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Adverse genetic risk acute myeloid leukemia (AML) includes a wide range of clinical-
pathological entities with extremely poor outcomes; thus, novel therapeutic approaches
are needed. Promising results achieved by engineered chimeric antigen receptor (CAR) T
cells in other blood neoplasms have paved the way for the development of immune cell-
based therapies for adverse genetic risk AML. Among these, adoptive cell
immunotherapies with single/multiple CAR-T cells, CAR-natural killer (NK) cells,
cytokine-induced killer cells (CIK), and NK cells are subjects of ongoing clinical trials.
On the other hand, allogeneic hematopoietic stem cell transplantation (allo-HSCT) still
represents the only curative option for adverse genetic risk AML patients. Unfortunately,
high relapse rates (above 50%) and associated dismal outcomes (reported survival ~10–
20%) even question the role of current allo-HSCT protocols and emphasize the urgency of
adopting novel effective transplant strategies. We have recently demonstrated that
haploidentical allo-HSCT combined with regulatory and conventional T cells adoptive
immunotherapy (Treg-Tcon haplo-HSCT) is able to overcome disease-intrinsic
chemoresistance, prevent leukemia-relapse, and improve survival of adverse genetic
risk AML patients. In this Perspective, we briefly review the recent advancements with
immune cell-based strategies against adverse genetic risk AML and discuss how such
approaches could favorably impact on patients’ outcomes.
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INTRODUCTION

High risk (or adverse risk) acute myeloid leukemias (HR-AML) include a number of clinical and
biological AML subsets which are usually characterized by poor response to conventional
treatments and dismal long-term survival, even when conventional allogeneic hematopoietic
stem cell transplantation (allo-HSCT) is performed (1). Such AML category is characterized by
high-risk cytogenetics [i.e., complex and/or monosomal karyotypes, chromosomes 3, 5, 7, and 17
aberrations) and/or by specific genetic signatures (including mutations in TP53, RUNX1, ASXL1,
and FLT3 genes (2)] that confer an aggressive phenotype and often chemoresistance. Moreover, a
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large proportion of patients affected by secondary AML (sAML)
(3) and therapy-related leukemias (tr-AML) (4) converge into
the HR-AML category. sAML is characterized by distinct
molecular features, frequently involving the aberrant
displacement of spliceosomal machinery (SRSF2, SF3B1,
U2AF1, and ZRSR2), epigenetic modifiers (ASXL1, EZH2,
BCOR, RUNX1), and cell-cycle regulators (TP53) (2). Despite
the fact that next-generation sequencing (NGS) analyses have
recently shed some light on the genetic complexity of these AML
subsets, deep knowledge on leukemogenesis of each specific
biological entity is currently lacking. Thus, targeted therapeutic
approaches are still missing. While several drugs have been
recently approved for the treatment of adult AML, they have
only shown to slightly influence the fatal course of HR-AML
patients. Such expanding armamentarium includes small
molecules (e.g., FLT3 inhibitors, Midostaurin and Gilteritinib;
isocitrate-dehydrogenase type 1 and 2/IDH1-2 inhibitors,
Ivosidenib and Enasidenib; the Bcl2-inhibitor, Venetoclax) and
new-generation cytotoxic treatments, like CPX-351 (5). Indeed,
CPX-351 received Food and Drug Administration (FDA) 2019
approval for the treatment of tr-AML or AML with
Frontiers in Immunology | www.frontiersin.org 2
myelodysplasia-related changes (AML-MRC). Furthermore,
emerging tailored strategies against mutant TP53 (i.e., APR-
246, Pevonedistat) (6–9) are providing encouraging yet
preliminary evidences that may support their use in this high-
risk setting. Since the achievement of durable remissions and the
prevention of disease relapse remain major issues in the
treatment of these patients, many research efforts have been
directed towards a deeper understanding of mechanisms
regulating relapse biology, with a major focus on immune
system perturbation.

Immune-based adoptive cell therapies (ACTs) rely on the
infusion of immune cells that aim to kill the tumor. These
therapeutic platforms are revolutionizing treatment of blood
neoplasms (Figure 1) and are challenging traditional drug
interventions (10). In recent years, important advances have
been made in developing novel effective immunotherapies
(immune-checkpoint blockade, ACT, and vaccines) to
overcome tumor-induced T-cell exhaustion and immune
escape (10). Chimeric antigen receptor T-cells (CAR-T cells)
are a form of ACT that has already demonstrated to be an
effective treatment of various aggressive cancers, including
FIGURE 1 | Available immune cell-based therapies for high-risk acute myeloid leukemia (HR-AML).
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subsets of advanced leukemias (11–13). Beyond this, a plethora
of other immune cell-based approaches are currently under
investigation in blood tumors, including CAR-natural killer
(NK) cells, cytokine-induced killer cells (CIK), and NK cells, as
well as novel forms of CAR-T cells (dual CAR-T and multi-CAR-
T cells).

Allo-HSCT and especially HLA haploidentical allo-HSCT
(haplo-HSCT) may serve as “discovery platforms” that can
help to reveal the complex interplay between AML and the
immune microenvironment and to set the base for pioneering
studies of AML immune-targeting (Figure 1). However,
conventional transplantation strategies have limited impact on
HR-AML outcomes, as survival curves rarely exceed 30–35%
(14–16). In order to improve such outcomes, novel allo-HSCT
strategies that exert more potent antileukemic activity need to be
developed. Adoptive immunotherapy with conventional T cells
(Tcons) and regulatory T cells (Tregs) is an innovative strategy
that has been built to overcome disease chemoresistance and
boost T-cell immunity, while preserving host tissues from graft-
versus-host disease (GvHD) damaging (17). In particular, Treg
infusion in the absence of other forms of immune suppression
allows for T cell-mediated killing of leukemic blasts. Thus, such
approach resulted in prolonged and stable disease remission in
the vast majority of HR-AML patients, as we have preliminarily
observed in a proof-of-concept retrospective study (18).

In the present Perspective, we will review molecular
mechanisms underlying HR-AML biology that drive disease
relapse, as well as the potential impact of the newly developed
approaches with target therapies on patients’ outcomes. We will
describe immune-based strategies against HR-AML in ongoing
trials and discuss how refined transplantation approaches with
adoptive immunotherapy might represent the “ultimate”
therapeutic option for a definitive eradication of HR-AML.

Molecular Genetics of HR-AML
HR-AML includes many distinct biological entities, often
characterized by an aggressive phenotype and intrinsic
resistance to conventional treatments (2). HR-AML are not well
defined in World Health Organization (WHO) classification, but
this definition is widely used in clinical risk-adapted algorithms
and also in the evaluation of the results from clinical trials. The
major subgroup within this category consists of AML with high-
risk cytogenetics, a subset of AML with different pathologic and
clinical features that include the following:

- AML with complex karyotype (CK): its definition is not clear
yet; however, it might be identified by the presence of ≥3
chromosomal abnormalities not included in defined
WHO categories, and not associated with favorable
prognosis (2, 19, 20)

- AML with monosomal karyotype (MK): it is defined by the
presence of at least two autosomal monosomies or one single
autosomal monosomy in combination with at least one
structural abnormality (21)

- AML bearing specific chromosomal aberrations: it is defined by
the presence of specific genetic abnormalities such as inv(3)
Frontiers in Immunology | www.frontiersin.org 3
(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1);
-5 or del(5q); -7; -17/abn(17p) (2)

Specifically, CK AML have been recently proposed to be
further divided into typical and atypical cases by the presence
(or the absence, respectively) of 5q, 7q, and/or 17p losses (22).
Typical CK AML category bears TP53 mutations (almost absent
within the atypical subgroup) more frequently and, thus, it is
associated with poorer outcomes (compared to atypical cases). On
the other hand, atypical CK AMLs are characterized by different
mutational onco-prints and more frequently display mutations of
RAS pathway–associated genes, NPM1 and/or FLT3 genes (22).
Functional transcriptomic analyses of CK AML highlighted an
elevated genomic instability with aberrant activation of DNA
damage response and cell-cycle checkpoint pathways (23, 24).
Although at very initial stages, genomic analyses ofMKAML cases
have consistently demonstrated that abnormalities involving
chromosomes 5 [-5, or del(5q)], 7 (-7), and 17 (-17/abn(17p)
are frequent in this setting, and strongly coupled to TP53
pathogenic mutations (25). However, other molecular pathways
are implicated in MK AML pathogenesis and rely on a peculiar
mutational signature targeting NOTCH1 (rarely reported in
AML), BCOR/BCORL1, or RUNX1 genes (25). Interestingly, MK
AML (as well as CK AML) are commonly associated with a
catastrophic mutational phenomenon, namely, chromothripsis,
that is promoted by clustered genomic rearrangements that
result in multiple oncogenic hits and tumor-suppressors’
inactivation (26). Eventually, such genomic events lead to the
development of a highly proliferative disease. Specific aberrations
involving chromosomes 3, 5, and 7 also clustered within HR-AML
category. While chromosomes 5 and 7 aberrations are a common
cytogenetic feature of trAML (4) and sAML that developed from
previous myelodysplasia or myeloproliferative neoplasms (27),
abnormalities involving chromosome 3 [inv(3)(q21.3q26.2) or t
(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1)] could be related to a
distinct (usually de novo) clinical-biological entity (2, 28). TP53
mutations and aberrant RAS pathway activity (NRAS, KRAS,
PTPN11, NF1) are common features of trAML (27), as well as
of EVI1-rearranged (EVI-r) AML (28, 29). Importantly, the latter
is characterized by typical morphologic features (dysplastic
megakaryocytes, multilineage dysplasia, and normal/elevated
blood platelet counts) and driven by distinct molecular
programs (like MECOM and IKZF1). EVI-r AML is associated
with very poor overall survival (OS) (28, 29).

Furthermore, the 2017 European LeukemiaNet (ELN)
adverse-risk category (2) also comprises specific WHO-defined
genetic entities, which include wild-type NPM1 and FLT3-
ITDhigh, mutated RUNX1, and mutated ASXL1. The molecular
pathogenesis of each distinct genetic entity is very poorly
understood, and future studies are needed to investigate such
biological complexity.

Ongoing Adoptive Cell Therapies
The ability of leukemic blasts to evade immune surveillance has
been recognized as a major mechanism of leukemia relapse after
allo-HSCT (30). The novel use of immune therapeutics that aims
August 2021 | Volume 12 | Article 695051
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to redirect the immune system against malignant blasts is now
considered a new powerful tool to eradicate leukemia. Indeed,
novel cellular immunotherapies with chimeric antigen receptor
(CAR) T cells for B-lymphoproliferative disorders have recently
achieved promising results (31) and generated great enthusiasm
in the scientific community. As a matter of fact, a great number
of studies are now emerging with the goal to provide similar
effective treatments for various hematologic neoplasms. Cell
therapy for AML is more complex than for lymphoid
malignancies because myeloid leukemia-specific targets still
need to be well identified. Many adoptive cell strategies are
under investigation (Table 1) and are object of several clinical
trials (45).

Natural Killer (NK) Cells Adoptive Immunotherapies
NK-cells are a subset of peripheral blood lymphocytes that are
innately able to kill malignant cells through different mechanisms
based on the balance between activatory and inhibitory signals.
Interaction between major histocompatibility complex class I
(MHC-I) molecules with killer immunoglobulin receptors
(KIRs) on NK cells plays a major role in regulating NK cell
function and activity. NK-cells kill leukemia cells when a
mismatch between KIRs and their ligand on target cells is
present (46). Such activity was demonstrated in T cell-depleted
HLA-haploidentical transplant setting by the Perugia group and
referred to as “NK cell alloreactivity” (47). The absence of any sort
of pharmacologic immune suppression in TCD haplo-HSCT
allowed for leukemia killing by alloreactive NK cells. On the
other hand, the use of conventional immune suppressives to
prevent GvHD in other transplant platforms may limit NK cell
alloreactivity and its clinical effect (48). Further, NK cells may be
dysfunctional and fail to kill AML blasts in case of abnormal
phenotype, decreased degranulation level, and low INF-gamma
and TNF-alfa production (32, 49, 50). For many years, NK cell
adoptive transfer has been investigated as a possible approach to
treat HR-AML. Studies showed donor-derived allogeneic NK-cells
achieved durable complete remission in ~33% of HR-AML
patients. Such studies proved infusion of a high number of NK-
cells to be safe and well-tolerated. Indeed, donor NK cells appear
not to cause any GvHD (33–35, 51). Moreover, donor NK-cells are
able to persist and expand in vivo after infusion. On the other
hand, while promising, allogeneic NK cell adoptive transfer has
still limited efficacy, with generally low overall response rate. To
overcome such limitations and boost NK cell in vivo function,
different protocols and schemes that aim to generate and activate
NK-cells are under evaluation and further studies are needed to
establish the most effective approach.

Cytokine-Induced Killer (CIK) Cells
CIK cells derived from cytotoxic T lymphocytes (CTL) that are
in vitro activated by anti-CD3, OKT3, INF-gamma and
subsequently expanded with IL-2. Other than T cell markers,
they express surface protein similar to NK-cells, such as CD56,
the inhibitory NK receptors, and the natural killer group 2
member D (NKG2D) receptor, one of the most important
receptors involved in NK-mediated cancer cell killing (45). In
clinical trials, CIK cells have been generated both from
Frontiers in Immunology | www.frontiersin.org 4
autologous and allogeneic lymphocytes and have been infused
in combination or not with different strategies of allo-HSCT.
Even if the results of early trials were disappointing (37), last
studies are more encouraging (36, 38, 39, 52, 53). CIK cell
transfer resulted in stable complete remission in ~60% of
patients with AML. No significant infusion-related toxicities
and a very low rate of acute GvHD were observed after CIK
cell infusions. No studies focused on HR-AML, so that the
efficacy in this setting still remains to be determined.

Chimeric Antigen Receptor (CAR) T and NK Cells
CAR-T cells are genetically engineered T cells to express a
variable heavy and light chains (VHL) on cell surface with high
specificity for malignant cell antigens (54). Despite the great
enthusiasm that followed the CAR-T cell success in the treatment
of acute B-lymphoblastic leukemia/lymphoma (B-ALL/LBL) and
forms of B-cell lymphoma, generation of CAR-T cells against
myeloid leukemic blasts is challenging because of the absence of
leukemia-specific target antigens. In fact, AML antigens are often
widely expressed by other hemopoietic cells or tissues. While in
vitro studies and xenografts demonstrated the effectiveness of
anti-CD33 and anti-CD123 CAR-T cells (42, 55), clinical efficacy
on AML is still to be confirmed. CD33 is a transmembrane
receptor expressed on >90% of blasts, but unfortunately also on
multilineage hematopoietic progenitors and myelomonocytic
precursors. It was still validated as therapeutic target based on
the efficacy of gemtuzumab ozogamicin, a drug-conjugated
monoclonal antibody against CD33. Preliminary data of anti-
CD33 CAR-T cells are not encouraging (41). CD123 is a
transmembrane subunit of the IL-3 receptor expressed on
100% of AML cells, and its expression is increased in FLT3-
mutated AML. In vitro ed in vivo (xenograft) preliminary data
showed an increased cytokine release and decreased tumor
burden using anti-CD123 CAR-T cells. FLT3 receptor is
typically expressed on myeloid blasts, independent of FLT3
mutational status. Anti-FLT3 CAR-T cells showed in vitro ed
in vivo promising antileukemic effect (56, 57). Moreover, these
seem to be less toxic on normal hematopoiesis than the anti-
CD33 counterpart. Many other potential targets are now under
evaluation. Lewis antigen (LeY) is overexpressed on myeloid
blasts in comparison to normal tissues. A trial of autologous
CAR-T cells targeting LeY showed a biological response (~60%
of patients), but relapse occurred within 2 years (40). An ongoing
clinical trial (NCT03222674) evaluates the feasibility, safety,
and efficacy of multi-CAR-T cell therapy that targets different
AML surface antigens (Muc1/CLL1/CD33/CD38/CD56/CD123)
in patients with relapsed/refractory AML. Another phase I
study (NCT04156256) evaluates the safety and tolerability of
CD123-CD33 dual CAR-T in patients with relapsed and/or
refractory AMLs.

In alternative to CAR-T cells, CAR-NK cell therapy ideally
combines the specific targeting provided by CARs with the NK
cell ability to kill AML blasts in the absence of relevant systemic
toxicity. Indeed, CAR-NK cells showed promising results with
no important toxicity in lymphoma patients (58). Mouse
preclinical models suggest that CD123 CAR-NK cells may be
effective in AML (59). Clinical-grade CAR-NK cells can be
August 2021 | Volume 12 | Article 695051
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TABLE 1 | | Selected published studies of immune cell-based strategies other than allogeneic transplantation for high-risk acute myeloid leukemia (HR-AML).

rt included in the study Outcomes ClinicalTrials.gov
or others
identifier

leukemia (AML) patients CRb = 9/16 pts (56%). (1 patient died due
to infection).

NCT00799799 (32)

Follow-up duration: 6–68 months.
R1a not eligible for allo-
for disease recurrence.

CRb = 3/12 pts (25%). NCT01520558 (33)
Follow-up duration: 32.6–47.6 months.

pts in morphologic remission. CRb = 7/8 pts (88%). NCT01904136 (34)
Follow-up duration: 7.9–15.9 months.

ML pts of a cohort of 16 pts
and highly malignant solid

Relapse rate = 4/8 pts (50%). NCT01386619 (35)
CRb rate and follow-up duration were not
specifically detailed for AML cohort.
Response in 0/4 pts (0%). N/Af (36)

ing 2/4 R/Re AML and PRg in 1/4 pts (25%). N/Af (37)
Follow-up duration: ~4 months.
CMRh = 4/5 pts (80%). N/Af (38)
Follow-up duration: 6.9–16 months.

Rb. CRb = 6/13 (46%). NCT00394381 (39)
Follow-up duration: 38–50 months.

including 3 pts treated in
sidual disease, and 1 pt in

CRb = 1/4 (25%). CTX 08-0002 (40)
(Australia)Follow-up duration: 23 months.

Partial remission (PR) = 1/1. NCT01864902 (41)
Follow-up duration: 3 months.
CRb = 0/5. NCT02623582 (42)
All patient progressed at day 28.

ing 3 with CK, 3 with TP53
dary AML.

No objective response. NCT02203825 (43)

nt AML pts. 2/3 pts achieved CRb. NCT02944162 (44)
Relapse occurred in the 2 pts, ~4 months
after CAR-NK cells infusion

econd complete remission; eR/R, relapsed/refractory; fN/A, not available; gPR, partial response; hCMR,
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Type of immune
cell-based therapy

Study design AML patient coh

Natural killer (NK)
adoptive
immunotherapy

Prospective trial of NK cells from haploidentical KIR-ligand–mismatched
donors after fludarabine/cyclophosphamide chemotherapy, followed by
IL2.

17 adult acute myeloid
(pts) in CR1a

Phase 1 non-randomized open-label, dose-escalation trial of
CNDO-109-Activated allogeneic NK Cells.

12 adult AML pts in C
HSCTc and at high ris

Phase 1 dose-escalation trial of membrane-bound interleukin 21
(mb-IL21) expanded donor NK cells infused before/after haploidentical
allo-HSCTc.

8 adult high-risk AML

Phase 2 trial of donor NK lymphocyte infusion (NK-DLI) after
haploidentical allo-HSCTc.

8 pediatric and adult A
with high-risk leukemia
tumors.

Cytokine-induced
killer (CIK) cells

Phase I study of allo-CIK cells in pts with blood tumors relapsed after
allo-HSCTc.

4 adult AML pts.

Prospective enrolling study of allo-CIK in pts with high-risk leukemias
relapsed after cord-blood transplantation.

4 adult AML pts, inclu
2/4 in CR2d.

Retrospective study of allo-CIK administered after allo-HSCTc in pts with
high-risk leukemias.

5 adult AML pts (n=5)

Phase I/II clinical trial of autologous CIK in pts with AML. 13 adult AML pts in C

Chimeric antigen T
(CART) cells

Phase I study of autologous CAR anti-LeY T-cell therapy for AML. 4 adult R/Re AML pts,
cytogenetic minimal re
progressive disease.

Phase I/II study of autologous CD33-directed CAR-T cells (CART-33) for
the treatment of R/Re AML.

1 adult AML pt.

Interventional open-label pilot study of RNA-redirected anti-CD123
autologous T-cell in patients with R/Re AML.

5 adult AML pts.

Single-center phase I dose-escalation study of a single infusion of
autologous NKG2D-CART cells without lymphodepleting conditioning in
subjects with AML.

7 adult AML pts, inclu
mutation, and 4 secon

Chimeric antigen
natural killer
(CAR-NK) cells

Phase I study of CD33-CAR NK-92 cells in R/Re AML pts. 2 adult and 1 adolesc

aCR1, first complete remission; bCR, complete remission; cAllo-HSCT, allogeneic hematopoietic stem cell transplantation; dCR2,
complete molecular remission; iCK, complex karyotype.
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manufactured from multiple sources (e.g., peripheral blood
mononuclear cells, umbilical cord blood, hematopoietic
progenitors, induced pluripotent stem cells), including the
recently introduced CAR NK-92 cells, which consist of a
modified CAR-engineered form of the NK-92 cell line. Such
cell line represents an easily manageable and cost-effective tool
for large-scale production of CAR-NK cells. Conversely, few
drawbacks should be taken into account when using such
strategy for CAR-NK cell manufacturing: i) failure of an in
vivo expansion, due to lethal irradiation before infusion; ii)
lack of NK-cell activating molecules (CD16 and NKp44); iii)
potential in vivo tumorigenicity (60). The first-in-human clinical
trial using CD33 CAR-NK cells derived from engineered NK-92
cells on three relapse/refractory extramedullary AML patients
had no encouraging results (1/3 reached a transitory complete
remission of 4 months) (44). Other trials with CD33 CAR-NK
cells are under investigation (NCT02892695, NCT02944162).
Such studies will help to clarify whether combinatorial strategies
can provide antileukemic activity in the absence of relevant
toxicity. While there was no specific focus on HR-AML in
these preliminary studies and no clear studies showed HR-
AML to be particularly sensitive to immune killing, the
development of an effective anti-AML CAR-T or CAR-NK cell
approach might provide a potent tool for reducing relapse in this
high-risk disease.

Other Adoptive Cell Therapies
in the Near Future
T cells can be engineered to target different tumor-associated
antigens that are frequently expressed in advanced AML blasts
and other hematological neoplasms. Preliminary results of such
tumor-associated antigen lymphocyte therapy (TAA-T) for
different relapsed hematologic malignancies after allo-HSCT
(11 patient, Hodgkin’s lymphoma n=2, B-ALL n=3, AML n=5,
and 1 HR-AML post 2nd allo-HSCT) showed that 80% of patients
(4/5) with AML achieved a stable complete remission (61). This
study also suggested TAA-T to be safe and tolerable (only one
patient showed a liver GvHD; no cytokine release syndrome or
neurotoxicity was observed). These preliminary promising data
suggest that TAA-T therapy may be a feasible option for
preemptive treatment of relapse after allo-HSCT for HR-AML,
but further clinical studies are needed to ascertain its feasibility
and efficacy in this setting. T-cell receptor (TCR)-modified T-cell
therapy is a novel emerging strategy using the anti-tumor effect
of genetically modifying T cells through the transduction of TCR
genes against several cancer antigens (62, 63). The impact of this
therapy against specific leukemic antigens is still under
investigation. This therapy seems also very safe (64). The in
vitro and in vivo preliminary studies on B-malignancies are very
promising (65).

Allo-HSCT Strategies: Is There Room
for the Cure of High-Risk Acute
Myeloid Leukemias?
Allo-HSCT is the only treatment modality that can provide a
long-term survival benefit for HR-AML (Table 2), although
current conventional transplantation strategies have scarce
Frontiers in Immunology | www.frontiersin.org 6
effect on HR-AML outcomes, with a maximum 2-year OS of
30–35% and a higher relapse rate when compared to other
cytogenetic risk categories (14–16).

HLA-Matched Allo-HSCT
A multicenter study of HLA-matched allo-HSCT that employed
various immunosuppressive strategies for GvHD prophylaxis
(cyclosporine A, tacrolimus, and T-cell depletion) compared a
total of 584 patients carrying HR-AML in first complete
remission (CR1) from 151 transplantation centers. It showed a
median 3-year OS of 45% (range 38–52%), 37% (range 31–44%),
and 31% (range 22–41%) in patients undergoing matched sibling
donor (MSD), HLA-well-matched and partially-matched
unrelated donor (MUD) transplantation, respectively.
Myeloablative or reduced-intensity conditioning (RIC)
regimens were used. Cumulative incidence (CI) of relapse at 3
years was 37% for MSD, 40% for well-MUD, and 24% for
partially-MUD, while 3-year relapse-free survival (RFS) was 42,
34, and 29%, respectively. No significant differences in relapse
were observed among the various cytogenetic subsets (66).
Another retrospective multicenter study that involved more
than 500 transplantation centers reported outcomes of 1,342
patients with CK-AML. Increased risk of relapse correlated with
age, secondary AML, active disease at transplant, and the
presence of deletion/monosomy 5. High tumor burden before
transplant negatively impacted on post-transplantation
outcomes. Indeed, 2-year CI of relapse for patients in CR and
with active disease at transplantation was 47 and 64%,
respectively. A very short OS at 2 years post-transplantation
was observed in a subgroup of patients carrying deletion or
monosomy 7 and deletion or monosomy 5 (29 and 20%
respectively vs 42% in control groups without 7 and 5 deletion/
monosomy). No significant survival benefit was observed
between fully myeloablative conditioning and RIC regimen for
patients with CK AML (34 and 28%). RFS rate was 39.9, 33, and
18.3% for patients ages <40, 40 to 60, and >60 years, respectively
(14). Such studies demonstrate that the high relapse incidence
after transplant in HR-AML patients is the major limitation of
the procedure. Such outcomes urge the development of novel
transplantation approaches.

Haplo-HSCT
The recent advancements in T-cell manipulation and in GvHD
prophylaxis make haplo-HSCT a valuable transplantation
strategy to overcome intrinsic chemotherapy resistance of
high-risk leukemias. Haplo-HSCT procedures can be mainly
divided in two major categories: T-cell depleted (TCD)
peripheral-blood stem cells (PBSCs) haplo-HSCT and
unmanipulated haplo-HSCT.

Unmanipulated haplo-HSCT relies on pharmacologic
GvHD prophylaxis, and it is now adopted worldwide. The use
of G-CSF-primed grafts (67, 77), post-transplant high-dose
cyclophosphamide (PT-Cy) in combination with other
immunosuppressive drugs (78, 79), and post-transplant
rapamycin (80), are different approaches that have been tested
in this setting. While such strategies help to keep non-relapse
mortality (NRM) acceptable, disease relapse remains a major
August 2021 | Volume 12 | Article 695051
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TABLE 2 | Selected published strategies of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for high-risk acute myeloid leukemia (HR-AML).

ase Outcomes Ref.

3-year OS°: (66)
- MSDb=45%
- HLA-well-matched URDa= 37%
- Partially-matched URDa=31%
Median follow-up:
- MSDb: 61 months
- URDa: 35 months
3-year TRMi:
- MSDb=21%
- HLA-well-matched URDa=26%
- Partially-matched URDa=47%

2-year OSm = 36.8% (14)

2-year NRM° = 17.6%

18-month LFSx = 44% (67)

4-year OSh = 57% (68)

4-year TRMi = 20% (69)
2-year OSh = 55%

2-year TRMd = 24%

2-year GRFSe = 32%

1-year OSm: (70)
- TCRs = 64%
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strategy

Study design AML patient cohort
in the study

Conditioning
regimen

Graft-versus-H
(GvHD) pro

HLA-matched
allo-HSCT

Retrospective multicenter study of URDa and
MSDb allo-HSCT in patients (pts) with high-risk
acute myeloid leukemia (HR-AML) in CR1c.

584 adult HR-AML pts: MACe: ATGg:
- CKd: 32% - MSDb: n=183 - MSDb: n=18
- -7/del(7q): 25% - URDa: n=252 - URDa: n=96
- Others: 43% RICf: CsAh:

- MSDb: n=252 - MSDb: n=155
- URDa: n=106 - URDa: n=137

Tacrolimus:
- MSDb: n=40
- URDa: n=191
T-cell depletion:
- MSDb: n=20
- URDa: n=29
Others/missing:
- MSDb n=11
- URDa: n=

Retrospective multicenter study of MSDb, MUDp,
and MMUDq allo-HSCT in CKd AML pts.

1,342 adult CKd AML
pts:

MACe: n=739 T-cell depletion:

- 357 with -7/del(7q) RICf: n=603
- 259 with -5/del(5q)

HLA-haploidentical allo-HSCT Prospective multicenter trial of G-CSF-primed
grafts for haploidentical allo-HSCT in pts with
blood neoplasms.

45 adult AML pts: MACe: n=64 ATGg

(Haplo-HSCT) - 34 standard-risk AML RICf: n=16 CsAh

- 11 HR-AML Methotrexate
In HR-AML group: Mycophenolate
- 2 pts in CR3n Basiliximab
- 9 pts with active
disease

Retrospective multicenter study of
unmanipulated haploidentical allo-HSCT
in patients with AML.

Within the entire AML
cohort:

MACe CsAh

- 99 pts in CRl Mycophenolate
- 51 pts with active
disease150 adult AML
pts:
- 95 HR-AML

Retrospective single-center analysis of MSDb vs
URDa vs HRDr allo-HSCT for pts >60 years with
AML.

94 adult AML pts: In HRDr allo-HSCT: In HRDr allo-HSC
- 28 HR-AML MACe: n=0 Post-transplant

cyclophosphami
Within the entire AML
cohort:

Non-MACe: n=9 CsAh

- 80 pts in CRl RICf: n=24 Mycophenolate
- 14 with active
disease

Prospective trial of TCRs HRDr allo-HSCT in pts
with blood neoplasms, compared with a
retrospective cohort of pts treated with TCDt

haplo-HSCT.

65 pts: TCRs group (n=32): In TCR:
- 42 AML/MDS - MACe: n=26 Post-transplant

cyclophosphami
Tacrolimus,
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TABLE 2 | Continued

ase Outcomes Ref.

- TCDt= 30%
1-year TRMi:
- TCRs = 16%
- TCDt = 42%

ab 2-year OSm = 53% (71)
2-year EFSv for HR-AML = 44%
TRMi = 9%

nd 3-year OSm: 74% (72)

and OSm:
- MUDp = 64%
- haplo-HSCT = 86%
GRFSz:
- MUDp = 49%
- haplo-HSCT = 70%
TRMi:
- MUDp = 14%
- haplo-HSCT = 5%
For entire cohort: (73)
5-year OSm = 72%

5-year CRFSy = 71%
5-year TRMi = 5%
For AML sub-cohort:
5-year LFSx = 68%
For a/b TCDt haplo-HSCT AL cohort: (74)
5-year probability of OSm = 68%
5-year LFSx = 62%
5-year CRFSy = 59%
TRMi = 9%
Cumulative incidence of relapse for
AML sub-cohort = 21%

2-year OSm = 78% (75)

29-month OSm = 77% (76)
CRFSy = 75%
CRFSy (for HR-AML) = 72%
TRMi = 21%
Cumulative Incidence of relapse: 4%

ced-intensity conditioning regimen; gATG, anti-thymocyte
y; pMUD, matched unrelated donors; qMMUD, mismatched
survival; wCR2, second complete remission; XLFS, leukemia-
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Conditioning
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Graft-versus-Host
(GvHD) prophy

- RICf: n=6 Mycophenolate
TCDt group (n=33): In TCD:
- MACe ATGg

Prospective trial of a/b TCDt HRDr allo-HSCT
without ATG in children with chemorefractory
AML.

22 AML: MACe Bortezomib and toci
+/− abatacept- 9 HR-AML

- 10 primary refractory
- 12 R/Ru AML with
active disease

Retrospective analysis in children with HR-AML in
CRl receiving a/b TCDt HRDr allo-HSCT or MUDp.

73 HR-AML: MACe 36 pts ATGg, tacrolim
methotrexate

- 59 pts in CR1c 47 pts ATGg, Bortez
rituximab- 14 pts ≥ CR2w

Prospective trial of a/b TCDt and B
cell-depleted HRDr allo-HSCT in children with AL.

80 AL: MACe ATGg

- 24 CRi (CR1c=16,
CR2w=8)
- 4 HR-AML

Retrospective multicenter comparative analysis of
URDa- or a/b TCDt HRDr allo-HSCT in children
with AL.

342 AL: MACe In HRDr allo-HSCT:
- MUDp: 127 a/b+ and CD19+ neg

selection + ATGg- MMUDq: 118
- HRDr: 98
105 CRl AML:
- MUDp: 43
- MMUDq: 32
- haplo-HSCT: 30

Prospective single-arm clinical trial of naïve TCDt

peripheral blood stem cells grafts for adult pts
with high-risk leukemia.

35 Adult high-risk
leukemia:

MACe Tacrolimus

- 10 AML
Prospective single-center trial of adult AML pts
undergoing HRDr allo-HSCT combined with
regulatory and conventional T cells adoptive
immunotherapy

50 adult AML pts: Age-adapted MACe None
- 20 HR-AML
- 42 CRi

- 8 with active disease

aURD, unrelated donor; bMSD, matched sibling donor; cCR1, first complete remission; dCK, complex karyotype; eMAC, Myeloablative conditioning regimen; fRIC,
immunoglobulin; hCsA, cyclosporin; iTRM, transplant-related mortality; lCR, complete remission; mOS, overall survival; nCR3, third complete remission; oNRM, non-relapse m
unrelated donors; rHRD, haploidentical related donor; sTCR, T-cell replete; tTCD, T-cell deplete; uR/R, relapsed/refractory; vEFS, event-free survival; zGRFS, GvHD-free, relapse
free survival; yCRFS, chronic GvHD-free, relapse-free survival.
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concern, especially when non-myeloablative conditioning
regimens are used (81). A study of unmanipulated G-CSF-
primed haplo-HSCT showed a 1-year CI of NRM of 36% and
a CI of relapse of 21% at 1 year and 28% at 5 years respectively,
with a 3-year probability of OS and RFS in 44 and 30%,
respectively, in high-risk patients (> second CR or active
disease) with hematologic malignancies (including HR-AML)
(67). Haplo-HSCT with PT-Cy is now the most widely adopted
haplo-HSCT platform, thanks to acceptable rates of acute and
chronic GvHD, low NRM, no need of graft manipulation and
contained costs. On the other hand, relapse rates are still
disappointing in HR-AML patients. In fact, subanalyses
showing outcomes of patients with adverse genetic risk AML
reported relapse rates up to 50% (14). Because of such limitation
and with the goal of reducing leukemia relapse, high-intensity
myeloablative conditioning regimens have been employed.
Chiusolo P et al. (68) and Devillier R et al. (69) showed a CI of
AML relapse of 24% at 4 years and 25% at 2 years, respectively.
Further studies will be needed to evaluate if such strategies are
effective in subsets of HR-AML patients.

T-Cell Depleted Haplo-HSCT
In the last 20 years, several strategies of ex vivo T-cell depletion
(TCD) have been tested to improve outcomes of acute leukemia
patients who underwent haplo-HSCT. While traditional TCD
procedure based on positive selection of CD34+ cells was
associated with delayed immune reconstitution and increased
risk of NRM (70, 82), more recent strategies are directed towards
the preservation of immune subsets that improve post-transplant
immune recovery for more effective anti-infective and
antileukemic activities (82). Among these, ab T-cell-depleted
haplo-HSCT appears to be an effective platform for the treatment
of HR-AML. In ab T-cell-depleted haplo-HSCT the graft is
manipulated to eliminate T cells that express ab T cell receptor
and which are demonstrated to be the main T cell population
responsible for alloreactions that cause GvHD. In the studies by
Shelikhova L et al. (71) and Maschan M et al. (72), children with
primary refractory or relapsed AML who underwent ab T-cell-
depleted haplo-HSCT reached hematologic complete remission,
despite 9/22 of them carried adverse-risk cytogenetics. However,
the relapse rate and OS at 2 years after allo-HSCT were 42 and
52%, respectively. In different studies by Locatelli F et al. (73) and
Bertaina A et al. (74), ab T-cell and B-cell-depleted haplo-HSCT
proved to be a safe and suitable approach in high-risk acute
leukemias (HR-AL) in children. Indeed, it achieved a 5-year
probability of chronic GvHD-free/relapse-free (GRFS) survival
of 71% in HR-AL patients (73). A novel TCD haplo-HCT
platform employs grafts that have been selectively depleted of
naive T-cells. Indeed, depletion of naïve T cells (TN) from PBSC
preserves hematopoietic engraftment and allows for the transfer
of donor-derived memory T cells, that can confer immunity
against pathogens with low risk of GvHD (75). This approach
has demonstrated to improve outcomes of HR-AL patients (the
2-year relapse rate was 21% and the 2-year RFS was 70%) in a
single-arm trial (75). Thus, such approaches are promising, but
relapse rates still reduce outcomes of HR-AL patients.
Frontiers in Immunology | www.frontiersin.org 9
Haploidentical HSCT Combined With Regulatory and
Conventional T-Cells Adoptive Immunotherapy
We have recently demonstrated that haplo-HSCT combined
with regulatory and conventional T-cel ls adoptive
immunotherapy (Treg-Tcon haplo-HSCT) is able to overcome
disease-intrinsic chemoresistance (18, 76). We enrolled 50 AML
patients in the study; 40% of them (20/50) had HR-AML. An
“age-adapted” myeloablative conditioning based on total body
irradiation (TBI) for patients up to the age of 50 years and total
marrow/total lymphoid irradiation (TMLI) for patients aged 51–
65 years was followed by thiotepa, fludarabine, and
cyclophosphamide. No pharmacological GvHD prophylaxis
was given. Two millions/kg donor regulatory T cells were given
at day −4 to allow for their alloantigen-specific in vivo expansion.
One million/kg conventional T cells were given at day −1 and
were followed by the infusion of a “megadose” of purified CD34+
hematopoietic progenitor cells at day 0. Fifteen/50 patients
developed grade ≥2 acute GvHD (aGvHD). Moderate/severe
cGvHD occurred in only one patient. Only two patients
relapsed (4%). Consequently, at a median follow-up of 29
months, the probability of moderate/severe cGvHD/relapse-
free survival was 75% (18, 76). TMLI allowed to safely extend
the powerful effect of a myeloablative conditioning to older (>60
years old) patients. Further, when looking at the different genetic
signatures of the enrolled AML patients, we found that HR-AML
did not have a higher risk of relapse in comparison to more
favorable subgroups. Indeed 17 of the 20 HR-AML patients are
alive and leukemia-free despite many of them had detectable
disease at transplant. Such results demonstrate HR-AML to be
sensible to immune-mediated killing. Indeed, the absence of
pharmacologic immune suppression in Treg/Tcon haplo-HSCT
could have favored a potent GvL effect that was exerted across all
the AML subsets and that was not limited by disease burden and
previous refractoriness to chemotherapeutic agents. ELN AML
genetic risk stratification is considered to retain outcome
prediction after allo-HSCT (83). However, our study showed
that effect was lost after Treg/Tcon haplo-HSCT in a single series
of 50 AML patients. While larger multicentric studies are needed
to support such conclusion, the potent GvL activity of Treg/Tcon
haplo-HSCT appears to be an effective tool for the treatment of
such unfavorable AML.
DISCUSSION

HR-AMLs are usually characterized by a very poor response to
conventional treatments and to conventional allo-HSCT. Indeed,
relapse rates are high (often above 50%) and result in very low
survival (often below 10–20%). Thus, novel effective strategies
are needed. Recent studies on new adoptive cell strategies (CAR-
T cells, CAR-NK cells, CIKs, activated NK cells) bring new hopes
for the treatment of such unfavorable diseases. Indeed, immune-
cell-based therapies may represent a powerful tool to successfully
t rea t chemores i s t an t HR-AML. NK ce l l adopt ive
immunotherapies are a promising therapeutic, but their
efficacy is still limited and fine-tuning of the approach is still
August 2021 | Volume 12 | Article 695051
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required for larger clinical use (32–35). The more recently
introduced CAR-T- and CAR-NK-cell-based treatments
demonstrated high potency in pilot studies and hold great
promise (40–44). The growing body of clinical studies and
broader use of these agents in different settings and against
novel targets will provide key information on their ability to
eradicate HR-AML. Furthermore, we have recently demonstrated
that Treg-Tcon haplo-HSCT is able to overcome HR-AML
intrinsic chemoresistance, prevent relapse, and improve survival
(18, 76). This study strongly suggests that HR-AMLs are sensitive
to antileukemic immunity. The introduction of new immune
therapeutics that strengthen immune activity against leukemia
and the development of transplantation approaches that favor
unopposed GvL might help to develop powerful tools for an
effective treatment of HR-AML.
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