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Abstract

In nature, biomineralization is a common phenomenon, which can be further divided into

authigenic and artificially induced mineralization. In recent years, artificially induced mineral-

ization technology has been gradually extended to major engineering fields. Therefore, by

elaborating the reaction mechanism and bacteria of mineralization process, and summa-

rized various molecular dynamics equations involved in the mineralization process, includ-

ing microbial and nutrient transport equations, microbial adsorption equations, growth

equations, urea hydrolysis equations, and precipitation equations. Because of the environ-

mental adaptation stage of microorganisms in sandy soil, their reaction rate in sandy soil

environment is slower than that in solution environment, the influencing factors are more dif-

ferent, in general, including substrate concentration, temperature, pH, particle size and

grouting method. Based on the characteristics of microbial mineralization such as strong

cementation ability, fast, efficient, and easy to control, there are good prospects for applica-

tion in sandy soil curing, building improvement, heavy metal fixation, oil reservoir dissection,

and CO2 capture. Finally, it is discussed and summarized the problems and future develop-

ment directions on the road of commercialization of microbial induced calcium carbonate

precipitation technology from laboratory to field application.

1 Introduction

Since the reform and opening-up, China’s economy has entered a period of rapid develop-

ment. However, the industrial structure is relatively unreasonable, traditional industries domi-

nate, and high-tech industries account for a low proportion. Economic development is

frequently accompanied by the fast consumption of natural resources and the destruction of

the ecological environment. Meanwhile, the shortage of energy resources forces human beings

to change their thinking and develop renewable energy and various energy-saving technolo-

gies. The destruction of the natural environment is primarily induced by increased pollution,

such as sand weathering, greenhouse gases, industrial waste residues, and metal pollution. A

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0271761 July 22, 2022 1 / 34

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Chen J, Liu B, Zhong M, Jing C, Guo B

(2022) Research status and development of

microbial induced calcium carbonate mineralization

technology. PLoS ONE 17(7): e0271761. https://

doi.org/10.1371/journal.pone.0271761

Editor: Omeid Rahmani, University of Kurdistan

Hewlêr, Kurdistan Region, IRAQ

Received: April 11, 2022

Accepted: July 6, 2022

Published: July 22, 2022

Copyright: © 2022 Chen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The authors acknowledge the financial

support from the National Natural Science

Foundation Project of China (Grant no. 52174019),

Educational Commission of Hubei Province of

China (D20201302), and Supported by Open Fund

of Key Laboratory of Exploration Technologies for

Oil and Gas Resources (Yangtze University),

Ministry of Education (PI2021-06) for carrying out

this research work.

https://orcid.org/0000-0001-7147-9344
https://doi.org/10.1371/journal.pone.0271761
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0271761&domain=pdf&date_stamp=2022-07-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0271761&domain=pdf&date_stamp=2022-07-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0271761&domain=pdf&date_stamp=2022-07-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0271761&domain=pdf&date_stamp=2022-07-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0271761&domain=pdf&date_stamp=2022-07-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0271761&domain=pdf&date_stamp=2022-07-22
https://doi.org/10.1371/journal.pone.0271761
https://doi.org/10.1371/journal.pone.0271761
http://creativecommons.org/licenses/by/4.0/


significant number of microorganisms in nature generally have a subtle impact on founda-

tions, minerals, underground engineering, and pollutants. In traditional geotechnical engi-

neering, people usually pay more attention to macroscopic structures, present insufficient

understanding of microorganisms, and thus ignore the impact of microorganisms on the engi-

neering field. With the realization of researchers, new green environmental protection technol-

ogy has been increasingly investigated. Microbial-induced carbonate precipitation technology,

as microbial mineralization technology (MICP), was discovered by Boquet [1] in the last cen-

tury. In 2004, Whiffin [2] first proposed "microbe-induced calcium carbonate precipitation to

produce microbial gel" and revealed that microorganisms can convert ions in the environment

into solid minerals through the influence or control of organic matter. Based on this technol-

ogy, Mitchell [3] designed "Bio-Earth Technology" in the field of geotechnical engineering.

Since then, more and more researchers have begun to conduct in-depth research on this tech-

nology. It can be better applied to the fields such as sand control [4, 5], heavy metal fixation [6,

7], crack repair [8, 9], reservoir profile control and water plugging [10, 11], and CO2 capture

and storage [12, 13] by changing various factors. In the future, it will be applied to a wider

range of fields with the further maturity of this technology. In this paper, the microbial-

induced calcium carbonate precipitation technology and related research around the world are

reviewed; the influencing factors of microorganisms in different environments are summa-

rized from the perspectives of the microbial mineralization mechanism and mineralizing

fungi; its main application fields are analyzed; the current status of this technology is evaluated.

The complications clarified in this stage and the future development direction will provide a

certain reference for the follow-up researchers of microbial mineralization technology.

2 Mineralization technology

2.1 Mineralization mechanism

Microorganisms induce calcium carbonate precipitation including a series of chemical reactions

such as biological action. It mainly utilizes a microorganism with the ability to produce urease,

which can decompose urea and cause the local environmental pH to increase [14, 15], and then

chemically react with the divalent metal ions in the environment or foreign. In the process of

biomineralization, microorganisms not only secrete urease to hydrolyze urea but also act as a

crystal nucleus for calcium carbonate precipitation [16]. Microbial cells are a negatively charged

colloidal substance [17], and can drive Ca2+ in the solution environment to accumulate in the

surrounding environment of the cell wall through adsorption, electrostatic attraction, and van

der Waals force, resulting in local supersaturation [18]. The supersaturated area of the cell wall

becomes the nucleation site of calcite crystals [19], contributing to the precipitation of calcite-

type calcium carbonate crystals with cementation. Concurrently, the urea in the solution envi-

ronment is continuously decomposed into CO3
2- and NH4+ under the action of urease pro-

duced by microorganisms, and the CO3
2- is transported to the cell surface and chemically reacts

with the enriched Ca2+ to form calcite precipitation (Fig 1) [20, 21]. The main biochemical reac-

tions during mineralization can be expressed by the following equation [22]:

COðNH2Þ2 þ 3H2O! 2NHþ
4
þ HCO�

3
þ OH� ð1Þ

HCO�
3
þ H2Oþ OH

� ! CO2�

3
þ 2H2O ð2Þ

Ca2þ þ Cell! Cell � Ca2þ ð3Þ
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Cell � Ca2þ þ CO2�

3
! Cell � CaCO

3
# ð4Þ

Urea hydrolysis is relatively slow compared to other reactions that occur spontaneously in

organisms, and urease exceeds all other enzymes in its ability to increase the reaction rate [23],

with a hydrolysis efficiency of approximately 10–14 times the non-catalytic reaction rate [24].

As early as 1971, BremnerL [25] inhibited the efficiency of urease hydrolysis of urea in soil by

evaluating more than 100 kinds of chemical compounds. With the discovery of the advantages

of urease activity, researchers have adopted it for urea removal from yellow wine [26, 27],

determination of soil enzyme activity [28, 29], disease monitoring [30–32], and microbial min-

eralization. Urease-producing bacteria have been valued by researchers due to their high pre-

cipitation efficiency, wide applicability, safety, greenness, and environmental friendliness of

carbonates induced by urease.

Fig 1. Mineralization mechanism of calcium carbonate precipitation induced by microorganism in solution. (a): Bacterial growth and urease

production; (b): conversion and formation of various inorganic ions; (c): Ca2 + adsorption by bacterial cells; (d): Bacterial cells as nucleation sites and

deposition of CaCO3.

https://doi.org/10.1371/journal.pone.0271761.g001
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2.2 Kinetic equations during mineralization

The MICP process involves complex biochemical reactions and hydrodynamic processes, such

as microbial and nutrient transport equations, microbial adsorption equations, growth equa-

tions, urea hydrolysis kinetic equations, and precipitation reaction kinetic equations [33, 34].

2.2.1 Transport equation. The majority of bioremediation techniques rely not only on

the advective diffusion of chemicals to alter metabolism but also on the transport of microbial

cells themselves [35]. When undertaking MICP, microbial and nutrient transport needs to be

considered since this affects the location of microbial adsorption in the pores and the distribu-

tion of calcium carbonate precipitation [36]. Corapcioglu [37] builds transport equations by

combining microorganisms and nutrients and constructs models based on deposition and

blockage mechanisms. Chang [38] enhanced crude oil recovery under the optimization of

injection parameters following the simulation results of microbial and nutrient transport in

1D core drive experiments and coupled the flow equation and continuity of microbial and

nutrient transport under the conditions suitable for black oil reservoirs. Related studies sug-

gested that the interactions between microbial flow and transport processes in multi-spatial

media have a considerable impact on applications in various fields, with deeper implications

for the carbon cycle and related climate change in the environment [39]. Firouzi [40] predicted

the migration and deposition of bacteria in soil using single- and two-site kinetic models, dis-

covering that the two-site kinetic model was more consistent with the observed data. Button

[41] reported a strong correlation between microbial transport and nutrient concentrations.

Zhao et al. [42] developed continuity equations from the Navier-Stokes equation for free flow

and porous media flow, respectively, whose microbial and nutrient transport can be expressed

by the following equation:

r � ~D � rð�SWCÞ � r � ð~uCÞ þ �SWðZ � kdÞC þ QWC=V

¼
@ �SWCð Þ

@t
þ �SWkcC � kyrðs � sirrÞ

s

�

� �h

ð5Þ

r � ~Df � rð�SWCÞ � r � ð~uCfÞ � Zð�SWC � rsÞ=Y þ QWCf=V ¼
@ð�SWCfÞ

@t
ð6Þ

Where: ~D, Microbial diffusion coefficient, m2/d; ϕ, Porosity, %; SW, Water Saturation,%; C,

Microbial Concentrations, mg/mL; u, Darcy Flow, m/d; η, Microbial growth rate, d-1; ρ,

Microbial density, mg/mL; σ, The volume of pore media adsorbed by microorganisms; QW,

Daily Injection, m3/d; V, Well network control volume, m3; kd, Decay rate, d-1; kc, Blockage

rate, d-1; ky, Unblockage rate, d-1; Y, Number of cells produced per unit of nutrients; ~Df , Diffu-

sion coefficient of nutrients, m2/d; Cf, Nutrient concentration, mg/mL.

The left side of Eq (5) represents microbial diffusion, migration, tropism, growth and

death, and injected output, respectively; the right side refers to accumulation, blockage, and

unblocking of microorganisms in solution, respectively. The left side of Eq (6) indicates the

diffusion, migration, consumption, and injection output of nutrients, respectively; the right

side denotes the accumulation of nutrients in the environment.

2.2.2 Adsorption equation. Adsorption is an essential basis for the survival, growth, and

biochemical reactions of microorganisms in a system. The microorganisms and sugars are

injected into the designated sites and then are inevitably subject to adsorption loss by the

porous media. Especially, the porous media composed of different minerals are non-homoge-

neous and have favorable and unfavorable adsorption sites for microorganisms [40]. The

kinetic process of microbial adsorption can be fitted by various models, such as the primary
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kinetic model and the secondary kinetic model [43, 44]. It has been documented that the

adsorption process is controlled by the surface of the porous medium, and its adsorption rate

decreases exponentially with depth [45]. Conde et al. [46, 47] derived the Gibbs free energy

change, enthalpy change, and entropy change in the adsorption process from the van Hove

equation. Additionally, Su [48] argued that the Arrhenius equation can calculate the activation

energy and adsorption rate during adsorption and determine the type of adsorption by ther-

modynamic parameters. Paassen [49] investigated the transport, precipitation, and attachment

of bacteria during sand fixation with diffusion-adsorption equations. Xiao [50] characterized

the bacterial diffusion mechanism during MICP by a microfluidic chip. Following existing

microbial mineralization theories, researchers have mostly neglected the effect of flow rate on

bacterial sorption kinetics. Therefore, Ning et al. [51, 52] considered the effect of different flow

rates on microbial adsorption kinetics based on microbial adsorption kinetics in a dynamic

hydrodynamic environment. The microorganisms are adsorbed from the solution onto the

surface of the porous medium as a mutual result of the kinetic interaction between the flow

and the microorganisms. This can be expressed in a first-order linear adsorption equation

between the two phases:

@Cbs

@t
¼ Rr-Rd ð7Þ

Where: Cbs, Adsorption of microorganisms per pore volume in porous media; Rr, Microbial

retention rate; Rd, Microbial desorption rate.

The microbial adsorption sites are decreasing with time. It is assumed that the equilibrium

state is reached instantaneously [53], expressed as a Langmuir form dimensionless number:

Cks ¼
akCk

1þ bkCk
ð8Þ

Where: Cks, Adsorption capacity per unit pore volume; ak, bk The Adsorption Constant of a

Component; Ck, Concentration of a component in the solution environment.

2.2.3 Growth equation. Throughout the history of microbial growth research, the most

widely used expression for microbial growth is the Monod kinetic equation, which considers

the number of microorganisms and the substrate concentration [54, 55]. Heijnen and Romein

[56] suggested that microbial growth can be regarded as a coupled metabolic and catabolic

process, which is irreversible and has only one substrate. In contrast, Merchuk [57] demon-

strated two steps in the growth process of microorganisms: the transport of substrates from

the solution to the cell surface and the transport of metabolites; their growth rate is certain. On

this basis, Liu [58] argued that microbial growth involves highly complex metabolic processes,

implying that the development of the Monod equation should be simplified according to vari-

ous assumptions. Although microbial growth follows the Monod equation, the model exhibits

nonlinearity and coupling [59]. This equation is only suitable in the exponential phase of

microbial growth. The traditional Monod equation based on the Michaelis-Menten equation

characterizes the relationship between the concentration of the substrate and the growth rate

of the microorganism:

1

C
dC
dt
¼ m ¼ mmax

S
KS þ S

ð9Þ

Where: C, Microbial Concentrations; μmax, Maximum specific proliferation rate of micro-

organisms; KS, Saturation constant; S, Substrate concentration.
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Microbial growth can be constrained by not only one substrate but also dual substrates,

namely, competition or non-competitive inhibition of growth, which does not exactly fit the

microbial growth pattern. Therefore, many other scientists have proposed various single-sub-

strate inhibition models or improved models based on the Monod equation, as well as growth

models under specific growth conditions, in addition to the above growth kinetic equations

[60, 61]. Compared with the growth kinetic equation, the kinetics of microbial metabolite pro-

duction is much more complicated and cannot be obtained directly like the Monod equation.

According to the relationship between the production rate of products and the production rate

of microorganisms, they are classified into three types: growth-related, growth-semi-related,

and growth-unrelated [62]. Roels et al. [63, 64] derived the principle of maximum carbon con-

servation by elemental equilibrium and applied it to microbial product growth. They revealed

that the rate of product production increased with the increasing growth rate of microorgan-

isms. Besides, the correlation between bacterial concentration and metabolites can be reflected

in the study of the correlation between bacterial concentration and metabolites. In the process

of establishing the microbial growth kinetic equation, it can be expressed uniformly as the fol-

lowing equation through the three think-related product growth equations:

dP
dt
¼ AX þ B

dX
dt

ð10Þ

Where: A, Output generation speed; B for YP/X.

2.2.4 Urea hydrolysis equation. According to Eqs (1)–(3), 1 mol of CO3
2- and 2 mol of

NH4+ are produced for every 1 mol of urea consumed in the process of microbial-induced cal-

cium carbonate precipitation hydrolysis. In the process of urea hydrolysis, the effects of urea

concentration, pH, Ca2+ concentration, temperature, microbial growth rate, calcium carbon-

ate precipitation, and other factors should be noted [65, 66]. There was a linear relationship

between the initial urea decomposition rate and cell concentration in the earliest reports [67].

It was influenced by the control of single-cell kinetics and the maximum critical initial cell

concentration [68]. Hommel [69] improved the calibration of the model under the consider-

ation of the effects of carbonate precipitation and concentration on urea decomposition to

enhance the applicability to MICP. With the urea hydrolysis characteristic curve expressing

the initial rate and hysteresis in the urea hydrolysis process, Khodadadi et al. [70] concluded

that the rate of urea hydrolysis is not always suitable for the evaluation of microbial urease

activity, and its hydrolysis process follows the microbial growth pattern. Wijngaarden et al.

[71] obtained the relevant hydrolysis equation by exploring the effect of different factors on

bacterial urease activity. Through the two-dimensional model of the random distribution of

particles, Van [72] derived the Michaelis-Menten equation from the amount of urea diffusion

on the surface of the particles. Given the rate of the urea hydrolysis process, a convection-diffu-

sion-reaction theory model was developed and can be characterized by the following equation

[73]:

r ¼
vmax S½ �
KM þ S½ �

ð11Þ

Where: r, Urea hydrolysis rate; S½ �, Substrate concentration; vmax, Maximum response

speed; KM, Michaelis constants.

2.2.5 Precipitation equation. After the hydrolysis reaction of urea, the NH4+ produced

will undergo a hydrolysis reaction, resulting in an increase in the ambient pH of the solution

[74]. Additionally, CO3
2- reacts with Ca2+ in an alkaline environment to form a precipitate.

Some researchers believe that the rate of calcium carbonate precipitation is more related to the
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hydrolysis of urea [67, 75]. Generally, the precipitation reaction of calcium carbonate is faster

than the hydrolysis reaction of urea. Hence, the precipitation reaction of calcium carbonate is

influenced by the hydrolysis reaction of urea. As early as last century, Lasaga et al. [76] estab-

lished the basic equation for calcium carbonate precipitation. Subsequently, Noiriel et al. [77,

78] concluded that the precipitation rate of calcite was linearly correlated with saturation.

Meanwhile, they assessed the microbially induced calcium carbonate precipitation rate in

porous media by constructing a numerical model. Verdoes [79] can determine the precipita-

tion rate of calcium carbonate by analyzing the expressions for both crystalline and amorphous

types of precipitation. Rossum [80] derived six saturation exponential relationship equations

to predict the precipitation rate of calcium carbonate in different saturated solutions. Consid-

ering the effect of transport limitations on the precipitation rate of calcium carbonate at the

scale of porous media, the following equation was established with the reaction source of

CO3
2- [33]:

rprec ¼ k1a
Hþ þ k2a

HCO3 þ k3

� �
ð1 �

aCa2þaCO2�
3

ksp
ÞSc ð12Þ

Where: rprec, Calcium carbonate precipitation rate; k1, k2, k3, Reaction rate constant; a,

Ionic activity coefficient; ksp, Calcium carbonate solubility product; Sc, Effective specific area of

sedimentation.

2.3 Summary. MICP process is a very complex bio-chemical reaction process. It is diffi-

cult to quantify the mineralization reaction process from time and space scales. In order to

simplify the model, researchers used a large number of assumptions and empirical formulas

when calculated. However, unable to establish the relationship between sand permeability and

strength after mineralization. Therefore, researchers need to consider multiple factors and

couple multiple physical fields to model in follow-up studies.

3 Mineralized bacteria

Microbial mineralization is a common phenomenon in nature. More than 60 types of biomin-

erals have been formed through direct or indirect mineralization by microorganisms, such as

photosynthesis, sulfate reduction, anaerobic bacterial oxidation, and urea decomposition.

Among them, calcium carbonate precipitation caused by microbial hydrolysis of urea is the

most hotly researched [81–83]. Naturally occurring microorganisms capable of inducing cal-

cium carbonate precipitation consist of cyanobacteria, sulfate-reducing bacteria, denitrifying

bacteria, and the most studied urease-producing bacteria.

3.1 Cyanobacteria

Cyanobacteria are ancient organisms that use HCO3
- dissolved in water for photosynthesis to

produce OH-, which reacts with HCO3
- in water to produce CO3

2-. When cyanobacteria die,

the extracellular polymer is degraded, and the Ca2+ adsorbed in the cell wall is released to form

a calcium carbonate precipitate with CO3
2-. The best-known examples of molecular and genetic

control of microbial mineralization processes are the silica deposition by stoneflies and diatoms

[84]. Furthermore, cyanobacteria will form CaCO3 on the cells [85]. It was reported that cyano-

bacteria are highly adaptable to their environment and can mineralize in not only hot springs

but also nutrient-poor freshwater lakes or rivers [86–88]. In the study of the MICP process of

cyanobacteria, light and UV light are critical for their MICP process, affecting the consumption

of Ca2+ and the production of CaCO3. Their mineralization produces twice the number of abi-

otic precipitates (Fig 2) [89–91]. The main advantage of cyanobacteria over other
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microorganisms is that they require only CO2 from the environment rather than urea and car-

bon sources and do not produce nitrogen-based by-products, making the process less costly.

3.2 Sulfate-reducing bacteria

Sulfate-reducing bacteria (SRB) are widespread on Earth and play various roles, especially in

anoxic land and water environments (such as soil, seawater, and riverine underground pipe-

lines) and anaerobic extremes rich in organic matter and sulfate (such as oil and gas reservoirs,

rivers and lakes, and mud). In the last century, researchers discovered that the reduction of sul-

fate bacteria may be responsible for the formation of different carbonate mineral compositions

[92, 93]. The rate of sulfate reduction was closest to the rate of carbonate precipitation when

biotic and abiotic effects on carbonate precipitation in continental shelf sediments were simu-

lated [94]. Vasconcelos et al. [95, 96] developed a microbial dolomite model indoors to explain

the role of sulfate-reducing bacteria in the precipitation of dolomite, reporting that sulfate-

reducing bacteria could control the precipitation of dolomite in a low-temperature anoxic

environment. Since sulfate-reducing bacteria can adapt to extreme environments, they can use

organic matter on the surface of metals and other materials as a carbon source to lower sulfate

to hydrogen sulfide in the absence of oxygen or very little oxygen for energy gain. Subse-

quently, the application of sulfate-reducing bacteria to induce calcium carbonate precipitation

has been increasingly investigated in China and abroad [97, 98].

3.3 Denitrifying bacteria

Denitrifying bacteria are also widely distributed in nature and are found in large quantities in

sewage, soil, and stable manure, where they reduce nitrate to nitrite and further reduce nitrite

Fig 2. Photosynthesis during cyanobacteria mineralization.

https://doi.org/10.1371/journal.pone.0271761.g002
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to ammonia and free nitrogen when soil oxygen is insufficient, leading to the increased envi-

ronmental pH. The principle of microbial denitrification-induced calcium carbonate precipi-

tation was demonstrated by Paassen et al. [99] in 2010 with fatty acid calcium salts as

nucleation sites and carbon sources. Denitrification is more stable, though the rate of calcium

carbonate precipitation induced by nitrate reduction may be lower than the rate of urea hydro-

lysis precipitation. During its reaction, calcium carbonate precipitation and microbial growth

occur, while nitrogen is produced due to the reduction of nitrate bacteria. Nevertheless, cal-

cium carbonate precipitation by denitrification is a promising technology, and its commercial-

ization still requires further interdisciplinary research [100].

3.4 Urease-producing bacteria

Urease is a widely occurring enzyme in nature [101], according to the most mature knowledge

of this enzyme to date. Therefore, urease-producing bacteria (Pasteurella subtilis, Sporosar-

cina, Bacillus subtilis, and Bacillus megaterium) are known to secrete urease during metabo-

lism to accelerate the hydrolysis of urea. Although large-scale production of highly active

urease-producing bacteria is costly and affects the precipitation process [102], many research-

ers selected suitable media to enhance urease activity for MICP by indoor culture [24, 25, 103].

Hydrolysis of urea by urease-producing bacteria to induce calcium carbonate precipitation has

more advantages than other production routes, such as simple mechanism, low cost, green

and environmental protection, and the ability to produce a considerable amount of calcium

carbonate precipitation in a short period of time (Fig 3) [104]. Consequently, urease-produc-

ing bacteria are most widely used in MICP.

3.5 Summary

There are many microorganisms that can induce calcium carbonate precipitation in nature,

urease-producing bacteria were the most efficient. However, its breakdown of urea requires

preferential secretion of urease, it will affect the precipitation process. Therefore, in future

studies, Genetic modification and mutagenesis of urease producing bacteria as a method to

improve the efficiency of calcium carbonate precipitation, Alternatively, the direct use of cata-

lytic enzymes as an alternative to microorganisms is a simple and fast way.

Fig 3. Urease-producing bacteria.

https://doi.org/10.1371/journal.pone.0271761.g003
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4 Mineralization influencing factors

4.1 Solution environment

The growth of microorganisms in the solution environment is governed by several factors and

thus impacts the effectiveness of microbial-induced calcium carbonate precipitation. The

growth factors have been extensively studied. The results suggested that parameters such as

temperature, pH, and substrate concentration have some influences on microbial activity [36].

4.1.1 Temperature. Temperature is the most imperative factor for the growth of microor-

ganisms, and all microorganisms in nature have their appropriate temperature range for

growth. Generally, warming can accelerate the life activities of microorganisms and thus pro-

mote their growth and reproduction, while higher or lower temperatures harm the growth of

microorganisms [105]. Mitchell [106] concluded that the optimal reaction temperature for

most urease enzymes is 20 to 37˚C. Nonetheless, Dhami et al. [107] revealed that the urease

activity was still stable at 35˚C; the urease activity decreased by about 47% when the tempera-

ture increased to 55˚C; meanwhile, the rate of microbial decomposition of urea at high tem-

perature decreased faster than that at low temperatures [108]. The higher the temperature, the

faster the decreasing speed of the precipitation rate. As implied by the aqueous solution test,

the increase in temperature caused a rapid decrease in the pH of the solution to 7.0, and the

decrease in pH delayed the precipitation of calcium carbonate [109]. Moreover, the effect of

temperature on microbially induced calcium carbonate precipitation was associated with the

reaction time. Specifically, Ca2+ consumption was high at higher temperatures in the early

stage, and Ca2+ consumption was high at lower temperatures after a period of reaction [110].

Thus, microbially induced calcium carbonate precipitation was better at lower temperatures

than that at higher temperatures because the urease activity secreted by microorganisms was

retained for a longer period of time at lower temperatures.

4.1.2 pH. MICP occurs mostly in alkaline environments and therefore can promote the

hydrolysis of urea in a specific pH range. At higher pH conditions, which are vital for the

hydrolysis of urea to NH4+, the precipitation reaction of CaCO3 by microorganisms is more

favorable; at lower pH conditions, the carbonate precipitation produced is dissolved. The liter-

ature suggested that the optimal pH of urease is 8 [111, 112]; the activity of urease decreases

once this threshold is exceeded. However, microorganisms obtained in alkaline environments

can promote their adaptation to extreme alkalinity [113]. It has good activity at pH 9 and can

survive even at higher pH conditions [114]. Although the optimal pH for the induction of cal-

cium carbonate precipitation by various microorganisms has been reported, the pH during

medium precipitation is constantly changing. Therefore, Zehner [115] discovered a rapid

increase in pH owing to urea hydrolysis, followed by a decrease in pH due to CaCO3 precipita-

tion by monitoring the pH change in the solution environment. The higher the pH, the more

unstable the calcium carbonate crystals (Fig 4).

4.1.3 Substrate concentration. The MICP process requires nutrients for the growth of

microorganisms and substrates for the hydrolysis of microorganisms and the precipitation of

calcium carbonate to ensure that the reaction can continue. The substrate is a mixture of Ca2+

and urea, with urea providing the nitrogen source for microbial growth and CO3
2- for calcium

carbonate precipitation. However, the concentration of the substrate has a certain impact on

the effect of microbial-induced calcium carbonate precipitation. Muynck et al. [104] performed

the calcium carbonate precipitation experiment, revealing that the most suitable concentrations

of urea and calcium chloride were 0.5 mol/L and 0.25 mol/L. Moreover, Ca2+ concentration

exerted a greater effect on the amount of calcium carbonate precipitation than urea concentra-

tion [116]. Theoretically, the precipitation of CaCO3 can be boosted by increasing the concen-

tration of urea and Ca2+. Nevertheless, the high concentration of the salt solution will form a
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concentration difference with the cytoplasm of bacteria, and osmosis will occur, when the sub-

strate concentration is too high (high mineralization) [117, 118]. As a result, cell dehydration

and death appear, the growth and metabolism of microorganisms or the secretion of urease are

influenced, and the rate of urea hydrolysis is reduced, affecting the precipitation efficiency.

4.1.4 Others. There are many more factors impacting microbially induced calcium car-

bonate precipitation than these three. When calcium carbonate crystals are formed, microor-

ganisms act as nucleation sites, and their concentration can significantly affect the crystal

morphology and calcium carbonate yield [2, 119]. The concentration of microbial cells is the

main influencing factor when the concentration of urea and Ca2+ reaches a certain level [120].

Meanwhile, there is a relationship between the quality of the calcium carbonate produced and

the oxygen content in the environment [121]. Xu [122] changed the crystal shape by adding

magnesium ions to promote the precipitation of sphalerite and inhibit the growth of calcite.

Moreover, the morphology of carbonate precipitates is related to the ratio of calcium and mag-

nesium in the solution. The main reason for the difference in morphology is that the presence

of magnesium changes the saturation of the solution. With the increase of reaction time, the

increase of saturation affects the precipitation. phase (amorphous phase), which subsequently

crystallizes into other phases (vanadite, calcite, etc.) [123]. By studying the mineralogy of cal-

cium carbonate precipitation induced by different divalent metal ions on microorganisms,

Kim was found that different metal ions can induce the formation of carbonates with different

crystal morphologies and sizes at low concentrations (e.g., calcite, aragonite, vaterite, monohy-

drocalcite, and calcium-strontianite) [124]. Moosazadeh [125] enhanced the precipitation of

calcium carbonate by adding Fe3O4. Li and Cang et al. [126, 127] discovered that voltage

strengthened urease activity and achieved increased calcium carbonate yield. The quality the

final calcium carbonate produced significantly varies with the calcium source [81, 128, 129].

And different calcium sources induce crystals of different shapes, among which the calcium

carbonate crystals induced by calcium chloride are the most stable [130–132].

4.2 Sandy soil environment

Compared with the microbial mineralization process in the solution environment, it adds a

process of reactants entering the sandy soil porous medium in the sandy soil environment, so

Fig 4. Types of precipitated calcium carbonate crystals at different pH (left 7 and right 9).

https://doi.org/10.1371/journal.pone.0271761.g004
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as to the effect of calcium carbonate precipitation. Their reaction rate in the sandy soil pore

space will be slower than that in the solution environment ascribed to an environmental adap-

tation stage for microorganisms to enter the sandy soil [133]. Additionally, the mineralization

effect is impacted by parameters such as sand particle size, cement concentration, maintenance

temperature, and grouting method.

4.2.1 Particle size. Microbially induced calcium carbonate crystals generally range in size

from a few microns to tens of microns, while calcium carbonate crystals can also form agglom-

erates [134]. Considering that the size is hundreds of microns or more, a too-small particle size

will restrict microbial growth and calcium carbonate production. Specifically, calcium carbon-

ate of a too-large sand size tends to adhere to the surface of individual sand particles and can-

not provide effective cementation for the huge sand particles, nor can it fill the pore space

between the particles, resulting in the restriction of the ultimate curing effect [135, 136]. Song

et al. [137] concluded that when the sand size is too small, the pore volume is small, and the

calcium carbonate produced by cementation at the injection end will prevent the subsequent

injection of the bacteria and weakened the overall compressive strength. Therefore, the overall

strength of the cured specimen increases with the increase in the sand particle size within a

certain particle size range [138]. Similarly, Mortensen et al. [139] suggested that the particle

size distribution and relative density of the sand soil determine the effect of mineralization.

They tested the shear velocity of the specimens and revealed that the cementation strength of

well-graded coarse-grained sand was higher than that in poorly graded fine-grained sand.

Owing to the large particle size span of poorly graded sands, a weak structural surface is cre-

ated, leading to a lower mineralized strength. In other words, the shear strength of sands after

MICP is positively correlated with the relative density [140, 141].

4.2.2 Cementation concentration. Unlike the substrate concentration in the solution

environment, the cementation effect of microbially induced calcium carbonate precipitation

in sandy soils depends largely on the concentration of the cementation [22]. The concentration

of the cementation affects not only the type, shape, and size of the crystals in the calcium car-

bonate deposited mineral material but also the distribution of bacteria and crystalline minerals

in the pore space [142], as well as the amount of calcium carbonate generation, Deposition effi-

ciency, pore size, and compressive strength of cemented specimens. Clarà found in fine sand,

The crystal size of the calcium carbonate precipitate increased with the cement concentration,

indicating that the crystals changed during the precipitation. By increasing calcium concentra-

tions, Xu had found the crystal morphology changed from hexahedron to oblique polyhedron

to ellipsoid and the Ca2+ ion concentration mainly affects calcium carbonate crystal morphol-

ogy and size [143]. When the concentration of the cement (urea and calcium ions) was 10–250

mM, the calcium carbonate crystal size increased dramatically; when the concentration

exceeded 10–250 mM, the crystal size growth became saturated [144]. Qabany et al. conducted

MICP cementation of quartz sand and found that in the concentration range of 0.25 to 1.00

mol/L, the higher the concentration of the cementing solution, the larger the size and the more

uneven distribution of the calcite crystals produced [36]. The calcium carbonate formed by

low-concentration cementing solution is majorly adsorbed on the surface of sand particles and

between pores; high-concentration cementation can form more calcium carbonate, solidify

and cement sand particles, and increase the strength of specimens [145]. Qabany [146] con-

cluded that the magnitude of the increase depended on the concentration of the cementation,

though the strength of the tested samples increased after the mineralization treatment. Tang

et al. [147] reported that the best consolidation effect and the best utilization rate were

achieved after 3 hours of injection at a rate of 2 ml/min at a cementation concentration of 0.5

mol/L. The shear strength of the cured sand increased by 69% after 48 h of treatment [148].

Since microorganisms are limited in their ability to decompose urea under specified
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conditions, the concentration of cementation in mineralization experiments is generally not

too high. This does not continue to improve the strength of the specimen as too-high concen-

tration cementation inhibits the growth of microorganisms in the sand. Moreover, the calcium

carbonate precipitation rate becomes slower, resulting in the lower strength of the specimen.

In other words, the presence of high ion concentration weakens the mineralization and curing

effect.

4.2.3 Maintenance temperature. Maintenance temperature is crucial in the application

of microbial sand fixation. Calcite precipitated at different maintenance temperatures has dif-

ferent shapes and contents, and its ability to cement the sand column significantly differs

[149]. As the maintenance temperature rises, the microbial growth accelerates, and the calcium

carbonate content between sand particles increases, contributing to cementing more sand and

increasing the compressive strength. When the maintenance temperature exceeds 50˚C, the

microbial growth is inhibited, the cementing ability is weakened, and the compressive strength

is reduced [108, 150]. Although more calcium carbonate is produced at high maintenance tem-

perature, its particle size is small, and it covers the surface of sandy soil and cannot cement the

particles. At lower temperatures, less calcium carbonate is precipitated, while the particles are

larger, allowing it to cement the sandy soil particles and increase the strength of the mineral-

ized sample. Related research demonstrated that the mass of calcium carbonate in the

cemented sample at 50˚C is three times that of 25˚C, and its compressive strength is only 60%

of that at 25˚C [151]. Sun et al. [152] domesticated the microorganisms and increased the con-

centration of urea in a low-temperature environment to make them grow and multiply faster

and produce more precipitation and a better curing effect in the low-temperature sand fixation

test. Additionally, the temperature affects the crystal size of calcium carbonate precipitation,

and the optimal temperature for curing sandy soil is 20˚C~30˚C [153]. At the optimum main-

tenance temperature, the large size of calcium carbonate crystals can effectively fill the pores of

quartz sand, beneficial to improving the strength of cured samples.

4.2.4 Grouting method. There are many factors affecting the effect of microbial minerali-

zation on sandy soil, and the research in this field remains in the exploratory stage. Thus, no

mature way to solidify sandy soil is available, and the common methods contain injection,

immersion, and spraying. Most of the researchers injected the cementing solution into the

sand with a peristaltic pump or syringe to conduct experiments (Fig 5) [2, 154, 155]. Neverthe-

less, the pores of the sandy soil at the injection end are easily blocked by the generated calcium

carbonate precipitation [156]. This becomes the main problem of this method. The farther

away from the injection end, the less calcium carbonate is generated, and the poorer the

cementation strength. Moreover, the use of peristaltic pumps and syringes will flush the micro-

organisms and substrate in the pore space, influencing the cementation effect. Based on this

phenomenon, Wen et al. [157, 158] conducted mineralization experiments with the immer-

sion method, in which the samples were completely immersed in a bacterial or nutrient solu-

tion, and calcium carbonate precipitates were gradually produced by natural permeation of

the liquid (Fig 6). The spraying method indicates that the solution is applied to the soil surface

by simply spraying the fungal solution or nutrient solution, and the solution eventually pene-

trates into the soil by gravity. Cheng et al. [159] applied the spray method to a 2 m long coarse

sand column, discovering that the curing reaction depth was within 1 m, and the compressive

strength was 850–2067 kP. The injection method can favor the production of rhombic calcite

crystals if the mineralogy was considered.

4.2.5 Others. These factors are not the only ones limiting the mineralization of microor-

ganisms in the sandy soil environment. Gong demonstrated that the dry density, unconfined

compressive strength, and the amount of calcium carbonate precipitation of the specimens

increased with the number of injections of the cementing solution, while the curing effect did
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Fig 6. Immersion method.

https://doi.org/10.1371/journal.pone.0271761.g006

Fig 5. Injection method.

https://doi.org/10.1371/journal.pone.0271761.g005
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not significantly change after nine times [160]. Niu et al. [161] revealed that the strength effect

of the specimens first increased and then decreased as the injection time interval increased,

and 8 h was the turning point of the trend change. In contrast, Kawasaki et al. [162] suggested

that the specimens cured optimally at 14 days with a 1-day injection interval can satisfy the

performance requirements of the actual project. Achal presented that calcium chloride pro-

duced more precipitation by adding different calcium sources such as calcium chloride, cal-

cium oxide, calcium acetate, and calcium nitrate to the nutritional broth after the addition of

urea solution [128]. Tang et al. [163] unveiled that by adding graphene oxide to the mineraliza-

tion process, calcium carbonate crystals were precipitated faster and larger in size with

unchanged morphology, and the compressive strength of the consolidated sand was signifi-

cantly improved. With the investigation of mineralized sand column experiments, increasing

researchers have achieved the incorporation of foreign substances to enhance the mineraliza-

tion capacity of microorganisms.

4.3 Microscopic analysis of solution and sandy soil environment

Microbially induced calcite production in shake flasks (Fig 7) and colloidal calcite-induced

mineralization in quartz sand structures (Fig 8) is exhibited in below. The SEM morphologies

at different magnifications were different. It can be easily observed that the morphologies of

the two were different, though the main component was calcite. The calcite induced in the

shake flask experiment was mostly spherical or spherical aggregates, with a few rhombic-

shaped developments. Moreover, a small number of bacterial bodies were wrapped by calcite

but not completely colloidized. Besides, the calcite crystallization induced in the quartz sand

environment was significantly better, mainly demonstrating oblique hexagonal lattice develop-

ment, in accordance with the crystallographic morphology of calcite. Additionally, the calcite

was adsorbed around the quartz sand and tightly wrapped on the surface of quartz sand.

The calcite crystals induced by the microbial solution are polycrystalline structures com-

posed of many spherical grains interspersed with intercrystalline gaps, because the essence of

calcite crystal formation induced by microorganisms is the process of biomineralization. The

nucleation and growth of calcite crystals in the biomineralization process are influenced by

not only the same factors as conventional crystal nucleation and growth but also various other

complex regulatory factors [164]. Under the control of organic macromolecules produced by

microorganisms, calcite crystals can change their growth process and morphology, resulting in

multi-level growth and mutual aggregation. As a result, the interfacial energy of calcite nucle-

ation is reduced, and the final formation of biomineralization is different from chemical meth-

ods. Bibi believed that these organic substances or bioproteins can be used as templates to

induce inorganic minerals to bind to organic substrates secreted on the surface of organisms,

in which they act as nucleation sites and adsorb inorganic minerals into clusters [165].

Zehner et al. [166] concluded that amorphous calcium carbonate (ACC) precipitated in the

presence of initial calcite and exerted an effect on the consolidated MICP material. During the

curing experiment, the microorganisms changed the chemical environment around the quartz

sand surface [167]. Simultaneously, a stable biofilm was formed on the surface of quartz sand,

and the environment in the pores gradually became alkaline during the biological reaction.

However, the extracellular polymer of microorganisms with negative charge continuously

adsorbed Ca2+ in the environment. Thus, calcite crystals were formed on the surface of sand

particles sporadically. As the biochemical reaction process continued, more calcite crystals

were formed on the surface of sand particles. With the increasing number and volume of crys-

tals, the adjacent calcite crystals were in contact with each other and cemented into a whole,

and a covering shell layer was formed on the surface of sand particles. Wang et al. [168]
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summarized that as the distance of calcite crystals between adjacent sand particles decreased

until the two sand particles came into contact, the contact area increased further, the structural

strength of the connection was enhanced, the quartz sand particles were closely intertwined,

and the loose gravel was cemented into a whole. Hence, the calcite crystals formed between the

Fig 7. Morphology of induced calcite in shake flask solution. (a): SEM at 50.0um;(b): SEM at 1.0 um.

https://doi.org/10.1371/journal.pone.0271761.g007
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Fig 8. Morphology of quartz sand cemented calcite. (a): SEM at 200.0um;(b): SEM at 10.0 um.

https://doi.org/10.1371/journal.pone.0271761.g008
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grains play an essential role in the structural strength. Through its cementing effect, it becomes

the skeleton structure of the gravel, contributing to the improvement of the bearing capacity of

quartz sand and the bonding force between the grains.

4.4 Summary

Most researchers use the concentration of urea solution and calcium ion concentration as the

overall concentration of the cementation for design optimization. Nonetheless, the concentra-

tion of calcium ions in the cementation and the concentration of urea in the process of micro-

bial mineralization affect each other. Thus, both the concentrations of calcium ion and urea

impact the effect of microbial sand fixation. The assessment of the concentration on its curing

effect should be considered separately [169]. And most researchers only consider the strength,

stiffness and permeability of the solidified sand column or soil after mineralization, durability

studies on samples are still clearly inadequate.

5 Mineralization application areas

5.1 Sand control

Wind erosion, coastal erosion, and desert intrusion can further aggravate the ecological dam-

age in national environments. By spraying microorganisms and cementing solution into the

wind-sand soil, which is cemented into a sufficiently strong, dense, and wind-erosion resistant

monolith, Tian demonstrated that with the increase in microbial spraying frequency and col-

loid concentration, the density of treated sand slightly increased, and the wind erosion rate sig-

nificantly decreased [170–172]. Li accelerated sand fixation and mitigated desertification

through revegetation and ecological restoration by combining microbial mineralization with

SCB technology [173]. Gao and Zhang et al. [174, 175] induced microbial growth by soybean

extract and added Mg to the medium for desertification control in a desert area of northwest

China, so as to further benefit ecosystem reconstruction. On the basis of frequent seawater

inundation and erosion of coastal dunes ascribed to extreme weather and accelerated sea-level

rise, researchers have treated wave-attacked dunes with microbial and enzyme-induced cal-

cium carbonate precipitation, discovering that the mineralization effect can be effective in

reducing dune erosion. However, the mineralization effect gradually decreased when the dune

slope was steep, the wave intensity was high, and the wave impact time was long, and the effect

was attributed to the spatial distribution pattern of calcium carbonate precipitation (Fig 9)

[176, 177]. Liu et al. [178] increased erosion resistance of dykes by strengthening the surface of

the dykes through mineralization techniques. With the MICP technology, the compressive

strength and internal structure of loess foundation and wind sand were improved to protect

the soil and water environment.

5.2 Architectural improvements

Since the mention of microbial cement, many researchers in the field of civil engineering have

explored this technology, which has great potential for improving the performance of cement

materials, restoring ancient buildings, and sealing concrete cracks. Microbial cement is consid-

ered the new era in the construction industry [179]. Unlike conventional cement products, the

addition of microorganisms and substrates can reduce the water absorption capacity and

boost the compressive strength and service life [180, 181]. Kavazanjian et al. [13, 182] avoided

causing settlement by applying it to building foundations and repairing poor foundation soils.

Wiktor weakened the permeability of the parking lot by adding microorganisms and substrates

to the cracks [183]. Perito applied the technique to the monumental site of the Church of
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Angra [184]. Both results presented the potential of the technique. Van Paassen et al. [185]

reported an experimental study of in-situ sand base reinforcement with a scale of 100m3 to

effectively improve the bearing capacity and stiffness of the sand base. Montoya et al. [186]

applied microbial grouting technology to the reinforcement of liquefied sandy soil foundations

and effectively enhanced the liquefaction resistance of liquefied sandy soil foundations. Chu

et al. [187, 188] utilized the MICP process to treat sand layers to create a high-strength, thin,

and impermeable shell that can be used, for example, to construct ponds (Fig 10). Additionally,

some of the ancient buildings in China have experienced hundreds or even thousands of years

and have cracks, low mechanical properties, and low safety performance. Tsinghua University

and other universities have artificially rehabilitated these cultural heritages by grouting and

infiltration methods.

5.3 Heavy metal fixation

Heavy metal pollution in the underground environment is a severe environmental problem,

and the microbially induced calcium carbonate precipitation technology can make heavy

metal ions precipitate as carbonates, such as Cu2+, Cd2+, Zn2+, Pb2+, and Fe2+, and other diva-

lent metal ions replace Ca2+ in the mineralization reaction [124]. The shape, crystallinity, and

precipitation rate of carbonate precipitates formed by mineralization of metal ions remarkably

vary depending on their type. The toxicity of heavy metals can change the activity of microor-

ganisms. Mugwar et al. [189] investigated those microorganisms can remove Cd2+ and Zn2+

better by adding urea in solutions with different concentrations of metal ions. Li screened six

strains of metal-tolerant microorganisms, and the precipitation rate of metal at pH 8–9 was

over 88% [190]. Fujita added strontium to the microbial mineralization process and revealed

that strontium existed in calcite as a solid solution [191]. The rate of strontium precipitation is

determined by the rate of calcite precipitation. Specifically, the faster the calcite precipitation,

the more the absorbed strontium. Moghal et al. [192] performed solidification experiments on

cadmium (Cd), nickel (Ni), and lead (Pb) in the soil by enzyme-induced calcium carbonate

Fig 9. Coastal dune erosion test.

https://doi.org/10.1371/journal.pone.0271761.g009
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Fig 10. MICP application pool construction. (a): after treatment;(b) cross-sectional view of the bottom of the pond after

cultivation of algae.

https://doi.org/10.1371/journal.pone.0271761.g010
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precipitation technique. They verified that the technique can retain heavy metals in the soil

and reduce their mobility, and the order of desorption of the three metals by the soil was:

Cd>Ni>Pb. Hui et al. [193] found with the increasing solution salinity progressively, reduced

the removal efficiency of Pb, but the removal efficiency could be still as high as 89% (Fig 11).

5.4 Reservoir dissection

Research on oil recovery by microorganisms has been relatively mature, and researchers in the

United Kingdom, the United States, Canada, Romania, the former East Germany, the former

Soviet Union, Australia, and other countries have conducted excessive theoretical studies,

indoor experiments, and minefield tests. Nevertheless, it is easy to form a water-driven domi-

nant seepage channel in the late stage of oil field development due to the large difference in

permeability of the reservoir matrix. Hence, the ineffective circulation caused by low water vol-

ume wave coefficient is a major problem in oilfield production. At present, there is little

research on reservoir dissection and water plugging by microbially induced calcium carbonate

precipitation. Nemati conducted mineralization of porous media permeability profiles with

microorganisms screened in Canadian oil fields [194]. Repeated injection of colloidal fluid

increased the degree of plugging of porous media and decreased permeability by 13%. Larsen

improved the plugging agent based on the enzymatic calcium carbonate precipitation tech-

nique to seal natural fractures or artificial fractures in the chalk reservoir of the oil reservoir, so

as to improve the field recovery [195]. Wu and Wang et al. [196] simulated the inhomoge-

neous reservoir indoors and used the mineralization technique. Their results suggested that

the permeability decreased from 16D to 0.6D, and the crude oil recovery increased from 44%

to 83%. Zhu changed the reservoir pore throat by inducing nitrate mineralization through

iron-reducing bacteria, blocking the dominant seepage channel, and improving the volume

wave efficiency and crude oil recovery (Fig 12) [197]. Zhong et al. [11] delayed the microbial

hydrolysis of urea through the addition of glucose to the cementing solution, enabling the

microorganisms to mineralize and plug the reservoir at a deeper depth to achieve enhanced

recovery. Song et al. [198] investigated nitrogen-cycling bacterial-induced carbonate

Fig 11. MICP application with metal Pb fixation. (a): the linear relationship between precipitated Ca and precipitated Pb; (b): Elemental maps

showing the distribution of Pb.

https://doi.org/10.1371/journal.pone.0271761.g011
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Fig 12. Reservoir profile control principle.

https://doi.org/10.1371/journal.pone.0271761.g012
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precipitation (MICP) to fill the pore space of porous media as a potential microbial plugging

agent, contributing to improving the ripple efficiency of high permeability reservoirs.

5.5 CO2 capture

Carbon neutralization is a new concept that has been introduced in China in recent years and

has attracted a lot of attention from researchers. Different from traditional photosynthesis,

which converts CO2 into carbonate crystals that are stable and environmentally friendly,

microbially induced calcium carbonate precipitation is employed to capture and bury CO2 for

weakening the greenhouse effect. By exploring the ability of anaerobic sulfate-reducing bacte-

ria to induce carbonate precipitation under atmospheric and CO2 conditions, Paul confirmed

that 53% of the carbon in the precipitate was derived from CO2 based on carbon isotopes, and

this technology converted gas to solid fixation and could sequester CO2 in the subsurface [199,

200]. Alshalif et al. [201] adopted carbonic anhydrase and CO2 in concrete based on the miner-

alization process. In this way, the amount of CO2 in the air was lowered, and the strength of

the concrete was enhanced. Phillips et al. [202] sealed and strengthened the fractures in the for-

mation with a biofilm-induced calcium carbonate precipitation technique to mitigate the pos-

sibility of CO2 leakage. After sealing the fractures, the cores were able to withstand three times

more pressure than before sealing. The effectiveness of microorganisms on CO2 sequestration

was researched by Okyay et al [203]. in an unnamed cave in Texas, USA. It was concluded that

the rate and concentration of CO2 sequestration depended on the microorganism species, and

the increase in pH increased the CO2 sequestration rate up to 78.6%.

5.6 Summary

In MICP studies, when CaCO3 is generated, high concentrations of NH4Cl are also generated,

it can affect the atmosphere and the underground environment. How to limit the spillover of

NH3 is a direction worthy of research, for example, consider the joint action of microorgan-

isms that feed on nitrogen sources. There is still a problem in the application and field use of

MICP technology is large-scale cultivation of bacteria, need to consider economic and time

costs. Therefore, In-situ activation for bacteria in native, it is cheaper and more convenient

than adding exogenous bacteria, and it is beneficial to the protection of the local environment.

6 Discussion and technology prospects

Microbial-induced calcium carbonate precipitation technology, as a new type of cross-process

with good environmental adaptability, has developed rapidly in the past two decades due to its

high efficiency, low cost, and easy control. It can quickly generate cementitious calcium car-

bonate to improve the internal pores and mechanical properties of soil and has little impact on

the in-situ environment, presenting great application potential and high research value in the

field of modern geotechnical engineering. In this paper, the mineralization mechanism of

microorganisms and the microbial molecular dynamics equations involved in the mineraliza-

tion process are reviewed to provide a certain reference for subsequent scholars’ theoretical

research. Besides, the types of bacteria that can be used in the mineralization process are sum-

marized. The influencing factors and microscopic differences in solution environment and

sandy soil environment, as well as the main application fields of mineralization technology, lay

a good foundation for further application research in the later stage.

Although this technology has achieved some achievements after years of research, it has

some limitations. Compared with other methods, the process of the microbial method is

slower. Most of the current experiments are indoor experiments, and there are few actual field

applications. Additionally, the transition from the laboratory to the field is a challenge, the cost
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is high, and the by-products are harmful to the environment. The bacteria used are all urease-

producing bacteria in an aerobic environment. The molecular dynamics equation in the min-

eralization process adopts excessive assumptions and empirical formulas, hindering the accu-

rate evaluation of the metabolism and substrate consumption during the growth of

microorganisms. Therefore, further investigation should be conducted to enable the micro-

bial-induced calcium carbonate precipitation technology to be applied to the site on a large

scale. Many strains can adapt to extreme environments such as high temperature, high pres-

sure, high salinity, and anaerobicity. The influence of various constraints in the mineralization

process on molecular dynamics should be considered in future research.
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