumor activity upon repetitive
antigen exposure [93], overcoming exhaustion. In GBM xenografts, temozolomide-induced
lymphodepletion enhanced CAR T cell expansion and persistence and prolonged survival
of tumor-bearing mice [94]. Antigen loss is considered a frequent tumor escape mechanism
when only single tumor antigens are targeted. Several reports have shown improved CAR
product efficacy and reduced resistance to CAR therapy when multiple antigens were
targeted in one therapeutic approach [69,95–97]. However, directing CAR T cells towards
multiple targets also increases the risk for off-target effects, and clinical trials targeting
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multiple antigens have not yet been initiated. Loss of antigen as underlying mechanism of
CAR T cell resistance is not strictly linked to mutational events; frequently, downregulation
of tumor antigens is mediated by epigenetic silencing. Thus, it is tempting to modulate
epigenetic silencing of CAR T cell targets using epigenetic drugs. In several entities,
blocking DNA methyltransferases in combination with CAR T cell therapy showed signs
of improved efficacy in preclinical models [98–101]. In medulloblastoma xenograft models,
the demethylating agent azacytidine led to increased target expression and prolonged
survival upon CAR T cell therapy [69].

5. Application Routes for Genetically Modified T Cells in Preclinical Models

First preclinical studies for other tumor entities used a systemic intravenous injection
of CAR T cell products, resulting in potent anti-tumor effects. Using Her2 CAR T cells in an
intracranial breast cancer metastasis model, Priceman and colleagues reported improved
tumor eradication rates after intratumoral or intraventricular adoptive transfer [102], and
Brown et al. showed no therapeutic effect at all for systemic intravenous injection [27].
Recently, two studies from Theruvath and colleagues and Donovan and colleagues re-
ported enhanced anti-tumor efficacy of locally transferred CAR T cells in several xenograft
models of brain tumors. Donovan et al. showed increased survival of intraventricularly
injected mice compared to intravenously injected mice in medulloblastoma and ependy-
moma models using CAR T cells against EPHA2, HER2, and IL13a2 [69]. Theruvath et al.
used previously described B7-H3-targeting CAR T cells to show improved survival and
reduced systemic inflammatory cytokine levels upon locoregional delivery [103,104]. Par-
ticularly preclinically, the literature implies a superior performance of locally administered
CAR T cells over systemic application. Nonetheless, all studies were performed in fully
immunodeficient mice, while effective trafficking of intravenously injected genetically
manipulated T cells to the parenchyma requires cytokine gradients that will not be estab-
lished in immunodeficient mice. Therefore, more investigations of how transferred T cells
efficiently migrate to the brain are required in immunocompetent mice in order to draw
definitive conclusions. Likewise, clinical response to CAR T cell therapy is associated with
an induction of endogenous tumor-specific T cell responses and microenvironmental repro-
gramming [105]. Immunocompetent model systems displaying syngeneic MHC-proficient
microenvironments represent a pre-requisite to assess therapeutic efficacy, particularly for
T cell receptor-engineered T cell therapy targeting T helper cell epitopes, as discussed in
the following section.

6. T Cell Receptor-Engineered T Cell Therapy

In contrast to CAR T cells, which are able to target only extracellular, mostly non-
tumor-specific targets, TCR-transgenic T cells provide the possibility to target intracellular
antigens that are presented on MHC class I and II. These targets can be glioma-associated
antigens that have been reported to be overexpressed in brain tumors such as SART1 or
MAGE1 [106–108]. Initial clinical trials in several tumor entities have reported promising
results with TCR-engineered T cell therapy [109–111]. Most reports to date are based on
tumor-associated antigens that are shared across a broad patient population [112–114]. Al-
though, the use of tumor-associated antigens led to severe off-target and on-target off-tumor
side effects in many early trials [82,113,115], however, the true strength in using transgenic
TCR therapy lies in the ability to target tumor-specific mutations, without targeting heathy
tissue. Yet, GBMs harbor only 30 to 50 mutations, leading to a limited repertoire of potential
targets [116–118]. Recently, two clinical trials could show that vaccination against actively
personalized or warehouse patient-specific neoepitopes can trigger T cell-driven immune
responses [119,120]. Tumor-specific mutations are usually patient-individual mutations,
leading to a prolonged time for target identification and therapy manufacturing. This could
be circumvented by using frequently mutated targets. We and others have shown T cell
immunogenicity for several common mutations in brain tumors, as reported for isocitrate
dehydrogenase I (IDH1) mutation R132H, histone H3.3 mutation K27M, and more recently
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capicua transcriptional repressor (CIC) R215W/Q [121–127]. As these targets are also
known to be driver mutations, the risk of antigen loss is reduced [128–132]. However,
specific driver mutations such as mutant IDH1 have been reported to have immunosup-
pressive capacities themselves by, for example, tumor-genotype dependent education of
myeloid cells [133–135] or suppression of antitumor T cell responses [123,136,137] in the
tumor microenvironment and in peripheral immune compartments [138]. These observa-
tions have important implications for the future development of locoregional or systemic
cellular therapies for IDH mutant gliomas.

In summary, an ideal target for T cellular therapy would be tumor-specific, shared by
a significant cohort of patients, and a driver mutation to reduce the risk of immune escape
by antigen loss. The first glioma-specific TCR that has been reported targets the K27M
mutation in histone H3.3 [139]. Despite being able to detect vaccine-induced T cell clones
in the periphery of diffuse midline gliomas (DIPG) patients, the authors could retrieve an
H3.3K27M-reactive TCR sequence from peptide-pulsed healthy donor peripheral mononu-
clear cells. In in vitro and in vivo assays against an H3.3K27M-transfected human GBM
cell line, H3.3K27M-specific TCR-transduced primary T cells specifically lysed tumor cells
and inhibited tumor progression. More recently, we described a TCR targeting the IDH1
R132H mutation [122]. Using single cell transcriptomic and TCR sequencing, we were able
to retrieve an IDH1 R132H-specific TCR from a post peptide vaccine inflamed CNS lesion.
This example demonstrates that, with the emerging accessibility of single cell sequencing,
identification of tumor-reactive and patient-specific TCRs will be increasingly achievable,
hence exploitable for therapeutic approaches [140,141].

7. Perspective

Main hurdles for efficacious cell therapies for brain tumors will remain sufficient infil-
tration, persistence, and resilience of genetically modified T cells into or within the hostile
brain tumor microenvironment. More recent studies suggest an IDH mutation status-
associated reduced antigen presentation capacity and particularly profound exclusion of
T cells within or from the IDH mutant tumor microenvironment. Despite proneural to
mesenchymal transitions, mesenchymal subtype glioblastomas are considered an immuno-
logically more active glioblastoma subtype [142]. These glioma entity- or glioblastoma
subtype-specificities are suggestive for potentially required appropriate adjustments of
cellular therapeutics.

Current concepts to overcome the main hurdles include the utilization of alternative
application routes and combinatorial treatments in preclinical and in early clinical trials.
Some evidence of relevant peripheral antigen presentation in brain tumors exists [143,144].
As of now, however, it remains unclear if antigen presentation has an impact on efficacy of
local versus systemically applied TCR- or CAR-engineered T cells in gliomas. If systemic
antigen presentation proves to be relevant, synthetic vaccine-based in vivo CAR T cell
boosting concepts, which have already been designed [145], will gain importance. Some
trials are even terminated prior to completion to pursue combination therapies with i.e.,
checkpoint inhibition instead. CAR- and TCR-engineered T cell therapy have both unique
advantages and disadvantages, and combinations of both cellular concepts should be
explored preclinically in the near future. At the same time, inducible cellular systems
are in preclinical development to reduce on-target off-tumor side effects. Whereas CAR
T cells target predominantly tumor-associated cell surface antigens, TCR-engineered T
cell therapy will strictly depend on intratumoral MHC class I or class II expression and
antigen presentation by glioma cells and associated professional antigen-presenting cells,
respectively (Figure 1). This prerequisite should be considered when conceptualizing
clinical trials investigating TCR-engineered T cell therapy. In this regard, for biomarker
assessment, preceding biopsies or resected tumor tissues should be representative for the
current tumor disease at time of treatment start.
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8. Conclusions

In this review we discuss emerging targets and recent preclinical and clinical devel-
opments in the field of CAR- and TCR-engineered T cell therapy for malignant gliomas.
In comparison to other immunotherapeutic modalities for gliomas, such as dendritic cell
vaccination, peptide vaccination, or TIL therapy, CAR- and TCR-engineered T cell therapy
offers several advantages: (i) independence of the patient’s immune system to mount mean-
ingful T cell responses, which is, in general, limited in vaccination approaches; (ii) immune
receptor engineered T cells target known and defined antigens; (iii) T cells can be addi-
tionally genetically modified ex vivo to enhance T cell responses; (iv) in contrast to TIL
therapy, the re-infusion of an engineered T cell product allows the exact enumeration of
truly tumor-reactive T cells; and (v) defined TCR as well as CAR sequences or epitopes
facilitate the analysis of T cell fate and dynamics during monitoring. Up to now, how-
ever, these advantages have been inseparable of great financial and regulatory challenges
in the processes of manufacturing and engineering cellular products. At the same time,
CAR- and TCR-engineered T cell therapy bears the potential—as in other tumor entities–to
cure gliomas.
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