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Isoliquiritigenin blunts 
osteoarthritis by inhibition of bone 
resorption and angiogenesis in 
subchondral bone
Baochao Ji1, Zhendong Zhang1, Wentao Guo1, Hairong Ma2, Boyong Xu1, Wenbo Mu1, 
Abdusami Amat1 & Li Cao1

Isoliquiritigenin (ISL), a natural flavonoid extracted from licorice, has been demonstrated to exert 
attenuation of osteoclastogenesis and anti-angiogenesis activity in a wide variety of cells. Here, we first 
evaluated the effects of ISL on pathogenesis of osteoarthritis in a mouse model of OA. The data showed 
that ISL blunted progression of OA and lowered the Osteoarthritis Research Society International 
(OARSI)-Modified Making Score and protected the articular cartilage. The thickness of calcified 
cartilage zone was significantly decreased in ISL-treated ACLT mice compared with vehicle group. ISL 
increased expression level of lubricin and decreased collagen X (Col X), matrix metalloproteinase-13 
(MMP-13). Moreover, ISL reduced aberrant active subchondral bone remodelling, including lowered 
trabecular pattern factor (Tb.pf) and increased bone volume/tissue volume (BV/TV, %) and thickness 
of subchondral bone plate (SBP) compared with vehicle-treated group. The results of immunostaining 
further revealed that ISL directly reduced RANKL-RANK-TRAF6 singling pathway induced 
osteoclastogenesis, prevented abnormal bone formation through indirect inhibition of TGF-β release. 
Additionally, ISL exerts anti-angiogenesis effects in subchondral bone through direct suppression of 
MMP-2. These results indicated that ISL attenuates progression of OA by inhibition of bone resorption 
and angiogenesis in subchondral bone, indicating that this may be a potential preventive therapy for 
OA.

Osteoarthritis (OA) is the most frequent and costly form of arthritis, characterized by slowly, progressive, ulti-
mately degenerative disorder confined to diarthrodial joints. The disease not only causes loss of articular carti-
lage but also involves the entire joint including inflammation of synovium, formation of osteophyte, sclerosis of 
subchondral bone1,2. These pathologies lead to chronic joint pain, movement limitation and eventually disability. 
Osteoarthritis to varying degrees happened in an approximate 10–15% of adults over 60 all around the world3. 
The cost of OA was estimated to make up of 0.50% of a country’s gross domestic product4. Even so, available 
agents only provide temporarily symptomatic relief but with numerous side-effects at present, and no medication 
has been currently approved by the FDA or any other agencies worldwide for OA management, which is mainly 
due to our limited understanding of the pathogenesis of OA. Therefore, this insufficient area of research is greatly 
needed as targets for preventive and disease-modifying therapies.

In addition to cartilage degradation, the problem of cartilage defects extending into the underlying subchon-
dral bone has received increasing attention recently5–8. Subchondral bone work as a structural girder and shock 
absorber, which could attenuate about 30% of the loads through joints9, and supports superficial articular carti-
lage10. The interaction between the two structures is thought to be a central feature of this process. The subchon-
dral bone consists of the subchondral bone plate and the subarticular spongiosa. It is separated by the cement line 
from the calcified zone of the articular cartilage11. The architecture of subchondral bone is kept by a dynamic bal-
ance between modelling and remodelling in response to mechanical stress12. Coupled bone remodelling process 
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depend on temporally and spatially regulation of osteoclast and osteoblast activity11. Several animal studies have 
confirmed that high bone remodelling takes place in the early stages, and might trigger the onset of OA13–15. 
Furthermore, recent research indicated that excessive activation of TGF-β1 by elevated osteoclast bone resorp-
tion uncouples bone resorption and formation, which contributing to the sclerotic phenotype in the subchondral 
bone in OA animal models16, and the progression of OA could be attenuated by inhibiting TGF-β1 signalling17. 
Additionally, vascularisation in subchondral bone during the progression of OA have also been noted, which 
couples osteogenesis during bone modeling and remodeling18. As a consequence, an agent that could aim at the 
multiple pathological changes in subchondral bone would be really desired.

There has been a recent global trend toward the use of naturally bioactive herbs with anti-inflammatory prop-
erties to treat arthritis and other inflammatory diseases19–21. Isoliquiritigenin (ISL) (Fig. 1), a natural flavonoid 
extracted from licorice, has drawn wide attention due to its lots of biologic activities, including anti-diabetic, 
anti-cancer, anti-oxidant as well as anti-inflammatory properties and its proven pharmacologic safety22–24. It is 
also used in Western countries widely for culinary purpose25. Recently, it is reported that ISL could inhibit high 
glucose (HG)-upregulated connective tissue growth factor (CTGF) and tissue inhibitor of MMP-2 (TIMP-2) 
expression via disturbing transforming growth factor β1(TGF-β1) signaling in human mesangial cells (HRMC), 
as evidenced by TGF-β receptor I kinase (TGF-β RI) inhibitor26. ISL has also been reported to suppress receptor 
activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis and inflammatory bone loss in 
vitro via RANKL-RANK-TRAF6, mitogen-activated protein kinases (MAPK), IκBα/NF-κB, and AP-1 signaling 
pathways27. Furthermore, ISL has been showed significantly inhibited the RANKL/osteoprotegerin (OPG) ratio 
by reducing the production of RANKL and restoring OPG production to control levels in hFOB1.19 cells stimu-
lated with conditioned medium (CM) of MDA-MB-231 cells at non-toxicity concentrations28. In addition to reg-
ulate bone metabolism, it is reported that ISL could induce anti-angiogenic effects, including inhibition of breast 
cancer neoangiogenesis via suppress vascular endothelial growth factor (VEGF)/VEGFR-2 signaling pathway 
and matrix metalloproteinase-2 (MMP-2)29, suppression platelet-derived growth factor-BB (PDGF-BB) which 
secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis30. Seemingly, ISL could target 
the multiple pathological changes of OA. However, a search of Medline, PubMed, and Medscape revealed no arti-
cle on the subject of ISL for treatment of OA. In this situation, we investigated whether ISL has potential effect for 
preventive treatment of OA, including delaying articular cartilage degeneration and subchondral bone sclerosis in 
mice anterior cruciate ligament transection (ACLT) models by inhibiting osteoclastogenesis, TGF-β-dependent 
Smad2/3 phosphorylation and angiogenesis.

Results
ISL preserved articular cartilage in ACLT mice.  From the Safranin O and fast green staining, signif-
icant loss of proteoglycan in vehicle -treated ACLT mice compared with the sham control, which was reten-
tion by administrating ISL (40 mg/kg) (Fig. 2A top) at 30 day and 60 day after operation. It is also supported 
by OARSI scores which were improved in ISL-treated group relative to vehicle group, whereas no difference 
was noted in ISL versus sham controls (Fig. 2C). Relative to vehicle-treated ACLT mice at 60 day postoperation, 
decreased thickness of calcified cartilage zone in ISL-treated group was observed from HE staining (Fig. 2A bot-
tom and Table 1). Abnormal expression of MMP-13 and collagen X (Col X) were found in vehicle group com-
pared with the sham control group, which was normalised by administrating ISL as assessed by immunostaining 
(Fig. 2B,E,F). Conversely, the expression of lubricin (Fig. 2B,D) and Collagen II (COL II) (Supplementary Fig. 3) 
in vehicle group were significantly decreased, which were improved in ISL-treated group, whereas no difference 
was noted in ISL versus sham controls.

ISL normalized high subchondral bone remodeling in ACLT mice.  High-resolution Micro-CT was 
used to access whether the protective role of ISL on the articular cartilage is associated with its potential effect on 
the microarchitecture of tibial subchondral bone. The results showed that in the vehicle group, the value of bone 
volume/tissue volume (BV/TV, %) reduced post ACLT, which was abrogated by receiving ISL. Additionally, ISL sig-
nificantly reduced trabecular pattern factor (Tb.pf) (a parameter of bone resorption) and increased SBP thickness 
(a parameter of bone formation) post ACLT compared with vehicle treatment and there was no statistically signif-
icant difference in these parameters compared with sham controls (Fig. 3A–D). Correspondingly, ISL significantly 
reduced the number of TRAP-positive osteoclasts and osterix-positive osteoprogenitors postoperation relative to 
vehicle treatment (Fig. 3E–H). It is also noted that the majority of osterix-positive cells were found in subchondral 
bone marrow in the vehicle group and relocated to the bone surface in the ISL-treated mice. The results of these 
data demonstrated that ISL could normalize aberrant subchondral bone remodeling in ACLT mice.

Figure 1.  Molecular structure of isoliquiritigenin (ISL, C15H12O4, MW = 256.25).
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ISL inhibits osteoclastogenesis by suppression RANKL-RANK-TRAF6 singling pathway in the 
subchondral bone of mice.  Representative immunofluorescence double staining and enzyme immu-
noassay (EIA) were performed to investigate the potential mechanism of how ISL affect the microstructure of 
subchondral bone. RANKL-RANK-TRAF6 singling pathway plays crucial roles in osteoclast differentiation and 
activation. Immunofluorescence double staining showed a significant increase of RANKL and TRAF6 in the 
subchondral bone marrow of vehicle-treated mice as early as 2 weeks postoperation, whereas ISL-treated mice 
had equivalent expression compared with sham controls (Fig. 4A,B). However, no difference in the expression 
level of CTX I in peripheral blood was observed regardless of vehicle or ISL-treated mice 14 days after ACLT 
operation compare to sham group by using EIA kit (Fig. 4C). The results indicated ISL inhibits osteoclastogenesis 
by suppression RANKL-RANK-TRAF6 singling pathway in the subchondral bone.

ISL inhibits TGF-β release in subchondral bone medial compartment by suppression osteoclas-
togenesis.  Immunofluorescence staining of nestin showed that ISL significantly decreased the number of 
mesenchymal/stromal stem cells (MSCs) in the subchondral bone after ACLT operation compared with vehicle 
group, and no statistical difference was found between the ISL-treated and sham group (Fig. 5A,B). As High 
concentrations of TGF-β1 induced formation of nestin-positive MSC clusters, leading to formation of marrow 

Figure 2.  Isoliquiritigenin (ISL) protects articular cartilage after anterior cruciate ligament transection (ACLT) 
in mice. (A) Safranin O and fast green staining (top). Solid arrows indicate proteoglycan loss and cartilage 
destruction at 30 and 60 days post operation. Scale bar, 200 mm. The thickness of calcified cartilage (CC) and 
hyaline cartilage (HC) are marked by double-headed arrows in HE staining (bottom). Scale bars, 100 mm. 
(B,D,E,F) The expression of lubricin (B-top, D), matrix metalloproteinase (MMP) 13 (B-middle, E) and COL X 
(B-bottom, F) in articular cartilage 30 days after ACLT were test by immunostaining and quantitative analysis. 
Scale bar, 100 mm. (C) Osteoarthritis Research Society International (OARSI)–modified Mankin scores of 
articular cartilage at different time-points after surgery. Sham = incision was made and sutured immediately. 
Vehicle = ACLT-surgery treated with vehicle. ISL = ACLT-surgery treated with Isoliquiritigenin. n = 8 per 
group. *p < 0.05 compared with sham or as denoted by bar, **<0.01 compared as denoted by bar; #p < 0.05 
compared with the vehicle.

Time 
(days)

HC CC

Sham Vehicle Isoliquiritigenin Sham Vehicle Isoliquiritigenin

30 0.78 ± 0.03 0.73 ± 0.04 0.77 ± 0.02 0.37 ± 0.04 0.39 ± 0.04 0.38 ± 0.03

60 0.76 ± 0.19 0.42 ± 0.18 0.72 ± 0.12 0.34 ± 0.16 0.71 ± 0.18 0.41 ± 0.14

Table 1.  Cartilage thickness changes in different group and time-points (10× magnified images; mean ± SD; 
unit:mm). The level of significance was set at p < 0.05 and indicated by ‘*’ for the comparison between vehicle-
treated group and sham group, or ‘†’ for the comparison between isoliquiritigenin-treated group and vehicle-
treated group. CC, calcified cartilage; HC, hyaline cartilage.
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osteoid islets accompanied by high levels of angiogenesis17, we therefore investigated whether ISL could inhibits 
TGF-β activity in MSCs. Immunohistochemistry staining indicated that pSmad2/3-positive cells in the subchon-
dral bone of vehicle-treated group were significantly increased and reversed to similar levels comparable with 
sham control by administering ISL (Fig. 5C,D). With the same developments, TRAP positive osteoclast cells, 
TGF-β1 and pSmad2/3-positive cells both increased in subchondral bone as early as 7d after ACLT. Then the 
continued osteoclastic bone resorption results in TGF-β1 and pSmad2/3-positive cells remained at high concen-
trations until 30d (Fig. 6). These results suggest that ISL could inhibit TGF-β activity in bone marrow MSCs by 
suppression osteoclastogenesis.

ISL prevents aberrant microvascular formation in subchondral bone.  At last, Micro CT-based 
microangiography was used to evaluate the potential effects of ISL on subchondral bone angiogenesis. After ACLT 
operation 30days, the significantly increased the number of microvascular were observed in the subchondral 
bone of ACLT mice in vehicle group as well as the volume of microvascular, whereas the aberrant blood vessel for-
mation was prevented by ISL, which retained vessel number and volume similar to sham controls (Fig. 7A,B,D). 
Furthermore, immunofluorescence double staining for CD31 and endomucin was performed to investigate the 
potential mechanism of how ISL affect the subchondral bone angiogenesis. Consistently, a significant increase of 
CD31 and endomucin in the subchondral bone marrow of vehicle-treated mice was found, whereas ISL-treated 
mice had equivalent expression compared with sham controls (Fig. 7C,E). Immunohistochemical staining of 
VEGR2 showed that ISL significantly decreased the expression of VEGR2 in the subchondral bone after ACLT 
operation compared with vehicle group, and no statistical difference was found between the ISL-treated and sham 
group (Fig. 8A,B). What’s more, the expression level of MMP-2 were also statistically increased in vehicle group. 
ISL reduced the expression in subchondral bone to similar level compared with sham controls (Fig. 8C,D). The 
data above indicated that ISL could prevent aberrant blood vessel formation in subchondral bone.

Discussion
Recent decade, the bioactive small molecules from natural herbage that would treat OA especially with mini-
mal side-effects have been diligently seek19–21,31,32. ISL, as familiar small molecules isolated from licorice which 
is one of the most widely used herbs in traditional oriental medicine, has been used to treat many kinds of 

Figure 3.  Isoliquiritigenin (ISL) Inhibits aberrant active subchondral bone remodeling after anterior cruciate 
ligament transection (ACLT) in mice. (A) 3D micro-CT image of sagittal views of subchondral bone medial 
compartment at 30 and 60 days after operation. Scale bar, 500 mm. (B–D) Quantitative micro-CT analyzes 
microarchitecture of subchondral bone medial compartment, including bone volume/tissue volume (BV/TV, 
%)(B), trabecular pattern factor (Tb.pf) (C) and subchondral bone plate thickness (D). Immunostaining and 
quantitative analysis of TRAP (E,F) positive cells in tibial subchondral bone at 14 days post operation. Scale 
bar, 100 mm. The expression of Osterix positive cells in tibial subchondral bone at 30 days after surgery was 
evaluated by Immunostaining and quantitative analysis (G,H). Scale bar, 100 mm. n = 8 per group. *p < 0.05 
compared with sham or as denoted by bar; #p < 0.05 compared with the vehicle.
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ailments ranging from skin diseases to rheumatoid arthritis31,33. Our findings broaden the potential applica-
tion of ISL. In this study, we have found that ISL blunted mechanically induced OA in mice by inhibition of 
RANKL-RANK-TRAF6-induced osteoclastogenesis, excessive TGF-β release and angiogenesis in subchondral 
bone. It has been suggested that subchondral bone participates in the early stage of OA. To test whether the level 
of bone remodelling might modify the metabolism of cartilage, we used an ACLT mice model, which has been 
widely described and shown the appropriate histological and biochemical changes associated with OA progres-
sion34,35. As a result of instability of mechanical loading on such joints, for example, excessive body weight and 
weakening muscles during aging, the subchondral bone and calcified cartilage zone undergo changes36. Only 
7 days after operation, the number of TRAP-positive osteoclast cells in the subchondral bone has significantly 
increase in vehicle-treated group, then the continued osteoclastic bone resorption remained at high concen-
trations until 30 days (Fig. 6). The results of Micro-CT therefore showed aberrant active subchondral bone 

Figure 4.  Isoliquiritigenin (ISL) inhibits RANKL-RANK-TRAF6 singling pathway in the subchondral bone 
of mice after anterior cruciate ligament transection (ACLT). (A,B) Representative immunofluorescence 
double staining and quantitative analysis for RANKL (green), TRAF6 (red) and merged images 
(colocalisation = yellow) 14 days post-operation. Scale bar, 50 mm. (C) EIA analysis of C-terminal telopeptide 
of type I collagen (CTX-I) in peripheral blood plasma 14 days post-surgery. n = 8 per group. *p < 0.05, 
compared with the sham; #p < 0.05 compared with the vehicle.

Figure 5.  Isoliquiritigenin (ISL) inhibits expression of nestin+MSC in subchondral bone medial compartment 
by suppression TGF-β1/pSmad2/3 singling pathway after anterior cruciate ligament transection (ACLT). (A,C) 
Immunostaining and (B,D) Quantitative analysis for nestin+ and pSmad2/3-positive cells in sagittal sections 
of subchondral bone medial compartment 30 days post-surgery. Scale bar, 100 mm. n = 8 per group. *p < 0.05 
compared with the sham and #p < 0.05 compared with the vehicle.
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Figure 6.  Isoliquiritigenin (ISL) inhibits TGF-β release in subchondral bone medial compartment by 
suppression osteoclastogenesis after anterior cruciate ligament transection (ACLT). Immunostaining and 
quantitative analysis for TRAP (A-top, B),TGF-β1 (A-middle, C) and pSmad2/3-positive cells (A-bottom, D) 
in sagittal sections of subchondral bone medial compartment at 0, 7, 14 and 30 days after surgery. Scale bar, 
100 mm. n = 8 per group. *p < 0.05 compared with the sham and #p < 0.05 compared with the vehicle.

Figure 7.  Isoliquiritigenin (ISL) prevents aberrant microvascular formation in subchondral bone of anterior 
cruciate ligament transection (ACLT) mice. (A,B,D) Micro-CT based microangiography of medial tibial 
subchondral bone (A) 30 days post-operation, with a quantification of vessel volume (B) and vessel number 
(VN) (D). Scale bar, 500 mm. (C,E) Immunofluorescence double staining (C) and quantification (E) of CD31 
(green), endomucin (red) and merged images (colocalisation = yellow) 1 month after surgery. Scale bar, 50 mm. 
n = 8 per group. *p < 0.05 compared with sham and #p < 0.05 compared with vehicle.
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remodeling in ACLT mice 30 days postoperation (Fig. 3A–D). However, although a significant loss of prote-
oglycan in articular cartilage in vehicle group were also observed at same time point (30 days postoperation), 
thickness of calcified cartilage zone had no obvious change until 60 days after ACLT operation (Fig. 2A). These 
data further strongly supported the theory that there is a cross-talk between subchondral bone and cartilage, an 
aberrant active bone remodeling may occur prior to final cartilage degeneration. Maintaining the microstructural 
integrity of subchondral bone provides an essential physiological environment for articular cartilage.

Osteoclasts, bone-specialized multinucleated cells, are derived from hemopoietic progenitors of the mac-
rophage lineage through a differentiation process which primarily mediated by two key cytokines, namely 
macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL)37. 
M-CSF is important for the proliferation and survival of osteoclast precursors38. RANKL as a member of the 
tumor necrosis factor family is expressed on the surface of osteoblasts and stromal cells, and plays crucial roles in 
osteoclast differentiation and activation37. The binding of RANKL with its receptor RANK induces the trimeriza-
tion and activation of signaling-adaptor molecule tumor necrosis factor receptor – associated factor 6 (TRAF6) 
which as initial cytokines subsequently leads to the activation of the nuclear factor-κB (NF-κB) pathway as well 
as three well-known mitogen-activated protein kinase (MAPK) pathways, including p38 MAPK, extracellular 
signal-regulated kinase (ERK) 1/2, and c-Jun-N-terminal kinase (JNK)37 (Fig. 9). With increasing number of 
research pay close attention to the role of subchondral bone in the pathomechanism of OA, osteoclasts recently 
is considered as a potential target in the treatment39,40. Alendronate was used as osteoclast-blocking agents, pre-
vented OA progression in rats by blocking bone resorption41. Additionally, Pamidronate was also administered in 
mice with overexpressing Runx2 which received an partial medial meniscectomy to induce OA. Six weeks after 
surgery, pamidronate prevents the increase in the OA score in Runx2-Tg mice by inhibition bone resorption42. 
Furthermore, Risedronate reduced the levels of collagen type II (CTX-II), a cartilage degradation marker, in a 
dose-dependent matter43 and patients with both low collagen type II and collagen type I levels had the lowest 
risk of OA progression44. However, even with so much research, the potential mechanism of osteoclast-blocking 
agents in the treatment of OA have not been elucidated at the molecular level.

Inspiringly, a recent study reported that altered mechanical loading could increase subchondral bone resorp-
tion which then release more active TGF-β in ACLT OA mice. These abnormal TGF-β signalling would interrupt 
coupled bone remodelling, recruiting.

MSCs to form aberrant osteoid islets in bone marrow as opposed to bone resorption pits for coupled bone 
resorption. It changed microstructure of subchondral bone and ultimately lead to articular cartilage degenera-
tion17. Based on this, the current study demonstrated that ISL directly inhibited osteoclastogenesis by suppression 
RANKL-RANK-TRAF6 singling pathway in the subchondral bone of mice and indirectly suppressed TGF-β 
release from bone matrix, then prevented aberrant migration of MSCs, re-established coupled bone remodelling 
and protected articular cartilage. In detail, osterix-positive osteoprogenitors from MSCs, are precursor cells of 
osteoblast. During the normal remodeling process, osteoblasts and their progenitors are located primarily at the 
resorption site on the bone surface. However, the abnormal mechanical loading leads to the excessive release 
of TGF-β which due to increased bone absorption. These excessive TGF-β mediate further differentiation of 
MSCs into osteoblast precursors and eventually lead to commitment of osteoprogenitors in-situ in bone mar-
row cavities. These clustered bone marrow osteoprogenitors may lead to osteoid islets in the subchondral bone 
marrow which are visualized as bone marrow lesions during MRI, which have been identified as a prognostic 
factor of OA progression45. However, ISL could inhibit excessive release of TGF-β in bone marrow by suppression 

Figure 8.  Isoliquiritigenin (ISL) attenuates excessive expression of vascular endothelial growth factor 
receptor-2 (VEGFR2) and matrix metalloproteinase 2 (MMP-2) in subchondral bone of anterior cruciate 
ligament transection (ACLT) mice. Immunostaining (A) and Quantitative analysis (B,C) for VEGFR2 and 
MMP-2 in sagittal sections of subchondral bone medial compartment 30 days post-surgery. Scale bar, 50 mm. 
n = 8 per group. *p < 0.05 compared with sham and #p < 0.05 compared with vehicle.
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osteoclastogenesis through targeting RANKL-RANK-TRAF6 singling pathway in preosteoclast and therefore 
prevent a cascade of events that lead to the development of osteoarthritis (Fig. 9). Nevertheless, although ISL has 
been reported could disturb TGF-β1 signaling in human mesangial cells (HRMC)26, whether ISL could directly 
inhibit phosphorylation of Smad2 (pSmad2) in MSCs in ACLT mice has not yet been researched in this study, 
which are required in future studies. Besides, we found no difference in the expression level of CTX I in peripheral 
blood regardless of vehicle or ISL-treated mice 14 days after ACLT operation compare to sham group (Fig. 4C). A 
speculation is performed that unlike osteoporosis, topical bone resorption in ACLT OA mice may not enough to 
cause change in the value of CTX I in peripheral blood.

Angiogenesis is critical for bone health to transport nutrients, oxygen, minerals and metabolic wastes46. 
This process is coupled with bone formation in regulating bone remodeling. However, aberrant microvascular 
information in subchondral bone is a known pathological feature of OA47. From Micro-CT analysis, ISL reduces 
the number and volume of microvascular in the subchondral bone of ACLT mice to the similar level of sham 
group. At the molecular level, a significant increase of CD31 and endomucin in the subchondral bone marrow 
of vehicle-treated mice was observed, whereas ISL-treated mice had equivalent expression compared with sham 
controls. In order to investigate the potential mechanism, we further performed an immunohistochemistry assay 
on VEGFR2 and MMP-2. VEGF has been identified as the most important pro-angiogenic factor48,49. After bind-
ing with VEGF receptors on the surface of endothelial cell, which sequentially promote endothelial cells recruit-
ment and proliferation50,51. MMP-2 is one kind of membrane-associated neutral endopeptidases which produced 
by endothelial cells. It can promote angiogenesis by regulation of cell-extracellular matrix interactions. ISL nor-
malized high expression of VEGFR2 and MMP-2 in vehicle-treated ACLT mice. Besides that, TGF-β signalling 
in endothelial progenitor cells can also induce angiogenesis52. A recent study shown that TGF-β inhibition can 
reduce angiogenesis in subchondral bone in ACLT OA mice17. Therefore, the results of this research indicated 
that ISL prevents aberrant blood vessel formation in subchondral bone by direct suppression of MMP-2, indirect 
inhibition of TGF-β signalling. Moreover, platelet derived growth factor-BB (PDGF-BB) was secreted by preos-
teoclasts and reported could prepares angiogenesis for anticipating bone formation in addition to recruitment 
of MSCs53. Although ISL has been reported could attenuate adipose tissue fibrosis by suppression the expression 
level of PDGF-BB30, the effect of ISL on this growth factor in subchondral bone of ACLT mice has not yet been 
researched in current study, which may be another additional unexplored mechanisms.

ISL is extracted from licorice with extensive sources. This perennial herb is mainly distributed in southern 
Europe and Asia. ISL, with proven extractive technique, cheap price, and reliable safety, is not only applied in 
medical field, but also used as food additive for many years. Unlike osteoclast-blocking agents or TGF-β inhibitor, 
the small molecule ISL has lots of biologic activities. The data of current study further demonstrated that there 
is a cross-talk between subchondral bone and cartilage, an aberrant active bone remodeling may occur prior to 
final cartilage degeneration. ISL blunted OA progression and protected articular cartilage in mice ACLT models 
by two approaches. On the one hand, it inhibited aberrant subchondral bone remodeling in early OA, including 
directly reduced RANKL-RANK-TRAF6 singling pathway induced osteoclastogenesis, prevented abnormal bone 
formation through indirect inhibition of TGF-β release. On the other hand, ISL abrogated aberrant microvascular 

Figure 9.  Molecular mechanism of Isoliquiritigenin (ISL) on inhibiting progression of osteoarthritis. The 
differentiation of osteoclast involves osteoblast and preosteoclast. RANKL is expressed on the surface of 
osteoblasts, which bind its receptor RANK on the surface of preosteoclast to induce the trimerization and 
activation of signaling-adaptor molecule tumor necrosis factor receptor-associated factor 6 (TRAF6). It 
subsequently activates a cascade of events that lead to the differentiation of osteoclast. The abnormal mechanical 
loading increases subchondral bone resorption to release more active TGF-β which stimulate increases 
in the number of MSCs and osteoprogenitors in the bone marrow, which lead to aberrant bone formation 
and angiogenesis for osteoarthritis progression. ISL inhibits RANKL-RANK-TRAF6 singling pathway in 
preosteoclast to reduce release of TGF-β in the subchondral bone and therefore prevent a cascade of events that 
lead to the development of osteoarthritis.
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formation in subchondral bone by direct suppression of MMP-2, indirect inhibition of TGF-β signalling. These 
results suggest that ISL target subchondral bone in early OA can be fairly effective in ACLT mice, indicating that 
this may be a potential preventive therapy for OA.

Materials and Methods
Animals.  Ethical statement.  All procedures complied with the guidelines of the Association for Assessment 
and Accreditation of Laboratory Animal Care, and the protocol was approved by the Institutional Animal 
Care and Use Committee of First Affiliated Hospital of Xinjiang Medical University (protocol number 
IACUC20160616-08).

Mice.  C57BL/6 J is one kind of inbred mouse with characteristic of good comparability and consistent stress, 
which is commonly used by tumor, physiology, immunology and genetics research. What is more, it is the most 
commonly used rodents in OA study. The maturity of C57BL/6 J mice were 10 weeks, and in order to rule out 
the effect of estrogen on OA progression, C57BL/6 male mice of 3 months old were purchased from Vital River. 
Animal feeding environment: temperature 22–25 °C, light - dark cycle 12 hours, relative humidity 60%, all mice 
free to drink water. The weight of all mice were between 25 and 29 gram before modeling. All of the mice with 
free activities and good mental appetite were divided into different groups and underwent different treatment 
in accordance with the random number table. Preliminary experiment was performed firstly, the optimal dose 
(40 mg/kg) was identified by dividing the mice into sham group, vehicle-treated and multiple concentrations 
of ISL-treated group randomly (10, 20 and 40 mg/kg; n = 10 per group). Anterior cruciate ligament of the right 
knee were transected to generate a destabilized OA animal model. Sham operation was done by opening the 
joint capsule and then suturing the incision in the right knee of independent mice. Beginning the second day 
after ACLT surgery, ISL (13766 Sigma, USA) or equivalent volume of vehicle (10% Tween-80) was injected intra-
peritoneally every other day for 60 days. Mice were sacrificed at 60 d after operation. From Safranin O and fast 
green staining, one-way analysis of variance (ANOVA) on OARSI score indicated that lower concentration (10 
or 20 mg/kg) had minimal effects on chondroprotection (Supplementary Fig. 1B,C). We did not continue to 
increase the dose because nearly half of mice died in higher concentration (80 mg/kg group) during 2 month 
post-operation. Beyond cartilage, we evaluated the systemic and local responses in each dose of mice by rank-sum 
test, and no statistical differences were found between the groups with lower concentration (10, 20 and 40 mg/
kg) (p > 0.05). But the mice which received 80 mg/kg have worse systemic responses than other groups (p > 0.05) 
(Supplementary Fig. 1D). Furthermore, the weight and organ coefficient of mice with different dose were com-
pared by One-way ANOVA. The results showed that no statistical differences were found between the groups with 
lower concentration (10, 20 and 40 mg/kg) (p > 0.05). However, the value of the survival mice which received 
80 mg/kg were decreased significantly (p < 0.05) (Supplementary Fig. 1E). Beyond that, taking into account ISL 
is one kind of phytoestrogen, negative effects may be observed at higher doses. We have compared the ISL and 
the vehicle group in the non-ACLT mice (sham + ISL). The non-ACLT mice were randomized into sham group, 
vehicle group, and multiple dose of ISL-treated group (10, 20, 40 and 80 mg/kg; n = 10 per group). Beginning 
the second day after sham surgery, ISL or equivalent volume of vehicle (10% Tween-80) was injected intraperi-
toneally every other day for 60 days. Mice were sacrificed at 60d after operation. From HE staining, no statistical 
differences in thickness of hyaline cartilage were found between the groups with lower concentration (10, 20 and 
40 mg/kg) (p > 0.05). Nevertheless, the indicator of the survival mice which received 80 mg/kg were decreased 
significantly (p < 0.05) (Supplementary Fig. 2). Therefore, in formal experiment, the mice were randomized to 
sham group, ACLT + vehicle group, and ACLT + ISL (40 mg/kg) group (n = 48 per group). Follow the protocol 
above, 8 mice were separately sacrificed at 0,7,14, 30 and 60 d post operation; with another 8 in each group spe-
cifically for angiography were sacrificed at 30d post operation.

Micro-CT analysis.  Immediately after euthanization, entire knee joints without soft tissue were dissected and 
fixed in 10% buffered formalin overnight. After that, specimens were scanned using high-resolution micro-CT 
(SkyScan 1176) with the voltage of 50kVp, filter of 0.5 mm AI and resolution of 9 μm per pixel. The data was then 
reconstructed (NRecon v1.6), analyzed (CTAn, v1.9) and build for 3D model visualization (CTVol, v2.0). The 
sagittal view of the entire medial compartment of the tibial subchondral bone was selected for 3D histomorpho-
metric analysis. The region of interest was defined to cover the whole subchondral bone medial compartment. 
The following parameters were measured: (1) Bone volume/tissue volume (BV/TV, %), (2) trabecular pattern 
factor (Tb.pf, mm−1) as a parameter of bone resorption, (3) subchondral bone plate thickness (SBP Th, mm) as a 
parameter of bone formation.

Micro CT-based microangiography.  After the mice were euthanized, right atrium was broken with micro-
scissors. Then the blood circulation system was lavaged with 0.9% warm normal saline solution containing hep-
arin sodium (100U ml−1) by a needle inserted into the left ventricle. Thereafter, we pressure 10% neutral buffered 
formalin to fixed the specimen and washed with heparinized saline solution. In the same channel, radiocontrast 
agent (Microfil MV-122, Flow Tech) was then injected and the specimens were stored at 4 °C overnight. The knee 
joint of the mice was harvested and soaked in 10% neutral buffered formalin for 5 days. After that, decalcification 
was performed with a formic acid-based solution (Cal-Ex II) for 72 h to minimize the influence of surrounding 
tissues. The specimens were also scanned using high-resolution micro-CT (SkyScan 1176) with the resolution of 
9 μm isotropic voxel size.

Histochemistry, immunohistochemistry and histomorphometry analysis.  By the time the 
mice were euthanized, the right knee joints of mice were dissected, fixed in 10% buffered formalin for 48 h, and 
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decalcified in 10% EDTA (pH 7.4) for 3 weeks. Specimens were embedded in paraffin. Longitudinal-oriented 
sections of the medial compartment of the joint were cut with 4 μm thick and processed for H&E and Safranin 
O and fast green staining. The thickness of the hyaline cartilage and calcified cartilage were measured with HE 
staining (thickness of hyaline cartilage: the distance from the tidemark to articular cartilage surface; thickness of 
calcified cartilage: the distance from the tidemark to subchondral bone plate (SBP)). In order to provide enough 
statistical power for detecting the mean differences between groups, 8 mice in each group and eight sequential 
sections per mouse were measured.

Standard protocol of immunohistochemistry were perform in current study. Sagittal sections of knee joint 
medial compartment were incubated with primary antibodies against Matrix Metallo Preteinases 13 (MMP-13) 
(Abcam, 1:100, ab39012), Collagen X (Abcam, 1:100, ab58632), Collagen II (Abcam, 1:400, ab ab34712), phos-
phorylated Smad2/3 (pSmad2/3) (Santa Cruz Biotechnology Inc., 1:40),TGF-β1(Abcam, 1:50, ab92486), Vascular 
Endothelial Growth Factor Receptor-2 (VEGFR2) (Abcam, 1:100, ab2349) and osterix (Abcam, 1:500, 22552) 
overnight at 4 °C. After used a horseradish peroxidase–streptavidin detection system (ZSGB BIO) to detect the 
immunoactivity, counterstaining was performed with hematoxylin (ZSGB BIO). Tartrate-resistent acid phos-
phatase (TRAP) staining was performed following a standard protocol (Sigma-Aldrich).

For immunofluorescence staining, the sagittal sections were incubated with primary antibodies against 
lubricin (Abcam, 1:200, ab28484), RANKL (Abcam, 1:100, ab45039), TRAF6 (Abcam, 1:50, ab40675), nestin 
(Abcam, 1:100, ab11306), CD31 (Abcam, 1:25, ab28364), endomucin (Santa Cruz, V.7C7, 1:50, sc65495) over-
night at 4 °C. Then second antibodies conjugated with fluorescence were incubated for 1 h at room temperature 
(RT) while avoiding light. Histomorphometric measurement was performed on the entire tibial subchondral bone 
(Olympus DP26) and quantitative analysis was conducted in a blinded way with cellSens software (Olympus, Int.) 
The positively stained cells in the subchondral bone or entire articular cartilage were counted with three views 
per section and eight sequential sections per mouse in each group were accessed (n = 8 per group). All counting 
was performed blindly by an author who was not one of the experimenters. All stains were repeated four times 
independently (two sections in each time). The Osteoarthritis Research Society International-modified Manking 
score was accessed as described by Pritzker et al.54.

Serological marker analysis.  Serum samples were collected at the time of euthanization and stored at 
−80 °C. Serum C-terminal telopeptide of type I collagen (CTX-I) levels, a biomarker of bone resorption, were 
measured using RatLaps (CTX-1) EIA kit (Immunodiagnostic Systems Inc., Gaithersburg, MD, USA). the assays 
were performed follow the manufacturer’s protocol and all the samples were accessed in duplicate. The absolute 
concentrations were extrapolated from the standard curves which generated from the kit.

Statistical analysis.  Data are expressed as means ± standard deviation (SD) or medium (25th and 75th per-
centiles). One-way analysis of variance (ANOVA) were performed for multifactorial comparisons in this study. 
Kolmogorov-Smirnov test was applied to test the normality of distribution. Data that were not normally dis-
tributed were log transformed. Homogeneity of variance was tested by Bartlett test first and then the differences 
between groups were assessed by post hoc multiple comparisons. The Bonferroni test or Dunnett test was used 
to assess the differences between groups for data without heterogeneity. However, if heterogeneity did exist, the 
Welch test was used to test the equality of means and the Dunnett’s T3 was used to assess the differences between 
groups. Dunnett test was used to evaluate the differences of expression of TRAP, TGF-β and pSmad2/3 at 0, 7, 14 
and 30 days after surgery. Additionally, this approach was also chosen to assess the differences of OARSI score, 
Tb.pf and SBP th at 30 and 60 days post-operation between vehicle-treated group and sham group. Statistical tests 
were carried out using SPSS version 18.0 software (SPSS Inc., Chicago, Illinois). The investigators were blinded to 
allocation during experiments and outcome assessment. The level of significance was set at P < 0.05 and indicated 
by “*” for the comparison between vehicle-treated group and sham group, or “#” for the comparison between 
ISL-treated group and vehicle-treated group.

Data availability statement.  The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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