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Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs which are
mainly formed by reverse splicing of precursor mRNAs. They are relatively stable and
resistant to RNase R because of their covalently closed structure without 5’ caps or
3’ poly-adenylated tails. CircRNAs are widely expressed in eukaryotic cells and show
tissue, timing, and disease specificity. Recent studies have found that circRNAs play
an important role in many diseases. In particular, they affect the proliferation, invasion
and prognosis of cancer by regulating gene expression. CircRNA Forkhead box O3
(circFOXO3) is a circRNA confirmed to be abnormally expressed in a variety of cancers,
including prostate cancer, hepatocellular carcinoma, glioblastoma, bladder cancer, and
breast cancer, etc. At present, the feature of circFOXO3 as a molecular sponge is
widely studied to promote or inhibit the development of cancers. However, the diverse
functions of circFOXO3 have not been fully understood. Hence, it is important to review
the roles of circFOXO3 in cancers. This review has summarized and discussed the
roles and molecular mechanism of circFOXO3 and its target genes in these cancers,
which can help to enrich our understanding to the functions of circRNAs and carry out
subsequent researches on circFOXO3.
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INTRODUCTION

Circular RNAs (circRNAs) are a special class of non-coding RNA. Different from traditional
linear RNA, circRNAs have covalently closed circular structure and lack 5′-3′ polarity or
3′ poly-adenylated tails (Sanger et al., 1976; Jeck et al., 2013). In the beginning, circRNAs
were rarely reported by scientists as being low in abundance and might represent splicing
errors because of the error-prone mechanism of exon juxtaposition (Bailleul, 1996; Jeck
et al., 2013). With the development of high-throughput sequencing technology, circRNAs were
discovered in large quantities. They are abundant in various eukaryotic organisms and have
certain tissue, timing and disease specificity, which implies that the expression of circRNAs
is related to the cellular microenvironment (Salzman et al., 2013; Rybak-Wolf et al., 2015;
Han et al., 2018). Moreover, circRNAs have been found in blood, saliva and other body
fluids (Bahn et al., 2015; Preusser et al., 2018; Li Y. et al., 2019), even many exosomes
have higher ratio of circRNAs than cells (Li Y. et al., 2015). Furthermore, circRNAs are
resistant to the degradation of exonuclease RNase R due to their special closed circular
structure, which makes them greater stability and longer half-life (Jeck et al., 2013; Chen,
2016; Panda et al., 2017; Xiao and Wilusz, 2019). These characteristics and the development

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 June 2021 | Volume 9 | Article 659417

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.659417
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.659417
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.659417&domain=pdf&date_stamp=2021-06-04
https://www.frontiersin.org/articles/10.3389/fcell.2021.659417/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-659417 May 31, 2021 Time: 18:25 # 2

Rao et al. circFOXO3 in Cancer

of bioinformatics make circRNAs popular biomarkers for disease
diagnosis and the research on drug therapeutic targets.

Circular RNAs are mainly classified into three types: exonic
circRNAs (EcircRNAs), exon-intron circRNAs (ElciRNAs), and
circular intronic RNAs (ciRNAs). EcircRNAs exist in cytoplasm
and can regulate gene expression by limiting the roles of miRNAs
(Salzman et al., 2012; Hansen et al., 2013). ElciRNAs and ciRNAs
mainly exist in nucleus to act as transcription regulators (Zhang
et al., 2013; Li Z. et al., 2015). In addition, it has also been reported
that viral RNA genome, transfer RNA, ribosomal RNA, and small
nuclear RNA can be cyclized into circRNAs (Lasda and Parker,
2014; Schmidt et al., 2019). CircRNAs have numerous biological
functions, including: (1) MiRNAs sponge. CircRNAs have
complementary miRNAs binding sites and can competitively
bind miRNAs to inhibit their functions. This mechanism is the
focus of current research and mainly exercised by ecircRNAs
(Hansen et al., 2013; Li R. et al., 2020). (2) Combining with RNA-
binding proteins (RBPs). CircRNAs can competitively bind with
RBPs to regulate the function of RBPs and have an influence
on mRNA stability and splicing patterns (Zang et al., 2020).
(3) Regulating Transcription. Although ecircRNAs, as a major
part of circRNAs, play an important role in the cytoplasm,
elciRNAs and ciRNAs are mainly located in the nucleus and can
regulate gene transcription by combining with RNA polymerase
or other transcription-related components (Hansen et al., 2013;
Chen, 2016). (4) Translation. Some studies demonstrate that
circRNAs are associated with translation of ribosomes and N6-
Methyladenosine can drive extensive translation of circRNAs
(Legnini et al., 2017; Pamudurti et al., 2017; Yang et al., 2017).
(5) Interacting with proteins. For example, CircRNA Forkhead
box O3 (circFOXO3) functions as a dynamic scaffolding molecule
that regulates the interaction between cyclin-dependent kinase
2 (CDK2) and cyclin-dependent kinase inhibitor 1 (P21; Du
et al., 2016, 2017b). CircACC1 can directly bind to the β and
γ subunits of AMPK, promoting its stability and activity (Li Q.
et al., 2019). (6) Functions in exosomes. CircRNAs can enter body
fluids under the protection of exosomes to transmit biological
information and substances to target cells, and regulate cell
growth, epithelial mesenchymal transformation, angiogenesis,
and other aspects (Wang Y. et al., 2019; Shi et al., 2020). In
conclusion, circRNAs have various functions and participate
in the regulation of physiological activities through different
pathways. In recent years, circRNAs have often been used in basic
research and bioinformatics analysis, reflecting the potential of
circRNAs as biomarkers (Li Y. et al., 2019; Wang J. et al., 2020).

Circular RNAs are closely related to the occurrence and
development of various human diseases (Aufiero et al., 2019;
D’Ambra et al., 2019; Liu et al., 2019; Haque et al., 2020;
Li R. et al., 2020). In particular, circRNAs are present in cancer
diagnosis, development, drug resistance and circFOXO3 is one
of the important ones (Zhang and Xin, 2018; Greene et al.,
2019; Chen et al., 2020). The FoxO subfamily of forkhead
transcription factors (Fox) widely exists in eukaryotic cells and
is involved in the regulation of cell cycle, energy metabolism
and tumorigenesis through specific activation of transcription
process (Link, 2019). The mammalian system consists of four
members, FOXO1, FOXO3, FOXO4, and FOXO6, which are

regulated by the PI3K-PKB signaling pathway (Liu et al., 2018).
Among them, FOXO3 is widely expressed and highly correlated
with a series of malignant tumors such as breast cancer, prostate
cancer (PCa) and acute myeloid leukemia (AML; Du et al., 2017a;
Zhou et al., 2019; Kong et al., 2020). CircFOXO3 is formed from
the exon 2 of FOXO3 and it can not only increase the protein
level of FOXO3, but also participate in the post-transcriptional
regulation of transcription products through the competitive
endogenous RNAs (ceRNAs) network, thus having a dual effect
on the development of cancers (Tay et al., 2014; Du et al., 2017a;
Zhou et al., 2019). To sum up, the functions of circFOXO3 are
complex and important for cancer research. In the following
chapters, we will summarize the characteristics of circFOXO3 and
its role in cancer through existing studies, so as to provide some
basic knowledge for subsequent studies and some inspiration for
its research direction in cancers.

THE BIOLOGICAL FUNCTIONS OF
circFOXO3

CircRNA Forkhead box O3 is a closed circular RNA that contains
1435 nucleotides, formed from the exon 2 of FOXO3 gene
(Figure 1A) and the biological functions of it overlap with
that of FOXO3 partly. Just like other circRNAs, circFOXO3
has extensive and complex biological functions, which are
currently known to be related to cell differentiation, apoptosis
and cell cycle progression. For example, Li et al. found that
the expression of myogenin (MyoG) and myosin heavy chain
(MyHC) was significantly increased by interfering with the
expression of circFOXO3. MyoG and MyHC are important
marker genes for muscle differentiation, and the effect of
circFOXO3 on them can inhibit the differentiation of myoblast
cells (Li X. et al., 2019). Furthermore, the overexpression of
circFOXO3 is also associated with glutamate-induced oxidative
damage in HT22 cell line (Hippocampal neurons from mice).
Silencing circFOXO3 can protect HT22 cells by reducing the loss
of glutamate-induced mitochondrial membrane potential (Lin
et al., 2020). In terms of the effect on cell cycle, circFOXO3
forms ternary complex by combining with CDK2 and P21
(Figure 1B). CDK2 can promote the entry of cell cycle by
interacting with cyclin A and cyclin E, while p21 has an opposite
effect on cell cycle (Bivik Stadler et al., 2019). CircFOXO3-
p21-CDK2 ternary complex blocks the formation of cyclin
E/CDK2 complex and eliminates the inhibition of cyclin A/CDK2
complex by p21. As a result, cell cycle is blocked in G1
phase and the process is delayed (Du et al., 2016). By the
way, it has also been observed that circFOXO3 in peripheral
blood is specifically expressed in the elderly compared to
young people, which is related to cellular senescence and has
certain predictive significance for human senescence phenotype
(Haque et al., 2020).

Sun et al. (2018) fount that ipatasertib, a novel ATP-
competitive pan-AKT inhibitor, was used in the treatment of
colon cancer to inhibit AKT activity, and then FOXO3 was
activated, which up-regulated p53 up-regulated modulator
of apoptosis (PUMA), leading to PUMA/Bax-dependent
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FIGURE 1 | Diagram for biogenesis and functions of circFOXO3. (A) As shown, FOXO3 is located in chromosome 6q21 in human, and the red line is used to
represent the approximate position of it. FOXO3 contains nine exons and only part of them is shown in this figure. circFOXO3 is formed by reverse splicing of exon 2,
containing 1435 nucleotides (chr6:108,984,657–108,986,092). (B) CircFOXO3 forms ternary complex by combining CDK2 and P2 and the cell cycle is blocked in S
phase. (C) CircFOXO3 promotes the regulation of FOXO3 on apoptosis by reducing FOXO3 ubiquitination. (D) CircFOXO3 adsorbs miRNAs and weakens the
negative effect of the latter on gene expression.

endogenous apoptosis, thereby exerting the anticancer effect
of ipatasertib. Similarly, Du et al. (2017a) found that the
overexpression of circFOXO3 inhibited the interaction between
FOXO3 and mouse double minute 2 (MDM2), prevented MDM2
from inducing ubiquitination and degradation of FOXO3, thus
increasing the activity of FOXO3 and promoting the expression
of PUMA to induce apoptosis of cancer cells (Lin et al., 2020;
Figure 1C). In addition, the main function of circRNAs in
cancers is to influence the post-transcriptional regulation of
other genes by acting as miRNA sponge (Figure 1D). Using
database such as RegRNA 2.0 or Circinteractome, it is very
convenient to predict miRNA binding sites through circFOXO3
sequence and some of them have been experimentally confirmed
(Dudekula et al., 2016; Liu et al., 2016). For example, circFOXO3
promotes solute carrier family 25 member 15 (SLC25A15)
transcription by acting as a miR-29a-3p sponge, affecting the
apoptosis and cell cycle of PCa and showing carcinogenic activity
(Kong et al., 2020). In glioblastoma (GBM), circFOXO3 also
plays a pro-tumor role to adsorb both miR-138-5p and miR-
432-5p. It is worth mentioning that the inhibition of circFOXO3

downregulation on GBM can be reversed by miR-138-5p and
miR-432-5p inhibitors (Zhang et al., 2019).

THE ROLES OF circFOXO3 IN CANCERS
(Figure 2 and Table 1)

Prostate Cancer
Prostate cancer is an epithelial malignant tumor occurring
in the prostate gland. It was reported that circFOXO3 was
up-regulated in PCa tissues and serum samples and played
a tumor-promoting role (Kong et al., 2020; Li et al., 2021).
Moreover, Li et al. (2021) proved that circFOXO3 was stable in
PCa through RNase R digestion and Actinomycin D exposure.
Silencing circFOXO3 could significantly inhibit the development
of PCa in many aspects. For example, knockdown of circFOXO3
affected the normal cell cycle of PCa cells and reduced cell
viability, thereby inhibiting tumor proliferation and invasion.
At the same time, the apoptosis rate of tumor cells increased,
reflecting the effect of circFOXO3 in inhibiting the apoptosis of
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PCa cells (Kong et al., 2020; Li et al., 2021). Interestingly, they
found different mechanisms by which circFOXO3 promoted the
development of PCa. First, circFOXO3 could target miR-29a-3p
in PCa cells and enhance the expression level of SLC25A15 (Kong
et al., 2020). Li et al. (2021) demonstrated that circFOXO3 acted
as a miR-1299 sponge to up-regulate the expression of cofilin 2,
thus showing carcinogenic activity. In addition, Shen et al. (2020)
stated contradictory research conclusion. They suggested that
circFOXO3 inhibited the progression of PCa by increasing the
level of linear FOXO3 and the reduction of circFOXO3 promoted
chemotherapy resistance of docetaxel. This discrepancy may
stem from differences in the handling of clinical samples and
the cell lines used in the laboratory. More experiments are
needed to confirm it.

Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is one of the most common
malignant tumor worldwide, with a high mortality rate and
a serious threat to human health (Craig et al., 2020). Huang
et al. (2020) reported the expression, role and mechanism
of circFOXO3 in HCC detailedly. Increased expression of
circFOXO3 was detected in HCC cells and metastatic tissues.
The overexpression of circFOXO3 promoted cancer growth
through miR-199a-5p/ATP binding cassette subfamily C member
1 (ABCC1) pathway, which was manifested in the increase of
cancer volume and average cancer mass. Epithelial-mesenchymal
transition (EMT) is an essential process for the invasion
and metastasis of epithelial-cell derived malignancies, and
circFOXO3 can promote EMT by interacting with miR-199a-
5p (Giannelli et al., 2016; Huang et al., 2020). In addition,
Huang et al. emphasized that the expression of circFOXO3 was
increased in adriamycin-resistant HCC tissues. Chemoresistance
is based on intratumoral heterogeneity and is affected by
many factors such as cancer microenvironment and intracellular
gene expression (He et al., 2016; Yeldag and Rice, 2018).
CircFOXO3 promoted adriamycin resistance in HCC by relieving
the restriction effect of miR-199a-5p on ABCC1 (Huang et al.,
2020). In conclusion, highly expressed circFOXO3 in HCC cells,
especially in adriamycin-resistant HCC tissues, could promote
the proliferation, invasion and drug resistance of HCC through
miR-199a-5p/ABCC1 axis, and indicated a higher degree of
malignancy and a poorer prognosis.

Gastric Carcinoma
The role of circFOXO3 in gastric cancer (GC) is also realized
through the ceRNAs mechanism. Xiang et al. (2020) found that
the overexpressed circFOXO3 interacted with miR-143-3p to
limit its function, and then the expression of ubiquitin-specific
protease 44 (USP44) was up-regulated. USP44, which belongs
to USP family, can induce chromosome instability, resulting
in DNA aneuploidy in GC (Zhang et al., 2011; Nishimura
et al., 2017). Subsequently, experiments in vivo and in vitro
showed that circFOXO3 promoted the progression of GC,
including proliferation and migration of GC cells. In conclusion,
circFOXO3 promoted the malignant progression of GC through
the miR-143-3p/USP44 axis (Xiang et al., 2020). Considering the
important role of USP44 in the development of GC, it is of great

clinical significance to explore the targeting effect of circFOXO3
in GC treatment.

Glioblastoma
Glioblastoma, originating from the neuroepithelium, is the most
common intracranial malignancy (Tan et al., 2020). Similar to the
above, circFOXO3 played an important role in the occurrence
and progression of GBM. CircFOXO3 was not only up-regulated
in GBM cells, but also correlated with the histological grade of
GBM. The expression of circFOXO3 in low grade GBM was
obviously inferior to that in high grade GBM (Zhang et al., 2019).
What’s more, GBM can be divided into isocitrate dehydrogenase
(IDH) wild type and IDH mutant type at the gene molecular
level, and the efficacy of chemotherapy in GBM patients is closely
related to the methylation state of O6-methylguanine-DNA
methyltransferase (MGMT; Miller et al., 2017; Schaff et al., 2020).
Zhang et al. (2019) proved that the expression of circFOXO3
was also significantly associated with wild-type IDH expression
and MGMT methylation. They found that miR-138-5p and miR-
432-5p jointly targeted nuclear factor of activated T cells 5
and restricted its expression, while circFOXO3 could remove
this restriction and promote the proliferation and invasion of
GBM cells (Zhang et al., 2019). At the same time, Chen et al.
(2020) showed that plasma circFOXO3 was highly expressed
in patients with GBM and had predictive significance for the
occurrence of GBM.

Esophageal Squamous Cell Cancer
According to the pathological classification, esophageal
carcinoma is mainly divided into squamous cell carcinoma,
adenocarcinoma and other less common types. At present,
it has been reported that circFOXO3 negatively regulates the
progression of esophageal squamous cell carcinoma (ESCC).
Compared with paracancerous tissues and normal esophageal
endothelial cells, circFOXO3 was down-regulated in ESCC tissues
and various cell lines (KYSE510, TE-1, TE-13, and ECA109;
Xing et al., 2020). Overexpression of circFOXO3 inhibited the
development of ESCC, including reduced proliferation and
invasion of tumor cells. At the same time, increased cells in
G0/G1 phase and decreased cells in S phase were observed.
CircFOXO3 promoted apoptosis and cell cycle arrest through
miR-23a/PTEN axis, thereby inhibiting the progression of ESCC
in vivo and in vitro (Xing et al., 2020). MiR-23a could promote
the proliferation of ESCC cells and improve cell viability.
Another study also showed that high plasma level of miR-23a was
associated with the progression of ESCC and could be used as an
independent risk factor in ESCC patients (Komatsu et al., 2016).
As for phosphatase and tensin homolog (PTEN), which is known
as an important tumor suppressor and metabolic regulator,
it is the ultimate mechanism for the effect of circFOXO3 in
cancer (Milella et al., 2015; Chen et al., 2018). Understanding the
metabolic regulation mechanism of PTEN is of great significance
for the treatment of ESCC.

Bladder Cancer
Li Y. et al. (2020) found a series of down-regulated circRNAs
in bladder cancer (BC) tissues and circFOXO3 was one

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 June 2021 | Volume 9 | Article 659417

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-659417 May 31, 2021 Time: 18:25 # 5

Rao et al. circFOXO3 in Cancer

FIGURE 2 | Diagram for circFOXO3 acts as a miRNA sponge. CircFOXO3 functions as a miRNA sponge to adsorb multiple miRNAs, thus regulating the expression
of downstream genes and cancer progression.

TABLE 1 | The expression and roles of circFOXO3 in cancers.

Cancer type Expression in cancers Related miRNAs and
genes

Functional roles References

Prostate cancer (PCa) Up-regulated miR-29-3p/SLC25A15 Exhibit oncogenic activity Kong et al., 2020

miR-1299/CFL2 Promote cell proliferation,
invasion. Inhibit apoptosis

Li et al., 2021

Down-regulated – Enhance cancer viability,
progression and
chemoresistance to
docetaxel

Shen et al., 2020

Hepatocellular Carcinoma (HCC) Up-regulated miR-199a-5p/ABCC1 Promote cell invasion,
tumor growth and
ADM-resistant

Huang et al., 2020

Gastric carcinoma (GC) Up-regulated miR-143-3p/USP44 Promote cell proliferation,
migration and tumor growth

Xiang et al., 2020

Glioblastoma (GBM) Up-regulated miR-138-5p,
miR-432-5p/NFAT5

Promote proliferation and
invasion

Zhang et al., 2019

Esophageal squamous cell cancer
(ESCC)

Down-regulated miR-23a/PTEN Inhibit cell growth and
invasion

Xing et al., 2020

Bladder cancer (BC) Down-regulated miR-191-5p Promote cell apoptosis Wang C. et al., 2019

miR-9-5p/TGFBR2 Inhibit cell proliferation and
invasion

Li Y. et al., 2020

Acute myeloid leukemia (AML) Down-regulated FOXO3 Lead to better prognosis Zhou et al., 2019

Non-small cell lung cancer (NSCLC) Down-regulated miR-155/FOXO3 Inhibit proliferation and
invasion

Zhang et al., 2018

Breast cancer Down-regulated FOXO3 Inhibit proliferation.
Promote apoptosis

Du et al., 2017a

of them. BC was negatively regulated by upregulating the
expression of circFOXO3. In order to clarify the underlying
mechanism, they used bioinformatics analysis and found the
miR-9-5p/transforming growth factor beta receptor 2 (TGFBR2)
pathway. Experiments proved that over-expressed circFOXO3
could up-regulate TGFBR2, a key protein in TGF-β signaling

pathway, through the interaction with miR-9-5p and finally
regulate the proliferation and invasion of BC cells (Li Y. et al.,
2020). Moreover, Wang C. et al. (2019) showed that circFOXO3
was lowly expressed in BC tissues in vivo and in vitro, which
was consistent with the findings of another set of experiments.
However, when doxorubicin, cisplatin, or H2O2 were used to
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promote BC cell apoptosis, the expression of circFOXO3 was
up-regulated. In BC cell lines and mice BC tissues, circFOXO3
did induce apoptosis of cancer cells. It was further found that
the pro-apoptotic ability of circFOXO3 was inhibited by miR-
191-5p (Wang C. et al., 2019). The pathway by which miR-
191-5p regulates circFOXO3 has not been thoroughly explained.
However, some miRNAs are reported to regulate circRNAs in
an AGO2-dependent way (Hansen et al., 2011; Pan et al., 2019).
There may be some similar mechanisms for this process.

Acute Myeloid Leukemia
Acute myeloid leukemia is a malignant clonal disease of myeloid
hematopoietic stem/progenitor cells. Zhou et al. reported that the
expression level of circFOXO3 in AML patients was lower than
that of normal people and had certain diagnostic value. Moreover,
bioinformatics analysis of the expression levels of circFOXO3
and FOXO3 in AML cell lines showed a positive correlation
(Zhou et al., 2019). Through the analysis of FOXO3-related
experiments, the benign effect of circFOXO3 on the prognosis
might be related to the promotion of AML cell apoptosis by
FOXO3 (Sakoe et al., 2010; Li J.X. et al., 2019). Of course, more
experiments are needed to confirm the exact mechanism.

Non-Small Cell Lung Cancer
Lung cancer can be divided into small cell lung cancer (SCLC)
and non-small cell lung cancer (NSCLC) according to the
morphology of tumor cells. NSCLC accounts for about 80% of
all lung cancers, with a high degree of malignancy and a low
5-year survival rate. CircFOXO3 was down-regulated in both
NSCLC cell lines and tissues and exhibited tumor suppressive
effects (Zhang et al., 2018). Similar to its role in other cancers,
circFOXO3 regulated downstream gene expression by adsorbing
miRNAs. However, the downstream gene of miR-155 was exactly
the linear isomer of circFOXO3 (Zhang et al., 2018). The
regulation of FOXO3 by miR-155 was related to oral cancer,
HCC, nasopharyngeal cancer and many other cancers (Liao
et al., 2018; Wu et al., 2019; Li X. et al., 2020). In NSCLC, the
proliferation and invasion ability of tumor cells were weakened
after FOXO3 was activated without the restriction of miR-155
(Zhang et al., 2018). MiR-155/FOXO3 axis has a wide range of
effects and plays an important role in the development of NSCLC,
suggesting a promising therapeutic target for NSCLC.

Breast Cancer
Du et al. found that circFOXO3 was low expressed in breast
cancer tissues and cell lines, but up-regulated in apoptotic cancer
cells. The high expression of circFOXO3 could not only inhibit
tumor growth, but also significantly increase the apoptosis of
tumor cells transfected with circFOXO3 (Du et al., 2017a).
MDM2 is a negative regulator of P53, which can induce P53
ubiquitination to promote cancer (Wade et al., 2013; Du et al.,
2017a; Wang W. et al., 2020). Furthermore, Du et al. detected
that MDM2 could promote the ubiquitination of FOXO3 and
P53 in breast cancer. Although circFOXO3 had little effect on the
expression of MDM2, it could enhance the interaction between
MDM2 and P53, thus weakening the ubiquitination of MDM2

on FOXO3. Ultimately, FOXO3 activated its downstream target
gene, PUMA, and promoted apoptosis (Du et al., 2017a).

THE POTENTIAL OF circFOXO3 AS A
PROGNOSTIC FACTOR IN CANCERS

CircRNA Forkhead box O3 plays an important role in the
occurrence, progression, and prognosis of many cancers.
Understanding the expression pattern of circRNAs in cancers
is of great significance for predicting the prognosis of patients.
However, the expression of circFOXO3 varies greatly in different
cancers. For example, circFOXO3 is up-regulated in HCC, GC,
and GBM, but down-regulated in ESCC, BC, AML, NSCLC,
and breast cancer. The exact reasons for the discrepancy are
unclear. This difference may be related to the timing and tissue
specificity of circRNAs (Salzman et al., 2013). As Li X. et al.
(2019) found in mice, circFOXO3 was most expressed in hearts
and least expressed in the kidneys among all organs. Moreover,
it is known that circFOXO3 is formed by reverse splicing of
the exon 2 of FOXO3, and the regulatory mechanism in this
process hasn’t been mentioned yet. There may be some regulatory
process that affects the expression of circFOXO3 in cancers.
In addition, circFOXO3 is inhibited by miRNAs. MiRNAs can
promote the splicing or cleavage of circFOXO3, which also
has certain influence on the expression of circFOXO3 in cells
(Hansen et al., 2011; Pan et al., 2019). Furthermore, circFOXO3
has its own characteristics in various cancers and is related to
many clinical features of patients. The expression of circFOXO3
in PCa is correlated with Gleason score and chemotherapy
resistance (Kong et al., 2020; Shen et al., 2020). In GBM, the
expression level of circFOXO3 in high-grade tumor tissues is
significantly higher than that in low-grade tumor tissues, which
suggests a poor prognosis (Zhang et al., 2019). What’s more,
circFOXO3 is sensitive to the state of tumor cells, and may
exhibit an opposite expression state when stimulated by apoptosis
(Du et al., 2017a; Wang C. et al., 2019). In addition, although
peripheral blood tests show specific expression of circFOXO3
in the elderly, the expression of circFOXO3 in tumors does not
appear to be affected by age (Haque et al., 2020; Kong et al., 2020).
These evidences suggest that circFOXO3 has sufficient sensitivity
and specificity for the clinical status of patients and can be a
promising biomarker.

CONCLUSION

For a long time, scientists have never stopped searching for a
cure for cancers and the discovery of circRNAs, in particular,
has provided scientists with a new way to tackle cancers. Among
them, circFOXO3 is extensively studied for its diverse functions
in cancers. Overall, the expression of circFOXO3 varies among
different types of cancer, and even the expression level detected
in the same type of cancer remains controversial. However, it is
clear that circFOXO3 is involved in the development of cancers
by regulating the expression of multiple downstream genes. In
addition to affecting the apoptosis, proliferation, migration and
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invasion of cancer cells, circFOXO3 is also associated with clinical
characteristics, chemotherapy resistance, etc. Since the roles of
circFOXO3 in different cancers are not consistent, which poses
a challenge for circFOXO3 as a potent biomarker, a timely
summary of the expression and roles of circFOXO3 in these
cancers is necessary.

At present, our understanding of circFOXO3 is insufficient
due to the lack of repeated experiments and additional samples.
Insufficient experimental data and researchers’ overemphasis
on some downstream genes may obscure the truth. Therefore,
more experiments are needed to determine the expression
characteristics of circFOXO3 in various cancers and at different
stages of the same cancer. At the same time, we need to explore a
deeper and broader functional mechanism of circFOXO3, which
is conducive to discover the dominant mechanism by which
circFOXO3 acts on cancer. Furthermore, referring to the roles
of circFOXO3 in non-neoplastic diseases, such as its effect on
heart disease, may be useful to our exploration of cancer. In
conclusion, according to the types of cancer, circFOXO3 is a

potential and specific biomarker for predicting the occurrence
of cancers and guiding clinical practice. With the development
of the technology and the efforts of the researchers, it is
expected to discover its potential value and contribute to the
treatment of cancer.
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