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Yeast amino acid transporters of the APC superfamily are responsible for

the proton motive force-driven uptake of amino acids into the cell, which

for most secondary transporters is a reversible process. The L-lysine proton

symporter Lyp1 of Saccharomyces cerevisiae is special in that the Michaelis

constant from out-to-in transport (Kout!in
m ) is much lower than Kin!out

m ,

which allows accumulation of L-lysine to submolar concentration. It has

been proposed that high intracellular lysine is part of the antioxidant

mechanism of the cell. The molecular basis for the unique kinetic proper-

ties of Lyp1 is unknown. We compared the sequence of Lyp1 with APC

para- and orthologues and find structural features that set Lyp1 apart,

including differences in extracellular loop regions. We screened the extra-

cellular loops by alanine mutagenesis and determined Lyp1 localization

and activity and find positions that affect either the localization or activity

of Lyp1. Half of the affected mutants are located in the extension of extra-

cellular loop 3 or in a predicted a-helix in extracellular loop 4. Our data

indicate that extracellular loops not only connect the transmembrane

helices but also serve functionally important roles.

Introduction

The transport of amino acids in Saccharomyces cere-

visiae is facilitated by yeast amino acid transporters

(YATs) [1], which are members of the APC superfam-

ily. The transport of amino acids is part of the cell’s

nitrogen regulation and biosynthesis pathways [2]. We

focus on the transport of basic amino acids which

affects protein synthesis, oxidative stress tolerance,

and possibly protein breakdown through effects on

ubiquitination [3,4]. Basic amino acids are transported

by only a subset of YATs, that is, the proteins

encoded by Gap1, Hip1, Alp1, Can1, and Lyp1. Bio-

chemical analyses have revealed the importance of

cytoplasmic loop regions in these transporters in

amino acid specificity [5,6], endocytic recognition [7,8],

and trafficking [9–11], but systematic analysis of the

extracellular loops has so far been unexplored in any

YAT. At present, there is no structure of a YAT

available, but models have been built on the basis of

bacterial APC structures. Ghaddar et al. [12] were

able to re-engineer the specificity of Can1 from Arg

to Lys on the basis of the structure of AdiC. Model-

ing of extracellular loop regions is more challenging

as they are often not well resolved in crystal struc-

tures and are typically shorter in prokaryotic homo-

logues and thus unique for eukaryotic membrane

proteins [13,14].
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The lysine permease Lyp1 from S. cerevisiae is char-

acterized by asymmetric transport kinetics, which is

thought to form the basis for the massive accumula-

tion of lysine [15]. Although differences in kinetics of

out-to-in versus in-to-out transport have been also

observed for the lactose transporters LacY and LacS,

they are much smaller than in Lyp1 and do not lead

to an apparent unidirectionality of transport [16,17].

The asymmetric transport kinetics has recently been

connected to the antioxidant strategy of the cell [3].

High intracellular lysine triggers a reprogramming of

redox metabolism, that is the glutathione concentra-

tions increase, the levels of reactive oxygen species

reduce and the oxidant tolerance of the cell increases

[3]. Given the important role of lysine, in particular

import of lysine, in the physiology of the cell, we ana-

lyze Lyp1 and the features that set this protein apart

from other (basic) amino acid transporters in yeast

and beyond. Currently, only a few studies report speci-

fic functions for extracellular loops in APC proteins

[18–23], and they show roles for substrate recognition

and gating by intramolecular anchoring. We now ana-

lyze the functional roles of extracellular loops in Lyp1

of S. cerevisiae by systematically substituting triplets

of amino acids and determining the effects of the mod-

ifications on cellular location and translocation kinet-

ics.

Results

Modeling and bioinformatic analysis of loop

regions

Transmembrane a-helices (TMHs) can be predicted

with relative high accuracy, using topology prediction

programs and multiple sequence alignments of homol-

ogous proteins, but loop regions, which often vary a

lot in length and structure, are difficult to analyze

without proper template. We used EVFOLD, a program

that exploits a maximum entropy analysis of the

sequences of a protein family to determine evolution-

ary co-variation in pairs of amino acid residues at

specific sequence positions. Pairs of co-evolved residues

are then used as distance constraints to fold the pro-

tein of interest using the modeling software CNS (for

a review see Ref. [24] for details). To validate the

structural model, we benchmarked the loop regions

obtained by EVFOLD against a subset of topology and

secondary structure predictors (Fig. S1).

Comparing Fig. 1 and Fig. S1, we find that the

annotation of loop regions differs slightly depending

on the prediction tool used. For instance, regions 140–
142 GPV and 143–145 GSL of EL1 and 212–214 QVI

of EL2 are annotated as part of TM1 and TM2,

respectively, by the topology predictors. Similarly, EV-

FOLD and the topology and secondary structure analy-

sis suites predict the start of EL4 and most of EL6

differently. The EVFOLD model is in line with the 3D

model of Can1 [12]; a sequence alignment of both

models is shown in Fig. S2. Noticeable is the similarity

of both models in predicting the extracellular loops;

minor differences are marked by color coding of the

amino acid residues. Furthermore, we emphasize the

prediction of an a-helical structure in the middle of

EL4.

We used the annotation predicted by EVFOLD and

the sequence conservation of bacterial and yeast amino

acid transporters (BATs and YATs) from the APC

superfamily to design mutations in the extracellular

loops. For the analysis of amino acid conservation in

extracellular loops, we focus on homologs with a

sequence identity of 50% or more. We generated three

consensus sequences from homologs of (a) YATs

Lyp1, Can1, and Alp1; (b) homologs of BATs with

basic amino acids as substrates; and (c) homologs of

YATs with non-basic amino acids as substrates. Next,

we aligned those consensus sequences against the

sequence of Lyp1 and annotated an amino acid residue

as conserved in either of the following four groups

(Fig. 1): Group I: YATs Lyp1, Can1, and Alp1 (red);

Group II: YATs (green); Group III: BATs with basic

amino acids as substrates (blue); and Group IV: all

YATs and BATs with less than 50% conservation in

any of the homologs (white). Noticeable is the string

of colored residues in EL3 and EL4. The blue colors

in EL4 indicate that these amino acids are conserved

in both yeast and bacterial basic amino acid trans-

porters, whereas the continuous string of red and

green in EL3 suggests conservation in YATs solely

(72% of the amino acids in EL3). Furthermore, when

we align amino acid transporters from yeast (450

sequences) with mammalian (105 sequences) and bacte-

rial (835 sequences), we find yeast transporters to be

the largest (587 � 26 amino acids) followed by mam-

malian (510 � 15 amino acids) and bacterial

(475 � 20 amino acids) proteins. N termini and C ter-

mini of yeast and mammalian amino acid transporters

are longer compared with those of bacteria and known

to play a role in transporter regulation [25]. However,

EL3 and EL4 are significantly longer in yeast trans-

porters, while EL1 and EL2 are longer in mammalian

transporters (Fig. 2). EL6 displays two populations

similar to EL2 in mammals: one having similar lengths

and one with longer lengths. Here, the longer EL6 and

EL2 of APC members in yeast and mammals are all

proteins with high sequence identity to the general
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amino acid transporter/transceptor Gap1 and the large

neutral amino acid transporter Lat1, respectively.

Design and localization of Lyp1 mutants

On the basis of the in silico analysis, we designed a set

of mutants where in each case triplets of amino acids

were changed into alanine; this approach is similar to

the one described by Merhi et al. [26]. In Fig. 1, each

triplicate is indicated by a dashed line. To determine

whether or not mutations affect the internal trafficking

or folding of the transporters, we monitored the local-

ization of Lyp1-YPet in the cell (Fig. S3) and quanti-

fied the presence of Lyp1 in the PM by plotting the

ratio of Lyp1-YPet fluorescence at the periphery of the

cell over the total fluorescence. We find twelve mutants

with significantly increased internal fluorescence, most

likely corresponding to vacuolar localization [27]

(Fig. 3, blue squares). A caveat of conventional light

microscopy is that the resolution is too low to discrim-

inate cortical endoplasmic reticulum (cER) from the

PM. Hence, fluorescence at the cell periphery does not

unambiguously mean plasma membrane (PM) localiza-

tion, although the presence in the cER yields discon-

tinuous fluorescence unlike a localization in the PM

[28,29]. By comparing our microscopy images with ER

staining from literature [30], we assign five additional

Lyp1 mutants that are localized in the cortical and

perinuclear ER (Fig. 3, yellow squares).

Transport activity of extracellular loop mutants

In total, we find 17 mutants where the majority of

Lyp1 molecules is mislocalized, most are found in

EL3; five mutants have a localization similar to wild-

type Lyp1 (PM fluorescence level of 20–35%); and

fourteen mutants have PM staining of 10–20%. Next,

we performed transport assays at a substrate

Group I; YATs Lyp1, Can and Alp1
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Fig. 1. Topology model highlighting the

extracellular loops of Lyp1 as predicted by

EVFOLD. Each circle represents an amino acid

indicated by its one-letter code. Color
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amino acid with respect to a category.

Group I: YATs Lyp1, Can1, and Alp1, red.

Group II: YATs, green. Group III: BATs with

a substrate specificity toward basic amino
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concentration of 20 µM (the Km of wild-type Lyp1 for

L-lysine � 10 µM) and we normalized the transport

rates for the number of cells and average absolute flu-

orescence at the cell periphery. This results in a speci-

fic activity that we express as a percentage relative to

wild-type Lyp1 (Fig. 4). We have set an arbitrary

threshold at 25% of wild-type Lyp1-YPet activity. Of

the 17 mislocalized mutants, we find 11 are below the

threshold, of which six are completely inactive. The

proteins with apparent peripheral plus ER staining

fall in the class without activity, which is consistent

with the notion that these proteins are not present in

the PM. The activity of 11 mutants is comparable to

that of the wild-type, and twelve are significantly

lower than the wild-type protein but well above the

threshold. Of the mutants with a wild-type-like loca-

tion, 215–217 EYW is highly compromised in its

transport (specific activity of 20%) and is situated in

EL2. Of the proteins with intermediate fluorescence

(level of 10–20%), 469–471 TAF is highly affected in

transport (specific activity of 5%) and is present in

EL5. Intriguingly, the mutants 277–279 QGP and

286–288 RNP with less than 5% peripheral fluores-

cence show wild-type transport (specific activity of

90% and 55%, respectively), that is after normaliza-

tion for the amount of protein in the membrane. This

suggests that these mutants reach the PM, but are

quickly sorted to the vacuole. Overall, our results

show that 15 out of 36 mutants display reduced

transport activity and/or mislocalization of the pro-

tein (Table S3), emphasizing the importance of the

extracellular loop regions.

Transport kinetics of extracellular loop mutants

We hypothesized that given mutants may be affected

in the translocation kinetics for lysine transport and

have an altered Vmax and/or affinity constant for

transport (Km). We obtained estimates of Vmax and Km

values for 11 out of 13 mutants (Fig. 5B,C); for 140–
142 GPV and 283–285 RYW, the activity was essen-

tially zero, consistent with their localization in the ER.

We find a reduced Vmax for the remaining 11 mutants,

but for six mutants the rates may be underestimated

because part of the protein is retained in the ER (as-

terisks Fig. 5C). Hence, we were unable to make the

appropriate correction for the fraction of the protein

in the plasma membrane. Together, these results indi-

cate that the Km is increased by 5 to more than 10-fold

for the majority of mutants. In case of 143–145 GSL,

the rate of transport increased linearly up to a concen-

tration of 650 µM, indicating that the Km may even be

higher.

Next, we performed substrate competition experi-

ments to determine whether mutants with altered affin-

ity constants for lysine uptake are affected in their

substrate specificity. We focused on mutants with suffi-

cient residual transport activity to enable accurate

measurements of substrate competition, using [14C]-

lysine as reporter substrate. We tested the amino acids

alanine (neutral), arginine, ornithine, and histidine (ba-

sic), and deaminated lysine and e-aminocaproic acid

(EACA) as competitors. For wild-type Lyp1, we find

that all amino acids show minor competition with

[14C]-lysine at 250-fold excess (20 µM [14C]-lysine plus

5 mM of competitor), but 100 mM of unlabeled amino

acids reduced the specific activity of lysine transport

by > 80% (Fig. 6A). As anticipated, basic amino acids

compete more strongly than alanine and e-aminoca-

proic acid is not really a substrate of Lyp1 (Fig. 6B); a

250-fold excess of unlabeled lysine was included as

control, which shows the expected apparent inhibition.

Based on these results, we chose alanine (Fig. 6C) and

arginine (Fig. 6D) for further studies with the mutants

215–217 EYW, 292–294 GPG, and 389–391 QNA. We

find for all mutants that both alanine and arginine are

inhibiting the uptake of lysine and that the degree of

inhibition is similar to that of wild-type Lyp1. We thus

conclude that the mutants are not affected in their

substrate specificity.

Discussion

Figure 7 and Table S3 summarize the experimental

findings. We categorize the mutations into four

groups: (a) no influence (gray); (b) changed kinetics

(orange); (c) ER retention (yellow); and (d) increased

vacuolar localization and breakdown of the protein

(white). We find that mutants affected in transport

also display increased vacuolar fluorescence (orange/

white), which suggests that they make it to the plasma

membrane but are more rapidly turned over. Most of

these proteins are obtained with mutations in EL2,

EL4, and EL5. Yellow/orange circled mutants show

apparent ER localization, but they are partially active

(specific activity of 5–25% relative to wild-type), indi-

cating that a fraction of these proteins is localized to

the PM. The ER retention suggests that these proteins

are affected in trafficking to the plasma membrane.

This phenotype is mostly found for mutants in EL1,

EL3, and EL4. Two mutants (277–279 QGP and 286–
288 RNP) located in EL3 show increased vacuolar flu-

orescence and low peripheral staining, but the kinetic

parameters of transport are not much altered (white

circles). Another two mutants (280–282 IGF and 289–
291 GAW) situated in EL3 show altered kinetics in
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combination with increased vacuolar and ER staining

(white/yellow/orange), suggesting that these proteins

are affected in their trafficking and possibly their sta-

bility but once inserted in the plasma membrane they

are active. Two more mutants (140–142 GPV and 283–
285 RYW) in EL1 and EL3 show no activity, which is

consistent with their ER (yellow circles). Finally,

mutations in EL6 have no effect on transport, even

though 1/3 of the residues are conserved in the basic

amino acid transporters of YATs or BATs.

Thus, we find regions in extracellular loops of the

yeast lysine proton symporter Lyp1 that play a role in

localization and or specific activity of the protein; the

mutants have a reduced affinity for lysine, but they are

not affected in their substrate specificity. We do not

find a correlation between conservation of residues

and the severity of the mutations on transport or

localization. However, 50% of the mutations that dis-

play an effect are located in EL3, which is extended

and highly conserved in yeast APC transporters but

not in bacterial or in mammalian homologs. Nine out

of fifteen affected mutants contain a glycine, proline,

or both. These amino acids are often part of turns or

otherwise critical in the structures of proteins, and

substituting those for alanine might disrupt turn for-

mation or structures associated with stability or activ-

ity. Of the remaining six mutants, two in EL2 and one

in EL5 are at the boundary of TMHs: One is located

in the predicted a-helix and the other two in the mid-

dle of EL3 and EL4.

What do we know of extracellular loop regions in

membrane transporters in general and in members of

the APC superfamily specifically? Extracellular loop

regions are shorter than cytoplasmic loops, and very
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few functions other than N-linked or O-linked glycosy-

lation are associated with these protein parts [31].

However, some functional roles for extracellular loops

in proteins not part of the APC superfamily have been

described. These functions range from substrate recog-

nition and binding, as well as protein dimerization and

internal trafficking as shown for the MFS-superfamily

transporters Oct1 from rats [32] and humans [33] and

Hup1/2 from Chorella kessleri [34], gating functions

and conformational changes involved in the transport

process for glutamine transporters ASCT2 from

human [35] and GltPH from Pyrococcus horikoshii [36],

and efficient export of substrates for the ABC-mul-

tidrug exporter Pdr5 from S. cerevisiae [37].

For APC-superfamily members, the structure of the

NSS family (subfamily of the APC superfamily)

bacterial sodium-coupled amino acid transporter

‘LeuT’ serves as the paradigm. Similar to YATs and

BATs, extracellular loops of eukaryotic NSS-family

homologs are typically longer than those of LeuT

[13,14]. Functional evidence for the importance of

extracellular loops in eukaryotic APC-superfamily

members comes from elaborate analysis of the NSS-

family human serotonin transporter SERT [38,39];

EL2 interacts with other extracellular loops or TMHs

and is important for transport [18]; EL4 and EL5 are

important for protein assembly and stability; and EL5

has a role in ion-flux coupling and forms part of the

external gate [40]. Similar roles in gating have also

been reported for other APC-superfamily members

[20–22]. Furthermore, substrate discrimination by EL5

has been described for the c-aminobutyric acid
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(GABA) transporter GAT1 from mice [19] and the

length of EL5 affects translocation rates [23]. Notice-

able is that none of these studies in mammalian and

bacterial transporters report roles for EL3, the regions

where we find the strongest effects on transport and

trafficking.

For the yeast APC-family members, Gap1 [41], Tat2

[42] Bap2 [43], Can1 [12], and PrnB [44,45] homology

models have been constructed on the basis of the crys-

tal structure of the arginine/agmatine antiporter

‘AdiC’ from Escherichia coli [46]. Although modeling

of loops and termini was incomplete, the models iden-

tified the substrate-binding site, the origin of substrate

specificity, and the role of some intracellular loops

herein [5,26]. Two studies report mutations in EL4 of

Gap1 [6] and Can1 [5] that changed substrate
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specificity. Strikingly, mutations in Gap1 are in the

region of EL4 that is predicted to form an a-helical
structure similar to what we and others find for Lyp1,

SERT [38], and LeuT [47].

What can we conclude on the basis of our results

for Lyp1? We find 50% of the mutations in EL3 to

impair localization and or specific activity of the pro-

tein. Full or partial impaired exocytic trafficking (ER

fluorescence), increased endocytic turnover (vacuolar

fluorescence), and altered Vmax and/or Km are found

for mutations in this region. Thus, extracellular loops

in yeast APCs are not merely TMH connecting struc-

tures but serve important functional and structural

roles, as here shown for Lyp1.

Materials and methods

Plasmid and strain construction

The strains and plasmids used in this study are listed in

Tables S1 and S2, respectively. All plasmids were generated

using uracil excision-based cloning [48]. The amplification of

DNA with uracil-containing primers was performed using

the polymerase PfuX7 [49]. Amplified fragments were assem-

bled into full plasmids by treatment with DNA glycosidase

and DNA glycosylase-lyase endo VIII, commercially avail-

able as ‘USER’, following the manufacturer’s instructions

(New England Biolabs, Ipswich, MA, USA). The constructs

were transformed into E. coli MC1061 by the heat-shock

procedure. Subsequently, plasmids were isolated using a

plasmid extraction kit (Macherey-Nagel, D€uren, Germany)

and the DNA was verified by sequencing. Plasmids were sub-

sequently transformed into S. cerevisiae using the LiAc

method [50]. Downstream selection of monoclonal S. cere-

visiae was based on protein expression by selecting clones

that show a homogenous distribution and high intensity of

YPet, using a flow cytometer (BD AccuriTM, Durham, NC,

USA) equipped with a 488-nm laser.

Preparation of S. cerevisiae cells for in vivo

transport assays and fluorescence imaging

All chemicals were purchased from Sigma-Aldrich (Darm-

stadt, Germany), unless otherwise indicated. Cells were cul-

tured at 30 °C with 200 RPM shaking in 50 mL

CELLreactorTM filter top tubes (Greiner Bio-On, Kremsm€un-

ster, Austria). Strains were grown overnight by inoculation
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in 5-mL synthetic glucose media without uracil and lysine

and supplemented with the dipeptide Lys-Lys. Media were

prepared by dissolving 2% w/v glucose and 0.69% w/v yeast

nitrogen base (YNB) without amino acids (Formedium,

Norfolk, UK). Media were supplemented with 0.19% w/v

Kaiser synthetic mixture without uracil and lysine [51], that

is, a mixture containing 18 mg�L�1 adenine, 76 mg�L�1 myo-

inositol, 8 mg�L�1 para-aminobenzoic acid, and 76 mg�L�1

of all 20 standard amino acids (L-leucine was added at

380 mg�L�1) except L-lysine (Formedium). Finally,

200 mg�L�1 Lys-Lys was added. Subcultures were grown

and diluted for two to three consecutive days such that the

OD600 never exceeded 1. Cells were centrifuged at 3000 g for

5 min at 4 °C, supernatant was decanted, and cells were sus-

pended in ice-cold 100 mM potassium phosphate, 10 mM glu-

cose, pH 6.0. This step was performed twice before

suspension of the cells to an OD600 of 5.

Quantitative fluorescence imaging

Quantitative fluorescence live-cell imaging was performed

on a LSM 710 commercial scanning confocal microscope

(Carl Zeiss MicroImaging, Jena, Germany), equipped with

a C-Apochromat 409/1.2 NA objective, and blue argon

ion laser (488 nm). Frame size was 1024 9 1024; bit depth,

16 bit; and pixel size, 10 µm. Pinhole was set to 1.0 (arbi-

trary unit). Laser power, gain, and zoom were kept con-

stant for all images. Cells were immobilized between a glass

slide and coverslip. Images were acquired with the focal

plane positioned at the midsection of the cells. Acquired

images were processed using IMAGEJ/FIJI [52]. The outline of

the cell was selected to determine the fluorescence in the

plasma membrane (PM), from which the area of the cell

and mean intensity per pixel of the selection were gener-

ated. We excluded values �2 times the standard error of

the mean (SEM). The percentage of Lyp1 in the PM was

calculated by taking the ratio of fluorescence in the PM

over that of the whole cell. The mean intensity/pixel of the

selection of PM fluorescence was used for normalizing

transport data (next section).

In vivo transport assays

Each assay contained cells at OD600 of 0.5. All transport

assays were performed in 5-mL glass tubes placed in a

water bath, and the solution of each tube was stirred mag-

netically. Each glass tube contained 100 mM potassium

phosphate, 10 mM glucose, pH 6.0 at 30 °C, using 20 µM L-

[14C(U)]-lysine (unless otherwise indicated) and a magnetic

stirrer bar. Samples were mixed by magnetic stirring in a

total volume of 525 µL. At given time intervals, 100 µL
samples were taken and quenched in another glass tube

containing 2 mL ice-cold ‘stop’ buffer of the same composi-

tion as described above, but without lysine. Cells were

rapidly separated from external buffer by ultrafiltration,

using a setup where a filter holder was placed on top of a

container that was connected to a vacuum pump. Cells

were collected onto a 0.45-µm pore size nitrocellulose filter

(GE Healthcare, Little Chalfont, UK) and washed with

another 2 mL of stop buffer. Filters were transferred in

Eppendorf tubes and dissolved using 2 mL of scintillation

solution (Emulsifierplus; PerkinElmer, Waltham, MA, USA)

and vortexed before radioactivity was determined by liquid

scintillation counting (Tri-Carb 2800TR Liquid Scintillation

Analyzer; PerkinElmer). The number of cells in each sam-

ple was counted using a flow cytometer (BD AccuriTM),

with the following settings: volume = 20 µL, flow

rate = medium, and OD600 of 0.125. The acquired trans-

port data were normalized for protein quantity using the

mean intensity/pixel of the selection (PM fluorescence) and

for cell number determined from the flow cytometry data.

Transport rates were estimated from the slope of the linear

part of the progress curves, using the integrated ‘linest’

function in Excel. All other analyses (e.g., curve fitting,

statistics) were performed with standard functions in Origin

(OriginLab, Northampton, MA, USA). Each experiment

was performed in triplicate using biological replicates. For

Km and Vmax measurements, [14C]-lysine concentrations of

1, 5, 25, 125, and 625 µM were used.

Topology modeling

A structural model of Lyp1 was generated using the EVFOLD

prediction software [24,53,54]. The following parameters,

deviating from the default settings, are as follows: protein:

UniProt accession no. P32487; a-helical TMM domain: yes;

Pfam member selector: PF00324; minimum sequence iden-

tity: 20%; membrane topology override: TOPCONS (http://top

cons.cbr.su.se) [55]; membrane topology prediction: default

settings; and input: UniProt accession no. P32487. The

retrieved PDB file was analyzed using PYMOL (The PyMOL

Molecular Graphics System, Version 1.5.0.4 Schr€odinger,

LLC, Mannheim, Germany).

Benchmarking of the EVFOLD prediction by secondary

structure predictors was done using PHYRE2 [56], RAPTORX

[57], and I-TASSER [58] and by topology predictors: HMMTOP

[59], TMPRED [60], Predicts protein [61], and TOPCONS [55];

the output of the latter program is a consensus based on

POLYPHOBIUS, OCTOPUS, PHILLIUS, SCAMPI, and SPOCTOPUS. A

one was assigned if an amino acid was predicted to be part

of an a-helix or transmembrane segment. If not, a zero was

assigned. The sum of ones and zeros was plotted as a func-

tion of each amino acid and used to evaluate the quality of

the EVFOLD model.

Amino acid conservation in YATs and BATs

Unique sequences were obtained from the UniProt [62]

PF00324 family and grouped on the basis of their sequence

similarity to either Lyp1 from S. cerevisiae, LysP from
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Salmonella typhimurium, or S. cerevisiae core AAPs accord-

ing to Ljungdahl and Daignan-Fornier [63] (excluding

Lyp1, Can1, and Alp1). For Lyp1 and LysP, homologs

were included when annotated in UniProt as basic amino

acid transporters and having 52–99% sequence identity

with Lyp1 or LysP, which yielded 68 and 482 sequences,

respectively. Homologs of the S. cerevisiae members of the

AAP core cluster were acquired using UniRef50 [62]

groups, P19145, P48813, P38084, P06775, Q08986, P38085,

P38967, P15380, P43548, P53388, P38090, and Q03770,

corresponding to reference sequences of Gap1, Gnp1,

Bap2, Hip1, Sam3, Tat1, Tat2, Put4, Agp3, Dip5, Agp2,

and Ssy1, respectively. Each UniRef50 group was trimmed

to 90% identity of the reference sequences, resulting in 460

sequences. Next, for each of the three groups a consensus

sequence was obtained in JALVIEW [64], which was based on

a multiple sequence alignment generated by CLUSTAL OMEGA

[65]. Then, the corresponding consensus sequences were

aligned against the sequence of Lyp1 and gaps with respect

to Lyp1 were removed. The aligned sequences were plotted

in Microsoft Excel, and conservation of each amino acid

with respect to one another was determined. We considered

a valid conservation if the most frequent residue in one

consensus sequence matched the first or second most con-

served residue in the other. Based on this, each amino acid

in the sequence of Lyp1 was annotated as conserved in one

of four groups: (a) yeast basic amino acid transporters

Lyp1, Can1, and Alp1; (b) yeast amino acid transporter

excluding Lyp1, Can1, and Alp1; (c) bacterial basic amino

acid transporters and yeast basic amino acid transporters

Lyp1, Can1, and Alp1; and (d) yeast and bacterial amino

acid transporters (BAT).

Bioinformatics analysis extracellular loop length

of yeast and bacterial APC proteins

Homologous sequences of proteins belonging to the amino

acid–polyamine–organocation ACP family (TCDB 2.A.3)

of yeast and bacteria were obtained from UniProt [62].

UniRef90 clusters were taken based on protein accession

numbers: for yeast, P32487, P19145, P48813, P38084,

P06775, Q08986, P38085, P38967, P15380, P53388, and

P38090 corresponding to Lyp1, Gap1, Gnp1, Bap2, hip1,

Sam3, Tat1, Tat2, Put4, Dip5, and Agp2, respectively; for

mammalian, Q01650, Q9UHI5, and Q9UPY5 correspond-

ing to Lat1, Lat2, and Xct, respectively; and for bacterial,

P24207, P37460, P25737, P15993, P0AAE0, P25527,

P77610, P39137, and P42087 corresponding to PheP, ProY,

LysP, AroP, CycA, GabP, AnsP, RocE, and HutM, respec-

tively. This resulted in a population of 450, 105, and 835

sequences for yeast, mammalian, and bacterial proteins,

respectively. The topology of each sequence within the pop-

ulation was predicted using TOPCONS [55]. Next, using the

topology information for each sequence, the number of

amino acids comprising each extracellular loop was

extracted. Finally, we plotted the values: average length,

median, standard deviation, and minimal and maximal val-

ues of each extracellular loop from the yeast and bacterial

APC proteins.
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