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ABSTRACT
When faced with a binary or count outcome, informative
hypotheses can be tested in the generalized linear model using
the distance statistic as well as modified versions of the Wald, the
Score and the likelihood-ratio test (LRT). In contrast to classical
null hypothesis testing, informative hypotheses allow to directly
examine the direction or the order of the regression coefficients.
Since knowledge about the practical performance of informative
test statistics is missing in the theoretically oriented literature, we
aim at closing this gap using simulation studies in the context of
logistic and Poisson regression. We examine the effect of the
number of constraints as well as the sample size on type I error
rates when the hypothesis of interest can be expressed as a linear
function of the regression parameters. The LRT shows the best
performance in general, followed by the Score test. Furthermore,
both the sample size and especially the number of constraints
impact the type I error rates considerably more in logistic
compared to Poisson regression. We provide an empirical data
example together with R code that can be easily adapted by
applied researchers. Moreover, we discuss informative hypothesis
testing about effects of interest, which are a non-linear function
of the regression parameters. We demonstrate this by means of a
second empirical data example.
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1. Introduction

A researcher wants to examine the relevance of five health indicators for the ability to live
self-sufficiently, as opposed to living in a nursing home, after the age of 80. The health
indicators are continuous variables, which are assessed by means of questionnaires
and include ‘access to health care’ (x1), ‘use of preventive services’ (x2), ‘mental health’
(x3), ‘physical activity’ (x4) and ‘nutritional status’ (x5). These indicators, amongst
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others, have been described as the leading health indicators by the Centers for Disease
Control and Prevention (CDC, 2020). The outcome Y, being able to live alone after
the age of 80, is binary, where 1 represents success and 0 represents failure. This scenario
will be used as a running example throughout the paper. A common technique to analyze
data with a binary outcome is logistic regression (Hosmer et al., 2013). If the outcome is a
count variable, for example the number of days spent in an intensive care unit in a hos-
pital, Poisson regression can be used (Agresti, 2003).

In situations like this, researchers typically test a variety of hypotheses related to the
regression coefficients. For example, the researcher can test whether ‘access to healthcare’
(x1) has a significant effect on the outcome Y after controlling for the other variables. Or
the researcher can test if a subset of regression coefficients, for example ‘physical activity’
(x4) and ‘nutritional status’ (x5), have a significant effect on the outcome Y after control-
ling for the other variables. In other words, the researcher can assess whether regression
parameters of interest are significant in the model. For that, standard test statistics like
the Wald, the Score or the LRT (see, e.g., Buse, 1982) can be used.

However, in some situations, a certain ordering or certain signs of the regression
coefficients can be expected. Considering our exemplary predictors x1, . . . , x5 and the
binary outcome Y, being able to live self-sufficiently after the age of 80, the researcher
assumes that all regression coefficients will be positive. Better access to health care or
greater physical activity will lead to a higher probability of success. In the case of
regular null hypothesis testing, the researcher can test the null hypothesis that the
regression coefficients of all predictors are zero:

H0 :b1 = 0,b2 = 0,b3 = 0,b4 = 0,b5 = 0, (1)

against the alternative hypothesis that at least one of the regression coefficients is nonzero
in the model:

Ha :b1 = 0,b2 = 0,b3 = 0,b4 = 0,b5 = 0. (2)

If H0 can be rejected in favor of Ha, the researcher can assess whether the regression
coefficients are greater or smaller than zero via post-hoc tests. This procedure is some-
what unfortunate, since the researcher assumed a positive sign for all the regression
coefficients right from the start.

In contrast to regular null hypothesis testing, constrained statistical inference (Hoijtink,
2012; Silvapulle & Sen, 2005) allows the researcher to take the ordering or the signs of the
regression coefficients into account using equality and inequality constraints. In other
words,H0 :b1 = 0,b2 = 0,b3 = 0,b4 = 0,b5 = 0 can be tested against the ‘informative’
hypothesisHa :b1 ≥ 0,b2 ≥ 0,b3 ≥ 0,b4 ≥ 0,b5 ≥ 0, where at least one of the inequal-
ity constraints must be strictly true, whereas the remaining ones may be equalities. Thus,
researchers can formulate their hypotheses of interest directly, instead of making a detour
via another hypothesis. This implies that researchers can avoid to increase the risk for
inflated type I error rates. Furthermore, informative hypothesis testing provides the
researcher with greater power compared to regular null hypothesis testing (see, e.g., Van-
brabant et al., 2015).

The method of informative hypothesis testing is especially useful since many
research questions in the social and behavioral sciences implicitly include an
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expectation of the researcher about the sign or the ordering of regression coefficients.
Further examples of such research questions are the following: An organizational psy-
chologist might want to assess the effect of ‘job satisfaction’ and ‘workload’ on the
number of absence days at work. The expectation could be that the former reduces,
whereas the latter increases the number of absence days. Or a clinical psychologist
might want to evaluate the relevance of ‘therapy motivation’ or ‘functioning of interper-
sonal support systems’ on successful hospital discharge after a stationary psychotherapy
program. Here, it could be expected that both increase the rates of successful hospital
discharge.

In the context of the generalized linear model, informative hypothesis testing can be
conducted by means of modified versions of the Wald, the Score and the LRT (Silvapulle
& Sen, 2005). To calculate the p-value of these statistics, different approaches have been
proposed (Silvapulle & Sen, 2005). Unfortunately, informative hypothesis testing is rarely
used despite the extensive literature resources. This may be because software is lacking or
because the constrained statistical inference literature is mainly focused on theory.
Therefore, we lack knowledge about the practical performance of informative test stat-
istics under different circumstances. This concerns, for example, the number of con-
straints, even though larger numbers are quite common, especially when multiple
regression coefficients are assumed to be in a certain order. Assume, for instance, that
a researcher expects the following ordering of five regression coefficients:
b1 . b2,b2 . b3,b3 . b4,b4 . b5, which includes four constraints. In that case, the
researcher might want to know how including more or less constraints in the hypotheses
will affect type I error rates.

Furthermore, we do not know the impact of small sample sizes on the performance of
informative test statistics, as the literature primarily describes their asymptotic behavior.
This is unfortunate, since applied researchers are typically interested to know whether
their available sample size suffices to obtain reasonable results. For the standard linear
regression model, there exists some literature that focuses on the impact of sample
size on the practical performance of informative hypothesis testing (Keck et al., 2021,
2022; Vanbrabant et al., 2015). However, to this point, similar work is missing for the
generalized linear model.

In this paper, we aim at closing this gap. We want to assess the performance of various
informative test statistics in the context of the generalized linear model by means of
simulation studies. We consider the distance statistic (D-statistic) as well as the informa-
tive test versions of the Wald, the Score and the LRT. Furthermore, we regard different
conditions regarding the sample size and the number of constraints. Note that the test
statistics that are used in this paper work equally well for all members of the family of
generalized linear models. However, we choose to limit our study to logistic and
Poisson regression, as these are very widely used.

This paper is structured as follows. First, we briefly review the generalized linear
model and discuss ways of parameter estimation. Subsequently, we present ‘regular’ as
well as informative test statistics. Then, we introduce the design of our simulation
studies and give an overview of the obtained results. In the subsequent sections, we
present an empirical data example and explain informative hypothesis testing with
non-linear constraints. We finish with a short discussion. All R code that was used is
available on the OSF project site for this paper.1
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2. Generalized linear regression model

The generalized linear model has been described by, for example, Agresti (2003), Agresti
(2018), McCullagh and Nelder (1989), Nelder andWedderburn (1972). It differs from the
linear regression model in two aspects. First, it can handle non-normally distributed out-
comes and second, it models non-linear functions of the mean response variable Y
(Agresti, 2003). Three features constitute the generalized linear model, namely a
random component, a systematic component and a link function.

The random component refers to the response variable Y and its probability distri-
bution from the exponential family. The systematic component specifies a linear function
of the explanatory variables and is called the linear predictor:

b0xi0 + b1xi1 + · · · + bpxip =
∑p

j=0

bjxij. (3)

Usually xi0 = 1, which makes b0 the intercept of the model.
The link function g() connects the systematic and the random component:

g[E(Yi)] =
∑p

j=0

bjxij, (4)

where g() is a possibly non-linear monotone differentiable function. Since we focus on
logistic and Poisson regression in this paper, we present only these models in more
depth.

The logistic regression model is a generalized linear model with a Bernoulli or
binomial random component. If Yi has a Bernoulli distribution, the distribution is
specified by the parameter pi, which is the probability of success P(Yi = 1), while
1− pi represents the probability of failure. The canonical link function is a logit
link function:

g(pi) = logit(pi) = log (
pi

1− pi
), (0 , pi , 1), (5)

where the value of pi changes with the values of the explanatory variables:

pi =
exp (

∑ p
j=0 bjxij)

1+ exp (
∑ p

j=0 bjxij)
. (6)

The Poisson regression model is a generalized linear model with a count random
component. If Yi has a Poisson distribution, the distribution is specified by the par-
ameter mi, which represents the expected count. The canonical link function is a
log link function:

g(mi) = log (mi), (mi . 0), (7)

where the value of mi changes with the values of the explanatory variables:

mi = exp (
∑p

j=0

bjxij). (8)
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Given a random sample of n observations (yi, xi), i = 1, . . . , n, the maximum like-
lihood (ML) estimates of the regression coefficients b̂ = (b̂0, . . . , b̂p)

′ are usually
obtained using iteratively reweighted least squares or (quasi-)Newton methods.
This can be done using standard software, for example the glm() function in R
(R Core Team, 2020). To compute standard errors, we also need the information
matrix:

I1 = 1
n
X′WX, (9)

where X is the design matrix and W is a diagonal matrix of size n× n whose
elements depend on the model (Agresti, 2003, p. 135).

To obtain b̃, the vector of inequality constrained regression coefficients, different
approaches can be followed. We created custom functions using constrained optimiz-
ation algorithms (Nocedal & Wright, 1999). More specifically, we employed a quasi-
Newton method with box constraints, as implemented in the R function nlminb().
Note that this approach can only handle informative hypotheses specifying the sign of
regression coefficients (for instanceHa:b1 . 0). There are, however, other types of infor-
mative hypotheses (Hoijtink, 2012), for example assuming a certain ordering of the
regression coefficients (such as Ha:b1 ≥ b2 ≥ b3).

A more flexible approach is implemented in the R package restriktor (Vanbrabant,
2020). It includes ML estimation comparable to iteratively reweighted least squares
(IRLS), where the least squares solver is replaced by a quadratic program. This approach
can handle all kinds of informative hypotheses, as long as they can be expressed as a
linear function of the model parameters.

3. Hypothesis testing

In this section, we present regular test statistics used in classical null hypothesis testing,
as well as informative test statistics used in informative hypothesis testing. Note that
the test statistics from classical null hypothesis testing are denoted by means of a
‘reg’ subscript, whereas the test statistics used in informative hypothesis testing are
specified by means of an ‘info’ subscript. Furthermore, R is the constraint matrix spe-
cifying the linear combination of regression coefficients expressing the hypothesis of
interest.

For example, assume the researcher wants to test whether the effect of ‘physical
activity’ (x4) is more than twice as large as the effect of ‘access to health care’ (x1) and
the effect of ‘mental health’ (x3) is more than twice as large as the effect of ‘use of pre-
ventive services’ (x2) after standardizing all variables. In that case, the researcher aims
to test H0:b4 = 2b1,b3 = 2b2 against Ha:b4 = 2b1,b3 = 2b2, in the context of clas-
sical null hypothesis testing, or Ha:b4 ≥ 2b1,b3 ≥ 2b2 in the context of informative
hypothesis testing. Then, in both the regular and the informative case, the rows of R
are specified as

r′1 = 0 −2 0 0 1 0
( )

(10)

r′2 = 0 0 −2 1 0 0
( )

, (11)
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leading to the full constraint matrix:

R = 0 −2 0 0 1 0
0 0 −2 1 0 0

( )
(12)

with row rank h = 2.

3.1. Classical null hypothesis testing

The test statistics from classical null hypothesis testing that will be presented include the
Wald, the Score and the LRT. These large sample test statistics are explained in Buse
(1982) and are defined as follows:

Waldreg = n(Rb̂)′(RÎ
−1
1 R′)−1(Rb̂), (13)

Scorereg = 1
n
S(�b)′�I−1

1 S(�b), (14)

LRTreg = −2[ℓ(�b)− ℓ(b̂)], (15)

where S(�b) = ∂
∂�b
ℓ(�b) is the score function evaluated at �b, the vector of equality con-

strained estimates, ℓ(�b) is the log-likelihood evaluated at �b and ℓ(b̂) is the log-likeli-
hood evaluated at b̂. All three test statistics follow asymptotically a x2-distribution
under the null hypothesis with df = h, if the model is correct.

The Wald, the Score and the LRT are asymptotically equivalent. But it has been shown
that the values of the Wald test are always slightly larger than the values of the LRT,
which in turn are always slightly larger than the values of the Score test (Buse, 1982,
p. 157). Thus, using the same critical x2 value, the tests may have different power prop-
erties. This can be one aspect guiding the choice between them. Another aspect may be
the computational resources it needs to compute the three tests. For the Wald test, we
need to fit the unconstrained model, whereas for the Score test, we need to fit the equality
constrained model and for the LRT, we need to fit both the unconstrained and the equal-
ity constrained model. Oftentimes, fitting the unconstrained model takes the least
amount of time, which is why the Wald test is chosen frequently. However, in some
cases, for example if the equality constrained model has a lot less parameters than the
unconstrained model, it may need less computational resources to compute the equality
constrained model compared to the unconstrained model. Furthermore, the LRT is, in
contrast to the Wald and Score test, scale-invariant (see, e.g., Lehmann, 1986).

3.2. Informative hypothesis testing

Often, the informative test statistics are a modified version of the regular test statistics.
For example, Waldinfo can be found in Silvapulle and Sen (2005, p. 154):

Waldinfo = n(Rb̃)′(RÎ
−1
1 R′)−1(Rb̃). (16)

It uses the same constraint matrix R but a different vector of regression coefficients
compared to the regular Wald test. While Waldreg uses b̂, the vector of
unconstrained regression coefficients, Waldinfo uses b̃, the vector of inequality
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constrained regression coefficients. Scoreinfo can be computed as follows (Silvapulle &
Sen, 2005, p. 159):

Scoreinfo = 1
n
[S(b̃)− S(�b)]′Î

−1
1 [S(b̃)− S(�b)]. (17)

Again, Scorereg and Scoreinfo use the same R matrix, but Scorereg uses b̂ and Scoreinfo
uses b̃. LRTinfo is defined as (Silvapulle & Sen, 2005, p. 157):

LRTinfo = −2[ℓ(�b)− ℓ(b̃)], (18)

where ℓ(�b) is the log-likelihood evaluated at �b and ℓ(b̃) is the log-likelihood evaluated at b̃.
The difference between LRTreg and LRTinfo is that the former uses ℓ(b̂), whereas the latter
uses ℓ(b̃).

Finally, lesser known is the D-statistic. It is calculated as (Silvapulle & Sen, 2005,
p. 159):

Dinfo = 2n[d(�b)− d(b̃)], (19)

where d(�b) and d(b̃) are the values of the following two functions at their solutions:

f (b) = (b̂− b)′Î1(b̂− b) under the constraint Rb = 0, (20)

f (b) = (b̂− b)′Î1(b̂− b) under the constraint Rb ≥ 0. (21)

When minimizing these functions, we treat b̂ and Î1 as known constants. Note that to
compute the D-statistic, we have to use quadratic programming.

In case the model is correct, the informative Wald, Score and LRT as well as the D-
statistic asymptotically follow a �x2-distribution under the null hypothesis. This is a
mixture of x2-distributions.

3.2.1. P-values
Silvapulle and Sen (2005) present two approaches for calculating the p-value of informa-
tive test statistics. In the first part of this paper, where the informative hypothesis of inter-
est can be expressed as a linear function of the regression coefficients, we use the
approach where we first calculate the weights w0, . . . ., wq of the �x2 mixture distribution
(Silvapulle & Sen, 2005, p. 79). The sum of the weights from 0 to q is one, where q is the
rank of X under the null hypothesis. Once we have computed the weights, the p-value of
the observed �x2-value (�x2obs) is obtained as follows (Silvapulle & Sen, 2005, p. 86):

Pr(�x2 ≥ �x2obs) =
∑q
i=0

wi(H0, Ha)Pr[(h− q+ i)x2h−q+i ≥ �x2obs]. (22)

The second approach to calculate the p-value of informative test statistics is described
and demonstrated in Keck et al. (2021). We use this approach in the second part of
this paper, where the informative hypothesis of interest is expressed as a non-linear func-
tion of the regression coefficients. Both approaches are explained in more detail in the
document ‘A-pValues.pdf’ on the OSF project site.

Note that if the hypothesis of interest only refers to the sign of one regression coeffi-
cient or to the sign of one quantity of interest, which is defined as a function of regression
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coefficients, we have a special case. Then the informative p-value equals the regular (non-
informative) p-value divided by 2.

4. Simulation studies

We conducted several simulation studies using logistic and Poisson regression. The goal
was to compare the presented informative test statistics in terms of their type I error rates
under different conditions. One of the design factors in our simulation studies was
sample size. This was of interest, as it is only known how the test statistics behave asymp-
totically, but not in finite sample sizes. The other design factor was the number of con-
straints that was included in the informative hypothesis. This coincides with h, the row
rank of R. As a benchmark, the presented regular test statistics were also included in the
simulation studies. By means of these simulation studies, we would like to give applied
users a sense of what they might expect when using informative hypothesis testing in
the context of the generalized linear model.

4.1. Design

The model we used had a single outcome Y and five predictors x1, . . . , x5. We assumed
that all predictors were continuous and normally distributed. Since we are interested in
type I error, we generated data under the null hypothesis and thus set all regression
coefficients b0, . . . , b5 to 0. For the logistic regression, Y was sampled from the Binomial
distribution with probability .50. For the Poisson regression, Y was sampled from the
Poisson distribution with m = 1. Sample sizes of 10, 25, 50, 100, 200, 300, 400, 500,
1000, 2000, 10000 were examined. This way, we regarded small sample sizes that are
typical in the social sciences (see, e.g., Van de Schoot & Miočević, 2020) as well as
medium and large sample sizes. Even though the large sample sizes are unrealistic,
they provide insights into the pattern emerging when increasing the sample size. Further-
more, we considered three constraint matrices, namely

R1 = 0 1 0 0 0 0
( )

, (23)

R2 =

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠ (24)

and

R3 =
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1

⎛
⎜⎜⎝

⎞
⎟⎟⎠. (25)

The first constraint matrix represents the hypothesis that only b1 is greater than zero:
Ha:b1 . 0. The second constraint matrix states that at least one regression coefficient,
except the intercept, is greater than zero: Ha:b1 ≥ 0,b2 ≥ 0,b3 ≥ 0,b4 ≥ 0,b5 ≥ 0.
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And the third constraint matrix specifies a hypothesis, where regression parameters are
assumed to be in a certain order, namely Ha:b1 ≥ b2,b2 ≥ b3,b3 ≥ b4,b4 ≥ b5. These
constraintmatrices were chosen to consider a typical range of the number of regression par-
ameters (see, e.g., Vanbrabant et al., 2015).

For each condition, we generated data, fitted the model and computed the test stat-
istics as well as the corresponding p-values. This was repeated 10000 times. Subsequently,
we defined the type I error rate as the proportion of p-values that were lower than the
significance level. In this paper, we used a = .05.

In the following sections, the results are presented for logistic and Poisson regression.
Note that we only report the results of the simulation studies using the first two con-
straint matrices. The reason is that using the second and third constraint matrices led
to very similar results with absolute differences smaller than 0.01, given that the
flexible approach for parameter estimation that is implemented in restriktor was used.
This intuitively makes sense, since both matrices include five constraints. Furthermore,
the constraints of R3, such as b1 ≥ b2 can be re-formulated to b1 − b2 ≥ 0, which makes
them very similar to the constraints used in R2, such as b1 ≥ 0. In the end, all matrices
are based on inequality constraints. The interested reader is referred to the R scripts of
the simulation studies using R3, which can be found on the OSF project site (‘B-order-
ingExampleLogistic.R’ and ‘C-orderingExamplePoisson.R’). Note that the files ‘D-
weights.R’ and ‘E-lavUvpois.R’ are also needed to run the script. The latter belongs to
the R package lavaan (Rosseel, 2012), but at the time of writing, the functions are not
included (yet) in the current public version of the package.

4.2. Type I results logistic regression

Tables 1 and2 show the type I error rates resulting fromrunning the simulation studiesusing
logistic regression.When consideringR1, we can see that LRTreg and Scorereg show too large
type I error rates forN = 50 andbelow,whereasWaldreg shows too small type I error rates for
N = 25 and below. In contrast, when considering R2, Waldreg shows too small type I error
rates for N = 200 and below and LRTreg shows too large type I error rates already for N =
100 andbelow.Thus, in the context of logistic regression,LRTreg andWaldreg seem to be sen-
sitive to the number of constraints. This does not apply to Scorereg , which only shows too
small type I error rates for N = 25 and below when using R2.

Table 1. Type I error rates in logistic regression when using R1. Bold values are above .06 and
underlined values are below .04.
N LRTreg LRTinfo Waldreg Waldinfo Dinfo Scorereg Scoreinfo

10000 0.051 0.050 0.051 0.050 0.050 0.051 0.050
2000 0.048 0.046 0.048 0.046 0.046 0.048 0.046
1000 0.054 0.049 0.053 0.048 0.048 0.054 0.050
500 0.053 0.050 0.052 0.049 0.049 0.052 0.051
400 0.054 0.050 0.052 0.049 0.049 0.053 0.051
300 0.052 0.050 0.050 0.049 0.049 0.052 0.053
200 0.055 0.050 0.051 0.049 0.049 0.054 0.053
100 0.059 0.055 0.052 0.052 0.052 0.057 0.062
50 0.071 0.066 0.046 0.053 0.053 0.063 0.084
25 0.097 0.079 0.021 0.044 0.044 0.073 0.115
10 0.234 0.130 0.008 0.000 0.003 0.128 0.353
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The sensitivity for the number of constraints is something that we can also observe
for all informative test statistics except LRTinfo. That is, LRTinfo shows too large type I
error rates for N = 50 and below, no matter whether R1 or R2 is used. In contrast,
Waldinfo and Dinfo only show too small type I error rates for N = 10 when using R1.
When using R2, Waldinfo shows too small type I error rates already for N = 100 and
below and Dinfo shows too small type I error rates already for N = 200 and below.
In conclusion, it seems that most regular as well as informative test statistics,
except Scorereg and LRTinfo, are sensitive to the number of constraints and the
sample size.

4.3. Type I results Poisson regression

Tables 3 and 4 show the type I error rates resulting from running the simulation studies
using Poisson regression. First of all, it can be observed that the results show more stable
type I error rates for all test statistics, compared to logistic regression. The regular test
statistics do not show a sensitivity for the number of constraints. More specifically,
when using R1, LRTreg shows a too large type I error rate and Waldreg shows a too
small type I error rate only at a sample size of N = 10. Scorereg even shows no problematic
type I error rate at all. When using R2, LRTreg shows no problematic type I error rate at
all, butWaldreg shows too small type I error rates forN = 25 and below and Scorereg shows
a too small type I error rate for N = 10.

Table 2. Type I error rates in logistic regression when using R2. Bold values are above .06 and
underlined values are below .04.
N LRTreg LRTinfo Waldreg Waldinfo Dinfo Scorereg Scoreinfo

10000 0.051 0.053 0.051 0.053 0.053 0.051 0.053
2000 0.049 0.049 0.048 0.048 0.047 0.049 0.050
1000 0.049 0.048 0.044 0.046 0.045 0.048 0.051
500 0.052 0.049 0.044 0.044 0.044 0.050 0.054
400 0.052 0.049 0.045 0.046 0.045 0.050 0.060
300 0.054 0.053 0.041 0.048 0.046 0.049 0.066
200 0.057 0.050 0.038 0.040 0.038 0.049 0.065
100 0.063 0.057 0.024 0.034 0.030 0.047 0.096
50 0.077 0.062 0.002 0.017 0.012 0.043 0.150
25 0.113 0.074 0.000 0.000 0.000 0.037 0.241
10 0.599 0.207 0.008 0.000 0.008 0.000 0.847

Table 3. Type I error rates in Poisson regression when using R1. Bold values are above .06 and
underlined values are below .04.
N LRTreg LRTinfo Waldreg Waldinfo Dinfo Scorereg Scoreinfo

10000 0.049 0.051 0.049 0.051 0.051 0.049 0.051
2000 0.050 0.051 0.050 0.051 0.051 0.050 0.051
1000 0.051 0.052 0.051 0.052 0.052 0.051 0.052
500 0.050 0.049 0.050 0.049 0.049 0.050 0.049
400 0.050 0.048 0.050 0.048 0.048 0.050 0.048
300 0.051 0.045 0.050 0.045 0.045 0.050 0.045
200 0.051 0.047 0.051 0.048 0.048 0.051 0.045
100 0.050 0.045 0.049 0.046 0.046 0.050 0.040
50 0.049 0.051 0.050 0.057 0.057 0.051 0.039
25 0.052 0.061 0.053 0.065 0.065 0.055 0.051
10 0.067 0.063 0.024 0.034 0.034 0.054 0.106
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Moreover, the informative test statistics also do not show a sensitivity for the number
of constraints. That is, when using R1, LRTinfo, Waldinfo and Dinfo show type I error rates
that deviate from the nominal level for N = 25 and below. In contrast, Scoreinfo already
shows one slightly too small type I error rate for N = 50. When using R2, Waldinfo,
Dinfo and Scoreinfo only show problematic type I error rates for N = 10. LRTinfo even
shows no problematic type I error rates at all.

To conclude, the sensitivity for the number of constraints that was observed for most
regular and informative test statistics in the context of logistic regression could not be
observed in the context of Poisson regression. Furthermore, type I error rates were
also more stable concerning the sample size when using Poisson regression compared
to logistic regression.

5. Empirical data example

The ‘DoctorVisits’ data set (Cameron, 1986; Cameron & Trivedi, 1998; Mullahy,
1997) comes with the AER package (Kleiber & Zeileis, 2022) and contains data
about Australian health service use. The sample size is n = 5190. For the empirical
data example of this paper, we chose the number of doctor visits as the dependent
variable. Age, the number of illnesses and the number of days with reduced activity
due to illness served as the predictors. The computations were conducted both for
Poisson and logistic regression. In the latter case, the dependent variable was dichot-
omized, meaning that all values greater than zero were re-coded to 1, whereas 0
values stayed the same.

Following the design of the simulation studies, the following constraint matrix was
used:

R =
0 1 0 0
0 0 1 0
0 0 0 1

⎛
⎝

⎞
⎠, (26)

stating that at least one regression coefficient, except the intercept, is greater than zero.
Using Poisson regression, we obtained Dinfo = 1640.05, p , .001 and using logistic
regression, we obtained Dinfo = 504.66, p , .001. The R code of the empirical data
example can be found on the OSF project site (‘F-doctorVisits.R’).

Table 4. Type I error rates in Poisson regression when using R2. Bold values are above .06 and
underlined values are below .04.
N LRTreg LRTinfo Waldreg Waldinfo Dinfo Scorereg Scoreinfo

10000 0.053 0.054 0.053 0.054 0.054 0.053 0.054
2000 0.051 0.051 0.051 0.051 0.051 0.051 0.051
1000 0.052 0.051 0.052 0.051 0.051 0.052 0.051
500 0.050 0.047 0.051 0.047 0.047 0.051 0.047
400 0.050 0.050 0.050 0.050 0.050 0.050 0.051
300 0.050 0.048 0.050 0.047 0.047 0.050 0.050
200 0.049 0.049 0.050 0.047 0.047 0.050 0.050
100 0.050 0.049 0.051 0.050 0.049 0.050 0.047
50 0.051 0.052 0.048 0.054 0.053 0.051 0.051
25 0.054 0.051 0.033 0.050 0.043 0.049 0.055
10 0.050 0.040 0.003 0.014 0.007 0.030 0.181
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6. Informative hypothesis testing with non-linear constraints

Informative hypotheses can not only be specified for linear combinations of the regression
coefficients, that is Rb, but also for non-linear combinations of the regression coefficients,
namely c(b). In the latter case, c(b) can either be a scalar- or a vector-based non-linear func-
tion of the model parameters that computes a quantity (or a vector of quantities) of interest.
Important examples for such non-linear functions include ‘effects of interest’ such as risk
ratios, odds ratios, conditional effects, and average or marginal effects. Keck et al. (2021)
already demonstrated how to test informative hypotheses about various effects of interest
in the context of the linear regression model. In the context of the generalized linear
model, we need to use generalizations of the informative test statistics for this purpose.
The generalized Wald test is defined as follows (Silvapulle & Sen, 2005, p. 166):

Waldinfo,gen = nc(b̃)′[C(b̃)Ĩ
−1
1 C(b̃)′]−1c(b̃), (27)

where c is a non-linear functionof b̃,C is the Jacobianmatrixof c and Ĩ1 theunit information
matrix. Note that if c(b) was linear, it would be equal to Rb inWaldinfo (see Equation 16).

The generalized D-statistic (Silvapulle & Sen, 2005, p. 164) can be computed as

Dinfo,gen = 2n[d(�b)− d(b̃)], (28)

where d(�b) and d(b̃) are the values of the following two functions at their solutions:

f (b) = (b̂− b)′Î1(b̂− b) under the constraint c(b̃) = 0, (29)

f (b) = (b̂− b)′Î1(b̂− b) under the constraint c(b̃) ≥ 0. (30)

The constraints are different compared to the ones that are used for Dinfo. In this case, we
have to use non-linear optimization methods to compute the D-statistic.

The other generalized informative test statistics still look the same as presented before.
That is, the generalized Score test can be computed as (Silvapulle & Sen, 2005, p. 166):

Scoreinfo,gen = 1
n
[S(b̃)− S(�b)]′Î

−1
1 [S(b̃)− S(�b)], (31)

and the generalized LRT is calculated as follows (Silvapulle & Sen, (2005, p. 164):

LRTinfo,gen = −2[ℓ(�b)− ℓ(b̃)]. (32)

To compute b̃, we can employ non-linear optimization algorithms (see, e.g., Nocedal &
Wright, 1999). An example for this can be found on the OSF project site in ‘G-estima-
tionExampleNonlin.R’, where data of next section’s empirical data example is used.
The additional R files ‘H-elrEffects.R’ and ‘E-lavUvpois.R’ are needed. The former
belongs to the R package EffectLiteR (Mayer & Dietzfelbinger, (2019); Mayer et al.
(2016)), but at the time of writing, the functions are not included (yet) in the current
public version of this package.

6.1. Empirical data example

To demonstrate informative hypothesis testing concerning effects of interest, we present a
second empirical data example, where we use data from the ACTIVE study2 (Ball et al.,
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2002; Jobe et al., 2001; Tennstedt et al., 2005). TheACTIVE study is a large randomized con-
trolled trial designed to examine the effectiveness of cognitive interventions among older
adults. It also served as an empirical data example in Kiefer and Mayer (2021a, 2021b),
where effects on count outcomes with non-normal as well as latent covariates are discussed.

For our example, we consider two levels of the treatment variable X, where X = 0 is the
control group and X = 1 denotes the group that receives memory training. This leads to a
sample size of n = 1401. Additionally, we consider the continuous predictor variable Z,
which is a depression score. The outcome variable Y is a count variable, which describes
the performance on an inductive reasoning assessment. We are interested to test
H0:AE10 = 0 against Ha:AE10 . 0. In other words, we would like to test if the average
effect of memory training is greater than zero. An average effect can be defined as the
unconditional expectation of the difference between expected outcomes under treatment
and under control, that is E[E(Y|X = 1, Z)− E(Y|X = 0, Z)]. In our example, we use a
Poisson regression, where the regressors are related to the logarithm of the conditional
expectation of the count outcome (see also Equation 8):

log [E(Y|X, Z)] = b0 + b1X + b2Z + b3XZ, (33)

E(Y|X, Z) = exp (b0 + b1X + b2Z + b3XZ). (34)

Consequently, the average effect can be defined as

AE = E[ exp (b0 + b1X + b2Z + b3XZ)]− E[ exp (b0 + b2Z)], (35)

which can be estimated as follows:

ÂE(b̂) = 1
n

∑n
i=1

exp (b̂0 + b̂1xi + b̂2zi + b̂3xizi)− exp (b̂0 + b̂2zi). (36)

As discussed before, this is a non-linear function of the regression coefficients b. When
testing H0:AE10 = 0 against Ha:AE10 . 0, we obtain Waldinfo,gen = 1.80, p = .09. The
computations can be found in the R script ‘I-averageEffect.R’ on the OSF project site.
Since the hypothesis of interest only concerns one effect of interest, the p-value equals
half of the value of the regular (non-informative) p-value (0.18). For more complicated
informative hypotheses, we demonstrate how to compute the p-value in the R script ‘J-
pValueSimulation.R’, which can also be found on the OSF project site.

7. Discussion

In this paper, we reported about simulation studies examining the impact of the
sample size and the number of constraints when performing informative hypothesis
testing in the context of the generalized linear model. We focused on logistic and
Poisson regression, as these are widely used. As a benchmark, we also included
regular test statistics in the simulation studies. We considered various sample sizes
as well as three different constraint matrices. One included a single constraint,
whereas the other two included five constraints.

Our findings are different for logistic and Poisson regression. That is, using logistic
regression, most regular and informative test statistics were sensitive to the number of
constraints and the sample size. This could be concluded since type I error rates were
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closer to the nominal level in small sample sizes when considering only one constraint in
the hypothesis, in contrast to five constraints. Using Poisson regression, the sensitivity to
the number of constraints and the sample size was much less pronounced for both
regular and informative test statistics.

The following general recommendations can be made for applied researchers who
want to use informative hypothesis testing. First, the more computationally intensive
test statistics seem to perform better in terms of type I error rates compared to the
less computationally intensive test statistics. That is, the LRT, which requires fitting of
both the inequality and the equality constrained model, performs better than the Score
test, which requires fitting of the inequality constrained model, and which, in turn, per-
forms better than the Wald test, which only requires fitting of the unconstrained model.

Specifically, in the context of logistic regression, applied researchers should use sample
sizes that are larger than n = 50 when dealing with a single constraint and larger than n =
100 when dealing with multiple constraints. In the context of Poisson regression, applied
researchers should use sample sizes that are larger than n = 25 when dealing with a single
or with multiple constraints.

By means of using R1, R2 and R3 in our simulation studies, we only investigated
hypotheses including inequality and equality constraints concerning regression coeffi-
cients. However, there are further options to formulate informative hypotheses (Hoijtink,
2012). For example, effect sizes can be included as follows:

Ha:b1 . b2 + d · s, (37)

where d is an effect size according to Cohen (1988) and s is the standard deviation. Fur-
thermore, ‘about equality’ constraints can be used to test informative hypotheses such as

Ha: |b1 − b2| , d · s, (38)

which corresponds to

Ha:b1 − b2 ≥ −d · s, b1 − b2 ≤ d · s. (39)

Range constraints are a generalization of ‘about equality’ constraints. They can be used to
test informative hypotheses such as

Ha:b1 − b2 ≥ h1,b1 − b2 ≤ h2, (40)

where the difference between b1 and b2 is supposed to lie in an interval with lower bound
h1 and upper bound h2. Of course, combinations of different types of informative
hypotheses are also possible.

Even though these hypotheses are formulated in a different way compared to the ones
assessed in our paper, we expect that they should lead to similar results concerning type I
error rates in future simulation studies. More specifically, we expect that the number of
constraints as well as the sample size will remain the decisive factors. This is because in
the end, all these different options to formulate informative hypotheses are based on
equality and inequality constraints in their null and alternative hypotheses. Still, this
needs to be confirmed in future simulation studies.

When designing these future simulation studies, it should be noted that constraint
matrices in informative hypothesis testing must be of full row rank, that is, they must
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have less or an equal number of rows compared to columns. This way, it is made sure that
the product of RĨ

−1
1 R in the Wald statistic can be inverted (see Equation 16). In contrast,

a rank-deficient R would lead to a rank-deficient product, which could not be inverted.
Furthermore, future research should repeat the simulation studies of this paper for

other members of the family of generalized linear models. In this paper, we refrain
from drawing conclusions about other generalized linear models, such as gamma
regression, that were not considered in our simulation studies.

Another interesting future research endeavour would be to assess the impact of
different numbers of predictors on type I error rates. It might be that a higher number
of constraints is less problematic for a smaller number of predictors compared to a
larger number of predictors. This could be, for example, three constraints on three par-
ameters compared to three constraints on thirty parameters.

As mentioned before, informative hypothesis testing provides the researcher with
greater power compared to regular null hypothesis testing (see, e.g., Vanbrabant et al.,
2015). The question how much power is gained exactly by using informative hypothesis
testing in the generalized linear model compared to using regular null hypothesis testing
has to be examined in future simulation studies. For these studies, our paper has pro-
vided some groundwork to refer to.

The simulation studies of this paper are complemented by an empirical data example
using the ‘DoctorVists’ data set. Furthermore, we discussed informative hypothesis
testing with non-linear constraints. In this case, we have to use generalizations of the
Wald and the D-statistic. We demonstrated this by means of a second empirical data
example using data from the ACTIVE study. Here, we showed how informative hypoth-
eses about effects of interest can be computed.

We have provided extensive R code on this paper’s OSF project site, which can be
adapted by researchers. We hope that the paper, together with the R code, makes it
easier for interested readers to use this technology in the future.

Notes

1. https://osf.io/6svrm/?view_only=e3ee3ecd9cb442b1bf0eb175f319a815
2. The data can be downloaded from https://doi.org/10.3886/E128941.
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were used in the simulation studies are available upon request from the corresponding author.
Furthermore, the scripts ‘A-orderingExampleLogistic.R’ and ‘B-orderingExamplePoisson.R’ on
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show the data generating mechanism.
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