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Clinical epigenomics: genome-wide DNA methylation analysis
for the diagnosis of Mendelian disorders
Bekim Sadikovic 1,2✉, Michael A. Levy1,2, Jennifer Kerkhof1,2, Erfan Aref-Eshghi1,2, Laila Schenkel1,2, Alan Stuart1,2, Haley McConkey1,2,
Peter Henneman3, Andrea Venema3, Charles E. Schwartz4, Roger E. Stevenson4, Steven A. Skinner4, Barbara R. DuPont4,
Robin S. Fletcher4, Tugce B. Balci5,6, Victoria Mok Siu5,6, Jorge L. Granadillo7, Jennefer Masters1,2, Mike Kadour1,2, Michael J. Friez4,
Mieke M. van Haelst3, Marcel M. A. M. Mannens3, Raymond J. Louie4, Jennifer A. Lee4, Matthew L. Tedder4✉ and Marielle Alders3✉

PURPOSE: We describe the clinical implementation of genome-wide DNA methylation analysis in rare disorders across the EpiSign
diagnostic laboratory network and the assessment of results and clinical impact in the first subjects tested.
METHODS: We outline the logistics and data flow between an integrated network of clinical diagnostics laboratories in Europe, the
United States, and Canada. We describe the clinical validation of EpiSign using 211 specimens and assess the test performance and
diagnostic yield in the first 207 subjects tested involving two patient subgroups: the targeted cohort (subjects with previous
ambiguous/inconclusive genetic findings including genetic variants of unknown clinical significance) and the screening cohort
(subjects with clinical findings consistent with hereditary neurodevelopmental syndromes and no previous conclusive genetic
findings).
RESULTS: Among the 207 subjects tested, 57 (27.6%) were positive for a diagnostic episignature including 48/136 (35.3%) in the
targeted cohort and 8/71 (11.3%) in the screening cohort, with 4/207 (1.9%) remaining inconclusive after EpiSign analysis.
CONCLUSION: This study describes the implementation of diagnostic clinical genomic DNA methylation testing in patients with
rare disorders. It provides strong evidence of clinical utility of EpiSign analysis, including the ability to provide conclusive findings in
the majority of subjects tested.
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INTRODUCTION
Mendelian disorders are estimated to occur at a rate of 40 to 82
per 1,000 live births.1 However, if all congenital anomalies are
considered, approximately 8% of individuals are estimated to have
a genetic disorder before reaching adulthood.2 Clinical presenta-
tions in most genetic disorders include developmental delay and
intellectual disability (DD/ID), sometimes in combination with
other features including dysmorphism, neuromuscular pheno-
types, and other systemic constellations of syndromes.3 Despite
rapid advances in our understanding of the human genome,
nearly two-thirds of the patients with suspected rare genetic
disorders remain without a conclusive molecular genetic
diagnosis.4

Evolution of genetic testing from single-nucleotide assessment
to clinical exome and genome sequencing, while increasing the
diagnostic yield to an average of 36%,4 has also resulted in a
significant increase in ambiguous or uncertain genetic findings,
referred to as variants of unknown clinical significance (VUS).
Despite concerted efforts to standardize guidelines for the
interpretation of sequence variants5 and to define the functional
evidence for variant classification,6 a large proportion of VUS
remain without conclusive clinical interpretation. Also, the under-
standing of the impact of genetic variation outside of protein-
coding DNA sequences is very limited, and as such, the majority of
genetic testing in clinical laboratories is focused on exonic and

short surrounding intronic sequences. Family variant cosegrega-
tion studies, in silico prediction algorithms, and gene-specific
functional studies may help resolve VUS findings, but in the
majority of cases these are not available, feasible, or conclusive.
One functional consequence of genetic defects in patients with

hereditary neurodevelopmental disorders is the disruption of
genomic DNA methylation.7 DNA methylation is an epigenetic
modification, resulting in changes in structural and chemical
properties of the DNA, impacting molecular mechanisms including
chromatin assembly and gene transcription.8 Our group and
others have demonstrated that individuals among a growing
number of rare disorders exhibit DNA methylation “episignatures”
or “EpiSigns” as highly sensitive and specific DNA methylation
biomarkers.9–22 These genome-wide DNA methylation profiles
currently include over 40 rare disorders in association with more
than 60 genes, and can be gene domain, gene level, as well as
protein complex specific. DNA methylation episignatures are
detectable in peripheral blood and are highly sensitive and
specific for each disorder. As such, they represent effective
biomarkers for the testing of patients with a broadening range of
neurodevelopmental genetic conditions, as well as a reflex
functional test for patients with ambiguous genetic test findings
or clinical phenotypes.23

Genomic DNA methylation analysis is also adaptable to the
routine analytical processes in clinical laboratories. Cytosine
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methylation is a highly stable analyte, and genome-wide DNA
methylation data can be generated on a microarray platform. In
parallel with episignature screening, genomic DNA methylation
analysis enables concurrent and highly sensitive and specific
assessment of imprinting disorders24 and fragile X syndrome,25

enabling further test consolidation in this patient population. One
key technical challenge in the clinical setting is data analysis. This
requires the development of large-scale reference DNA methyla-
tion databases, including disorder and tissue-specific reference
data sets and controls, and sophisticated analytical processes
including machine learning algorithms as analytical classifiers.
Testing must be performed in a regulated clinically certified
environment, with adherence to the required quality manage-
ment procedures, and clinical quality metrics, all under profes-
sional clinical oversight.
In this study we describe the implementation and validation of

EpiSign, a clinical genome-wide DNA methylation test for patients
with rare Mendelian disorders, based on the Illumina Infinium
methylation array technology and the EpiSign Knowledge
Database (EKD). We describe the quality metrics and clinical
validation metrics within an integrated network of licensed
academic nonprofit clinical laboratories in Europe, Canada, and
the United States. We describe the clinical performance and the
diagnostic yield in subjects tested between initiation of the service
in November 2019 to June 2020. This study demonstrates the
clinical utility of genomic DNA methylation testing in patients with
Mendelian neurodevelopmental disorders.

MATERIALS AND METHODS
Clinical validation and patient cohorts
The validation cohort (Table S1) was designed to clinically validate and
assess quality metrics of the EpiSign test across the EpiSign diagnostic
laboratory network, and consisted of 211 archived peripheral blood DNA
samples including samples with confirmed diagnosis of one of 43 genetic
syndromes included in the EpiSign v2 genome-wide DNA methylation
assay (Table 1), or controls. The genetic variation in these specimens were
classified as pathogenic or likely pathogenic based on the American
College of Medical Genetics and Genomics (ACMG) guidelines for
interpretation of genomic sequence variants.5 Technical inter and intrarun
replicates were assessed for concordance based on methylation variant
pathogenicity (MVP) score (within 0.05) and clustering analysis. The clinical
testing cohort (Table S2) consists of peripheral blood DNA samples from
207 subjects, referred by physicians based on individual clinical discretion,
who have received clinical EpiSign testing. All subjects provided informed
consent for clinical genetic testing as part of pretest counseling.
DNA methylation analysis was performed using the Illumina Infinium

EPIC bead chip arrays as previously described9 by the clinical testing
laboratories: Greenwood Genetic Center (Greenwood, SC, USA) and
Amsterdam University Medical Center and partner labs (Amsterdam,
Netherlands). Data from validation and clinical testing specimens
(November 2019 and June 2020) were blinded and submitted to the
clinical bioinformatics laboratory (Molecular Diagnostics Laboratory,
London Health Sciences Centre, Western University, London, Canada)
through a secure file transfer protocol and housed on the hospital clinical
encrypted servers.

DNA methylation data analysis
Analysis of the DNA methylation array data was performed by the clinical
bioinformatics laboratory using Illumina Infinium EPIC arrays. Methylation
data for each sample were compared to the established DNA methylation
episignatures for the 43 disorders (Table 1) which are part of the EpiSign
clinical test. EpiSign analysis utilized the EKD, a clinical database with
>5,000 peripheral blood DNA methylation profiles including disorder-
specific reference cohorts and normal (general population samples with
various age and racial backgrounds) controls housed at London Health
Sciences Centre Molecular Diagnostics Laboratory (https://www.lhsc.on.ca/
palm/molecular.html). Individual DNA methylation data for each subject
were compared with the EKD using the support vector machine (SVM)
based classification algorithm for EpiSign disorders. Methylation variant
Pathogenicity (MVP) score is generated ranging between 0 and 1,

representing the confidence of prediction for the specific class the SVM
was trained to detect. Conversion of SVM decision values to these scores
was carried out according to the Platt scaling method.26 Classification for a
specific EpiSign disorder included MVP score assessment with a general
threshold of >0.5 for positive, <0.1 negative, 0.1–0.5 inconclusive or low
confidence, hierarchical clustering and the multidimensional scaling (MDS)
of subject’s methylation data relative to the disorder-specific EpiSign probe
sets and controls. A detailed description of this analytics protocol was
described previously.9,27

Clinical assessment and reporting
DNA methylation analysis results were clinically verified by a board-
certified clinical molecular geneticist at the clinical bioinformatics
laboratory. Result categories include positive (matching an EpiSign
disorder), negative (not matching any EpiSign disorder), and inconclusive
(described in detail in results). The report is then reviewed and verified by a
board-certified laboratory professional in the clinical testing laboratory,
and a clinical report describing the EpiSign results (positive, negative, or
inconclusive for a particular episignature) is issued to the requesting
physician.

RESULTS
EpiSign clinical validation
The 211 validation specimens are described in Table S1. Data were
generated at the clinical testing laboratories, anonymized, and
submitted to the clinical bioinformatics laboratory for EpiSign
analysis. EpiSign analysis was concordant with the previous
genetic findings in 207/211 samples. A positive control cohort
included 143 samples with various genetic disorders with
previously reported DNA episignatures, imprinting and unipar-
ental disomy disorders, and fragile X syndrome. Of these, 139 were
concordant for the expected episignature. The discordant cases
included a subject (Val118) with a previously reported likely
pathogenic variant, KANSL1 (NM_001193466.1): c.297_307del; p.
Gly100Glnfs*6, related to Koolen–de Vries syndrome (KDVS), and
another subject (Val26) with a previously reported likely patho-
genic variant, CREBBP (NM_004380.2):c.4480C>A; p.Pro1494Thr,
related to the Rubinstein–Taybi syndrome (RSTS). In the case
Val118 with the KANSL1 likely pathogenic variant, and clinical
features consistent with KDVS, the MVP score for KDVS was zero.
Some individuals carry a duplication harboring part of the KANSL1
gene elsewhere in the genome, which may cause variants in the
duplicated region to be erroneously assigned to the KANSL1 gene.
However, assessment of exome sequencing data, array compara-
tive genomic hybridization (array CGH), and multiplex ligation-
dependent probe amplification (MLPA) analysis showed no
evidence of this this duplication. The MVP score in the second
case, Val26, with CREBBP(NM_004380.2):c.4480C>A, p.
(Pro1494Thr), for RSTS was zero. Potential mosaicism of the
CREBBP variant was not apparent. The remaining two discordant
cases (Val128 and Val140) both had previously identified SMARCC2
pathogenic variants. Fifty-six samples were normal reference
controls (NC) and were all concordant. The remaining 12 samples
(other controls in Table S1) included samples with previous
genetic findings that are currently undetectable by EpiSign
analysis including samples with low-level mosaicism for imprinting
disorders, fragile X female heterozygotes, 16p11del and ARID2
pathogenic variant. There were 10 interrun duplicates (samples
processed in different array batches) and 18 intrarun duplicates
(replicate samples processed in the same batch), and all were
concordant. EpiSign v2 validation included 55 replicates of
samples used in v1 validation and all were concordant.

EpiSign clinical testing
EpiSign analysis includes genetic conditions that exhibit DNA
methylation episignatures as well as the common imprinting
disorders and fragile X (Table 1). A total of 207 subjects were
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Table 1. Disorders detectable by EpiSign v2.

Disease/disorder Causative gene(s)/region New in
EpiSign V2

Validation
cohort positives

Clinical
cohort
positives

ɑ-thalassemia/mental retardation X-linked syndrome
(ATR-X)

ATRX (301404) No 2 4

Autism, susceptibility to, 18 (AUT18) CHD8 (610528) Yes 6 3

BAFopathies: Coffin–Siris (CSS1–4, and 8) and
Nicolaides–Baraitser (NCBRS) syndromes

ARID1B (135900), ARID1A (614607),
SMARCB1 (614608), SMARCA4
(614609), SMARCC2 (618362),
SMARCA2 (601358)

ARID1A,
SMARCC2

28 10

Blepharophimosis intellectual disability syndrome,
SMARCA2 type

SMARCA2 (OMIM not available,
PMID: 32694869)

Yes 2

Börjeson–Forssman–Lehmann syndrome (BFLS) PHF6 (301900) Yes 1

Cerebellar ataxia, deafness, and narcolepsy, autosomal
dominant (ADCADN)

DNMT1 (604121) No

CHARGE syndrome CHD7 (214800) No 6 4

Cornelia de Lange syndrome (CdLS) NIPBL (122470), RAD21 (614701),
SMC3 (610759), SMC1A (300590)

No 11 6

Down syndrome Trisomy 21 (190685) No 1

Epileptic encephalopathy, childhood-onset (EEOC) CHD2 (615369) Yes 1

Floating Harbor syndrome (FLHS) SRCAP (136140) No

Genitopatellar syndrome (GTPTS) and Ohdo
syndrome, SBBYSS variant (SBBYSS)

KAT6B (606170; 603736) No 3 2

Helsmoortel–van der Aa syndrome (HVDAS)a ADNP (615873) No 9 2

Hunter–McAlpine syndrome (HMA) Chr5q35-qter duplication (601379) Yes

Immunodeficiency–centromeric instability–facial
anomalies syndrome (ICF)b

DNMT3B (242860), CDCA7 (616910),
ZBTB24 (614069), HELLS (616911)

Yes

Kabuki syndrome KMT2D (147920), KDM6A (300867) KDM6A 12 5

Kleefstra syndrome EHMT1 (610253) Yes 2 2

Koolen–de Vries syndrome (KDVS) KANSL1 (610443) Yes 5

Mental retardation, autosomal dominant 23 (MRD23) SETD5 (615761) Yes 4

Mental retardation, autosomal dominant 51 (MRD51) KMT5B (617788) Yes

Mental retardation, X-linked 93 (MRD93) BRWD3 (300659) Yes 1 1

Mental retardation, X-linked 97 (MRD97) ZNF711 (300803) Yes 1

Mental retardation, X-linked syndromic, Nascimento-
type (MRXSN)

UBE2A (300860) Yes 1

Mental retardation, X-linked, Snyder–Robinson type
(MRXSSR)

SMS (309583) Yes 1

Mental retardation, X-linked, syndromic, Claes–Jensen
syndrome (MRXSCJ)

KDM5C (300534) No 6 1

PCR2 complex (Weaver (WVS) and Cohen–Gibson
(COGIS)

EZH2 (277590), EED (617561) Yes

Rahman syndrome (RMNS) HIST1H1E (617537) Yes

Rubinstein–Taybi syndrome (RSTS) CREBBP (180849), EP300 (613684) Yes 2 3

SETD1B-related syndrome SETD1B (619000) Yes 1

Sotos syndrome NSD1 (117500) No 8 4

Tatton–Brown–Rahman syndrome (TBRS) DNMT3A (615879) Yes 1 1

Wiedemann–Steiner syndrome (WDSTS) KMT2A (605130) Yes 3 2

Williams–Beuren deletion syndrome (WBS) and
Williams–Beuren regions duplication syndrome
(Dup7)c

7q11.23 deletion (194050)/
duplication (609757)

No 2

Wolf–Hirschhorn syndrome (WHS) Chr4p16.13 deletion (194190) Yes

Fragile X syndrome (FXS) TNR/FMR1 (300624) No 6

Mental retardation, FRA12A type TNR/DIP2B (136630) No 1
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tested by EpiSign analysis and reported in the period between
September 2019 and June 2020. Of these, 57 specimens were
positive for an episignature, 146 were negative, and 4 were
inconclusive (Table S3). Of the 207 subjects, a total of 136 patient
samples had a previous VUS finding, and of these, 48 (35.3%) had
DNA methylation profiles positive for one of the EpiSigns. Most of
the positive cases had robust DNA methylation profiles (MVP
scores >0.9 with unambiguous MDS and clustering analysis) with
some positive cases showing moderate, but positive profiles
(reduced but positive MVP score, or closer to borderline MDS
clustering). Eighty-six cases had no evidence of a DNA methylation
episignature. The remaining two VUS cases were inconclusive.
Figure 1 shows examples of MVP score plots for Cornelia de

Lange and Sotos syndromes. Figure S1 shows the representative
genomic loci along with reference control and positive DNA
methylation profiles for imprinting and fragile X disorders listed in
Table 1. For specimens that screen positive for a specific MVP
score, hierarchical clustering and multidimensional scaling are
performed. Figure 2 shows data for two subjects with VUS in
SMC1A, the causative gene for Cornelia de Lange syndrome (CdLS)
type 2, SMC1A:c.598A>C, p.(Lys200Gln) and SMC1A:c.1280A>G,
p.(Glu427Gly). The SMC1A:c.598A>C, p.(Lys200Gln) variant was
reclassified as likely pathogenic, ACMG category 2, and the SMC1A:
c.1280A>G, p.(Glu427Gly) variant did not show evidence of
pathogenicity based on the current reference episignatures. Other
examples depicted in Fig. 3 show data from two subjects with VUS
in NSD1, the causative gene for Sotos syndrome type 1, NSD1:
c.4982G>C, p.(Cys1661Ser) and NSD1:c.3331G>T, p.Asp1111Tyr.
The NSD1:c.4982G>C, p.(Cys1661Ser) was reclassified to likely
pathogenic, ACMG category 2, while NSD1:c.3331G>T,
p.Asp1111Tyr, which clusters with controls, showed no evidence
of pathogenicity. Similar analysis is performed for all subjects
tested with findings summarized in Table S3.
One of the four inconclusive clinical testing cases, Clin77, had a

ARID2:c.988_1008del, p.(Leu330_Gly336del) VUS. MVP score for
BAFopathy using the EpiSign v1 was slightly elevated (0.2) but
below the established 0.5 cutoff and above the 0.1 cutoff for
reference normal controls. The updated EpiSign v2 reanalysis
showed no evidence of the elevated BAFopathy score; however,
MRD23 score remained elevated. MDS profile showed clustering
between BAFopathy cohort and controls (Figure S2). The current

BAFopathy episignature is trained on positive cases with
pathogenic variants in ARID1B, ARID1A, SMARCB1, SMARCA2, and
SMARCA4. Since BAF complex–associated ARID2 positive refer-
ences are not represented, it was not possible to confidently rule
in/out a BAFopathy episignature. Case Clin203 had a previously
identified ADNP:c.46C>G, p.(Arg16Gly) VUS. The ADNP gene has
two distinct EpiSigns11 as a result of truncating variants in two
distinct protein domains; the 5’ being defined by the variants
ranging from c.56 to c.1287. The MVP score for this subject was
0.03, which is within the normal range, but MVP scores for all other
conditions were zero. Due to the strong hypomethylation
observed with this episignature, MDS analysis clearly separates
the reference from the positive cohort, and this sample plots
between the two (Figure S2). In lieu of these findings and because
the variant lies outside of the established EpiSign domain, the
result was reported as inconclusive. For case Clin120, the MVP
scores were within the expected reference range but showed
slight elevation for MRX97 (0.02) (Figure S2). Although this value is
within reference control limits, the currently defined episignature
for MRX97 is mild and derived from a limited positive reference
cohort. Since this subject’s phenotype had a partial overlap with
MRX97 the result was reported as inconclusive. The final case,
Clin202, was referred because of clinical features consistent with
BAFopathy disorder and no variants identified in BAF complex
genes. This sample clustered between BAFopathy and the control
samples by the MDS analysis (Figure S2). Although the MVP score
was within the normal reference range for BAFopathy and all
other EpiSign disorders, as in case Clin77, and we could not rule
out involvement of other yet unmapped BAF complex genes.

Notable clinical cases
While one use of EpiSign is to help resolve VUS, there are
scenarios where a DNA methylation episignature is the only
molecular diagnostic finding. Case Clin136 was referred for
EpiSign analysis due to clinical features consistent with ATRX-
related syndrome. However, previous genetic testing of this
individual did not identify any alterations in the ATRX, using
targeted and exome sequencing. In contrast, EpiSign analysis
conclusively confirmed presence of a specific ATRX-specific DNA
methylation signature (Fig. 4). Hence, for this subject, DNA

Table 1 continued

Disease/disorder Causative gene(s)/region New in
EpiSign V2

Validation
cohort positives

Clinical
cohort
positives

Angelman syndrome (AS) ID/UBE3A (105830) No 6 1

Prader–Willi syndrome ID/15q11 (SNRPN, NDN) (176270) No 3

Silver–Russell syndrome 1 (SRS1) ID/11p15.5 (180860) No 5 1

Beckwith–Wiedemann syndrome (BWS) ID/11p15 (ICR1, KCNQ1OT1,
CDKN1C) (130650)

No 4

Silver–Russell syndrome 2 (SRS2) ID/7p11.2 (180860) No

Temple syndrome ID/14q32 (616222) No

Kagami–Ogatta syndrome (KOS) ID/14q32 (608149) No 2

OMIM number listed in parentheses adjacent to disorder name. The following list of genes have been classified as having reduced sensitivity and more
moderate signatures based on signature strength, limited reference cohort size, or types of variants that have been tested: CHD8, PHF6, DNMT3B, CDCA7,
ZBTB24, HELLS, SETD5, KMT5B, BRWD3, ZNF711, KAT6B, SMS, DNMT3A.
ID imprinting disorder, TNR trinucleotide repeat disorder.
aADNP has two distinct signatures depending on where in the gene the variant occurs. HVDAS_T signature includes variants that occupy the N- and C-
terminus of the gene and HVDAS_C includes variants in the central region of the gene including the nuclear localization signal of the protein.
bICF1 exhibits one signature while ICF 2, 3, and 4 exhibit a separate, common signature.
cThese two deletion/duplication syndromes exhibit symmetrical increased/decreased DNA methylation signatures, respectively.
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methylation profiling remains the only molecular diagnosis
explaining their clinical presentation.
A similar scenario with a different outcome involves subject

Clin6 who was referred for EpiSign analysis as a result of negative
molecular sequencing (CHD7 and SEMA3E), negative microarray,
and negative exome analysis with the phenotype strongly
suggestive of CHARGE syndrome. EpiSign analysis identified a
DNA methylation profile specific for CHD7, consistent with the
clinical diagnosis (Fig. 4). As a result, follow-up molecular studies
identified the causative deep intronic variant in CHD7 and
confirmed the molecular diagnosis. Details of this case resulting
from extensive genomic evaluation by the Undiagnosed Diseases
Network (https://undiagnosed.hms.harvard.edu/) are described in
a separate manuscript in preparation. Hence, EpiSign analysis
provided the necessary evidence for a more in-depth and focused
molecular analysis, ultimately leading to the definitive molecular
genetic diagnosis.
Case Clin187 highlights an example where extensive molecular

genetic testing was performed without a molecular diagnosis,
referred to as a diagnostic odyssey. Findings included exome
sequencing with PTCHD1:c.605G>A (p.Arg202Gln) VUS, maternal;
VPS13B:c.1520A>G (p.Asn507Ser) VUS, paternal; LAMC3:c.4415G>A
(p.Arg1472Gln), maternal; EZH2:c.2110+6T>G VUS, maternal; and
normal findings for: FMR1, MECP2, SNP 6.0 microarray, NSD1
(sequencing and MLPA), extensive biochemical workup, and X-
inactivation studies. However, EpiSign analysis showed an
episignature associated with DNMT3A, the gene involved in
Tatton–Brown–Rahman syndrome (Fig. 4). Follow up sequencing
of the DNMT3A gene revealed a missense likely pathogenic variant
DNMT3A:c.2146G>A (p.Val716Ile). As an infant, the patient met
motor and speech milestones but regressed at 18 months, losing
speech, attentiveness, and responsiveness to directions. Now at
age 17 years, she has overgrowth (all growth parameters greater

than the 97th centile), limited speech, echolalia, mild intellectual
disability, and autism spectrum disorder.

DISCUSSION
This paper describes the implementation of genome-wide DNA
methylation analysis in clinical testing of individuals with rare
genetic disorders. It represents a major milestone in molecular
diagnostics as it advances clinical genetic testing beyond
assessment of the DNA nucleotide sequence, or genomics, to
clinical epigenomics. While targeted molecular assays for assess-
ment of DNA methylation defects of imprinting disorders28,29 and
fragile X syndrome30 have been around for decades, EpiSign
enables simultaneous assessment for these, as well as a rapidly
expanding number of genetic neurodevelopmental disorders
exhibiting DNA methylation episignatures.

Clinical impact
The primary clinical utility of EpiSign analysis is the assessment
and reclassification of VUS in genes with existing episignatures,15

and the assessment of genetically unsolved individuals with
suspected hereditary conditions.14 While this clinical utility has
been described in a research setting in targeted patient cohorts,
this study focuses on the assessment of the impact of genome-
wide DNA methylation analysis in a clinical setting in a prospective
unselected patient population. The majority of the subjects tested
in the clinical cohort (136; 65.7%) had previously identified genetic
VUS, and of these, 134 (98.5%) received a conclusive EpiSign
report (positive or negative), of which 48 (35.3%) showed a
distinct EpiSign. For the 86 (63.2%) VUS cases with negative
EpiSign results, lack of an episignature is considered strong
evidence for rule out of these disorders. However, due to the
possibility of the existence of additional/alternate yet unmapped
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episignatures in these genes, as has been demonstrated in ADNP11

and SMARCA2,31 we currently stop short of fully ruling out
pathogenicity. Only 2 (1.5%) VUS cases remained unclassified.
These findings represent a significant advancement in clinical
variant assessment over currently available methodologies. While
alternative approaches for classification of VUS exist, including
functional and family segregation studies, these are not always
available, feasible, or conclusive.32 EpiSign analysis is less
susceptible to those limitations as it assesses the same tissue
(patient’s peripheral DNA) used for sequence analysis, and it
generally does not require assessment of other family members.
From a patient, family, and clinical management perspective,

providing the patient and care team with a rapid diagnosis
relating to the functional impact of the genetic condition, which
for a microarray-based test can be achieved within 1–2 weeks,
may be most beneficial to decision-making.
Of the remaining 71 subjects without the previously identified

genetic findings, 8 subjects (11.3%) had a positive EpiSign result,
demonstrating evidence for the clinical utility of EpiSign analysis
in a broader patient population. Given that these subjects already
had varying degrees of targeted genetic investigations completed
with no conclusive findings, some of the EpiSign disorders had
effectively been ruled out already. These findings taken together
suggest there may be a health systems value proposition of
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instigating use of EpiSign earlier in the diagnostic journey of
individuals with rare disorders.
Application of this technology to the broader patient popula-

tions will depend on the rate of discovery of gene and disorder-
specific episignatures. As a corollary, implementation of chromo-
somal microarrays as a first-tier diagnostic test was primarily
contingent upon increased diagnostic yield compared with
karyotyping (from 5% to 10–15%) resulting from years of research
and discovery of novel microdeletion and duplication syndromes,
often involving large clinical databases and registries.33,34

Similarly, there are now major efforts underway to assess the
clinical utility and the health systems impact, and to accelerate the
rate of episignature discovery including a national-scale trial

(“Beyond Genomics: Assessing the Improvement in Diagnosis of
Rare Diseases using Clinical Epigenomics in Canada [EpiSign-
CAN]”), which will compare the impact of DNA methylation
analysis as a first-line versus a second-line test in 4,000 individuals
with suspected rare disorders while assessing EpiSigns in 100
additional genetic conditions (https://www.genomecanada.ca/en/
beyond-genomics-assessing-improvement-diagnosis-rare-
diseases-using-clinical-epigenomics-canada).
The clinical cases presented in detail highlight some important

implications of this technology. One is the sequential use of
EpiSign analysis with genetic testing. While using EpiSign to
investigate individuals with VUS or related clinical presentations
provides demonstrated value, EpiSign can also uncover genetic
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disorders that were not initially suspected. We have previously
demonstrated an incremental diagnostic yield of approximately
3% in patients with prior extensive genomic testing but without a
genetic diagnosis.9,14 Existence of a specific DNA methylation
pattern can guide the molecular assessment, and in some cases
resolve complex diagnostic odysseys, which can have a huge
impact on patient care and the related health systems costs.35,36

Clinical service delivery
EpiSign testing is performed using an integrated model involving
primary labs performing and reporting test results with infor-
matics and databasing centralized in the tertiary clinical bioinfor-
matics laboratory, similar to the field of noninvasive prenatal
testing for aneuploidy.37 The key benefits of this model involve
standardization and coordinated quality management and quality
assessment procedures, ensuring consistency across the different
provider laboratories, which is critical given the inherent nature
and complexity of this analysis. This also allows for more rapid
expansion of reference DNA methylation databases and facilitates
continuous optimization of the underpinning analytical algo-
rithms. As the EKD expands, the reference machine
learning–derived algorithms that form the basis of individual
EpiSigns become more sensitive and specific,9 enabling regular
and documented updates to the analytical software, with the
appropriate quality metrics and quality control documentation
and version controls.

Limitations
There are a number of challenges related to introducing a
diagnostic modality to the clinical laboratory, and EpiSign is not an
exception. Unlike DNA sequencing, DNA methylation analysis is

limited to peripheral blood where large reference databases are
available. Other factors including age, sex, and environmental
exposures can also impact the analysis and need to be accounted
for in analytical processes.38,39

DNA methylation episignatures can be susceptible to technical
variation such as sample processing data batch effects, as well as
biological parameters such as mosaicism. The validation cohort
included a number of low-level mosaic imprinting disorders that
may not be readily detectable by the EpiSign assay. In our
previous work we were able to detect mosaicism in imprinting
disorders24 and fragile X,25 at levels >20%, but due to normal
control variability (Figure S1), this is currently not routinely
possible for samples with lower-level mosaicism. Mosaicism is
also a limitation for detection of other EpiSigns, and may provide
an explanation for some of the discordant samples. We have
previously demonstrated that total gene dosage dilutes the
intensity of the EpiSign signal, as in heterozygous females in the X-
linked KDM5C-related Claes–Jensen syndrome;16 however, here, as
a result of having a reference cohort we were able to derive a
specific and sensitive MVP score for heterozygous females. In
addition to mosaicism, a possible reason for nonconcordance in a
laboratory setting could be sample mix up. Alternatively,
discordance of sample Val26 with CREBBP:c.4480C>A, p.
(Pro1494Thr) may be explained by the variant not actually being
pathogenic, or an existence of a yet unmapped episignature in
this gene.
Other biologically based limitations of EpiSign analysis can be

highlighted by the four inconclusive samples from the clinical
testing cohort. The current BAFopathy episignature is trained on
positive cases with pathogenic variants in ARID1B, ARID1A,
SMARCB1, SMARCA2, and SMARCA4.17 Hence, it is not possible to
completely rule out pathogenicity of a variant of another BAF
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complex gene as for the case with the ARID2 variant. An
alternative scenario is highlighted by ADNP, which was the first
gene in which the existence of multiple, domain-specific
episignatures was described.11 Although majority of the EpiSign
genes currently have a single common episignature mapped,
assessment of pathogenicity of variants outside the established
reference range and variant type warrants caution, as in the
inconclusive case Clin203.
An overarching challenge with this technology is the rarity of

Mendelian disorders. While the population prevalence of rare
diseases is 3.5–5.9%, equating to 263–446 million persons affected
globally, given that this number encompasses >5,000 diseases, the
prevalence of rare disorders ranges between 1–5 per 10,000 and <1/
1,000, 000.40 Generation of EpiSigns requires cohorts of subjects
with gene-specific pathogenic variants, which is currently possible
for the more prevalent disorders. Also, as many of the episignatures
are mild in scale, the size of the reference cohort is directly
correlated to the level of sensitivity of the assay. Hence, occasionally,
as in the case Clin120 for example, the results may be inconclusive.
While the recommendations for application of the functional

evidence in genetic testing now exist,6 there are currently no
specific guidelines for the clinical interpretation of genomic DNA
methylation findings. EpiSign employs the use of DNA methylation
data as a surrogate for evidence of the underpinning genetic defects
that may or may not be detectable using the current molecular
testing modalities. Another challenge is that our current knowledge
of the full scope of these genetically associated epiphenotypes is
limited. Hence, while on the one hand a confirmation of a related
episignature in a patient with a genetic VUS may be considered a
molecular diagnosis, a negative result in a patient with or without a
known genetic variant is not an absolute rule-out and the analysis
would be considered a molecular screen. A more complex challenge
is a confirmation of an episignature in absence of a detectable
genetic variation, in particular when it is observed in a patient with a
matching clinical diagnosis. In this case EpiSign is the standalone
molecular diagnosis.

Conclusion
This study describes the implementation of clinical genomic DNA
methylation testing in patients with rare disorders. It demon-
strates strong evidence of clinical utility, including the ability to
provide conclusive diagnoses in a significant proportion of
subjects tested. It also highlights the limitations and challenges
with implementation and use of this diagnostic modality. As this
technology evolves, the number and type of rare disorders with
EpiSigns is going to expand, increasing its clinical utility. While the
current clinical use of EpiSign focuses on cases with VUS, and very
specific clinical presentations, expanding clinical utility of this test
may justify its application earlier in the diagnostic journey, in a
broader patient population. Larger-scale studies, such as EpiSign-
CAN, are necessary to assess the diagnostic yield and health
system impact as either a first-line test or in unresolved cases
post–genomic assessment. Finally, the development of clinical
guidelines for use and application of clinical epigenomic
technologies is warranted.
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