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Abstract
Background: Traditionally, milk proteins have been recommended for skeletal health; recently, soy
proteins have emerged as popular alternatives. Excess adiposity appears detrimental to skeletal
health, as obese adolescents have increased fracture rates compared with healthy controls.
However, soy protein effects on skeletal health during excess adiposity remain unknown.

Objective: The study objective was to examine the effects of isocaloric diets containing milk
protein isolate (MPI), soy protein isolate (SPI), or a 50/50 combination (MIX) as the sole protein
source on metabolic health indicators and bone outcomes in rapidly growing, hyperphagic, male
Otsuka Long Evans Tokushima Fatty (OLETF) rats.

Methods: OLETF rats, aged 4 wk, were randomly assigned to 3 treatment groups (MPI, SPI, or
MIX, n = 20 per group) and provided with access to experimental diets ad libitum for 16 wk.

Results: Body mass did not differ between the groups, but SPI had lower percentage body fat
than MPI (P = 0.026). Insulin was lower in MPI than in MIX (P = 0.033) or SPI (P = 0.044), but
fasting blood glucose was not different between the groups. SPI significantly reduced serum
cholesterol compared with MPI (P = 0.001) and MIX (P = 0.002). N-terminal propeptide of type I
collagen (P1NP) was higher in MIX than MPI (P = 0.05); C-terminal telopeptide of type 1 collagen
(CTx) was higher in MPI than SPI (P < 0.001) and MIX (P < 0.001); the P1NP to CTx ratio was
significantly higher in SPI and MIX than in MPI (P < 0.001). Trabecular separation was reduced in
SPI compared with MPI (P = 0.030) and MIX (P = 0.008); trabecular number was increased in SPI
compared with MIX (P = 0.038). No differences were seen in cortical geometry and
biomechanical properties.

Conclusions: In the context of excess adiposity, soy- and milk-based proteins have comparable
effects on cortical bone geometry and biomechanical properties, whereas soy-based proteins
favorably affect the trabecular microarchitecture, and the combination of both proteins may offer
additional benefits to bone remodeling in rapidly growing male OLETF rats. Curr Dev Nutr
2018;2:nzy010.

Introduction

Individuals achieve peak bone mass early in the second decade of life, which makes ado-
lescence a critical time for skeletal growth and bone accrual (1). Peak bone mass is influ-
enced by a variety of lifestyle factors, such as diet, physical activity, and body mass (1).
Higher body mass is generally correlated with higher bone mineral density (BMD) owing to
increased mechanical loading (2). However, obesity, especially excess adiposity, is associated
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with increased systemic inflammation, insulin resistance, and PPAR-γ
signaling, which negatively impact the skeleton (3, 4) by increasing os-
teoclast activity (5) and decreasing osteoblast activity (6), leading to an
imbalance in bone remodeling. When adjusted for body mass, obese
children tend to have lower whole-body BMD and bone mineral con-
tent, as well as higher fracture rates in the lower limbs, compared with
lean controls (3, 7). Epidemiologic evidence points to a positive associa-
tion between dairy intake and bone mass in childhood and adolescence
(8–10). In addition, animal studies indicate that soy proteinmight coun-
teract the detrimental effects of obesity on bone, by reducing PPAR-γ
signaling and insulin resistance, and thus correct the imbalance of re-
modeling (11, 12). However, whether soy- or dairy-based proteins con-
fer greater skeletal benefits in the context of obesity has yet to be deter-
mined.

Traditionally, the consumption of cow’s milk-based proteins is rec-
ommended for optimal skeletal development because dairy milk and
dairy products are excellent sources of dietary calcium and vitamin
D (13). However, recent evidence suggests that the skeletal benefits of
whole dairy products are greater than those derived from calcium and
vitaminD supplementation (14). These data support the conclusion that
the skeletal benefits of dairy products are due in part to milk protein, in
addition to the benefits of calcium and vitamin D. In adolescents, 12–
18 mo of milk supplementation resulted in an increase in spine (15)
and whole-body BMD (16) compared with those without milk supple-
mentation. A meta-analysis showed that this increase in BMD after an
increase in dairy consumption is especially significant in individuals
with a history of low intakes (17). Milk consumption during adoles-
cence is also associated with a lower risk of osteoporotic fracture as an
adult (18). In healthy men, short-term (i.e., 16 d) milk-protein supple-
mentation increased urinary markers of bone formation and decreased
urinary markers of bone resorption compared with baseline (19). Epi-
demiologic evidence in adolescents (20) supports a strong positive cor-
relation between milk consumption and circulating insulin-like growth
factor (IGF-1), which is essential for osteoblast differentiation and bone
formation (21, 22). Additionally, short-term supplementation with ca-
sein (23) and milk protein increased circulating IGF-1 in prepubescent
boys (24). Together, this evidence supports milk-based proteins being a
benefit to bone health outside of their micronutrient content.

While milk-based proteins remain popular among consumers, soy-
based proteins have emerged as a popular vegetarian, plant-based dairy
alternative (25). Unique among plant-based proteins, soy is a high-
quality protein equivalent to egg protein (26), which is used as the refer-
ence protein in determination of biological value.Not only does soy pro-
tein as the sole dietary protein source support positive nitrogen balance
in growing humans; data from experimental animalmodels suggest that
soy protein has equivalent or even superior skeletal effects compared
with casein in adolescentmale animals (27, 28). Soy protein significantly
improved femoral BMD, as well as cancellous bone properties, such as
trabecular number and bone volume, in male C57BL/6 mice (27). Fol-
lowing soy protein consumption, expression of intestinal calcium trans-
porters, specifically TRPV6, were increased in rats compared with ca-
sein controls (28). In young and old men, soy protein intake has been
shown to increase circulating IGF-1 concentrations (29). Therefore, a
diet containing soy protein isolate should also positively affect skeletal
development, although whether animal- or plant-based proteins confer
the most benefit is not clear (28).

Given the increasing prevalence of excess adiposity and insulin re-
sistance in adolescents and their adverse effects on bone health, the
effects of protein source are clinically relevant. To our knowledge, no
other studies have looked at protein source and the effect it can have
on bone turnover, trabecular microarchitecture, or cortical geometry
and biomechanical strength in the context of obesity and insulin resis-
tance. Thus, the current study was performed to compare the effects
of milk- and soy-based protein on bone outcomes in the Otsuka Long
Evans Fatty (OLETF) rat model of obesity and insulin resistance. We
chose the OLETF model because the progression of obesity and insulin
resistance relative to skeletal maturity is similar to that of humans (30).
We hypothesized that soy-based protein could have an equivalent ef-
fect on serum markers of bone turnover, trabecular microarchitecture,
and cortical geometry and biomechanical strength in rapidly growing
male OLETF rats. The OLETF rat is selectively bred for null expression
of cholecystokinin-1 (CCK-1) receptor in the hypothalamus. Because
CCK is a gut hormone that signals satiety through interaction with the
receptor in the hypothalamus, null expression of the CCK-1 receptor re-
sults in hyperphagia (31) and subsequent obesity and insulin resistance
with a standard rodent chow diet. Excess adiposity is evident starting at
5 wk of age, followed by the onset of insulin resistance at 12 wk of age,
hyperglycemia at 20 wk of age, and frank type 2 diabetes by 40 wk of
age (31–33). This progression of disease coincides with skeletal growth,
which peaks at around 16 wk of age in the rat, consistent with the de-
velopment of insulin resistance and obesity relative to skeletal maturity
in humans (30).

Methods

Experimental design and animal protocol
In this 16-wk longitudinal study, sixty 4-wk-old, hyperphagic male
OLETF rats (Tokushima Research Institute) were randomly assigned
to 1 of 3 experimental dietary treatments: milk protein isolate (MPI;
Idaho Milk Products), soy protein isolate (SPI; DuPont Nutrition and
Health), or a 50/50 combination of MPI and SPI (MIX; Research Di-
ets, Inc.) as the sole protein source (n = 20 per group). All rats were
housed individually in a temperature-controlled environment (21°C)
with a 0600–1800 light, 1800–0600 dark cycle maintained throughout
the experimental period. Rats were allowed ad libitum consumption of
the diets from 4 to 20 wk of age. Body weight, food intake, and body
composition via EchoMRI were recorded weekly. The animal protocol
was approved by the Institutional Animal Care and Use Committee at
the University of Missouri and the Harry S Truman VA Subcommit-
tee for Animal Studies. Not all rats were used for all analyses, based on
availability of samples.

Experimental diets
Animals were randomly assigned to experimental diets containingMPI,
SPI, or MIX as the sole protein source for 16 wks. The MIX group
was included to compare the effects of a mixed protein source diet on
bone outcomes to the effects of the diets containing only soy- or only
milk-based proteins. Each diet was formulated to be isonitrogenous
and isocaloric on the basis of the guaranteed analysis provided by the
manufacturer, and to meet or exceed the AIN-93G micronutrient re-
quirements for the growing rat, as previously reported (34) (Table 1).
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TABLE 1 Composition of experimental diets (34)1

Diet, g/kg

Ingredient SPI MIX2 MPI

Cornstarch 240 240 240
Sucrose 100 100 100
Maltodextrin 75 75 75
Cellulose 50 50 50
MPI 0 108.8 217.5
SPI 200 100 0
DL-methionine 3 3 3
Palm oil, bleached, deodorized 52.5 52.5 52.5
Cocoa butter, deodorized 37.5 37.5 37.5
Safflower oil, USP 28.5 28.5 28.5
Sunflower oil 27 27 27
Linseed oil 4.5 4.5 4.5
t-Butylhydroquinone 0.03 0.03 0.03
Mineral mix3 10 10 10
Potassium citrate 16.5 16.5 16.5
Dicalcium phosphate 13 13 13
Calcium carbonate 5.5 5.5 5.5
Vitamin mix4 10 10 10
Choline bitartrate 2 2 2

Protein, % energy 19 19 19
Carbohydrate, % energy 45 45 45
Fat, % energy 36 36 36
Caloric density (kcal/g) 4.41 4.41 4.41
1MIX, a 50/50 mixture of MPI and SPI; MPI, milk protein isolate; SPI, soy protein
isolate.

2MIX, 50/50 combination of MPI (MPI-85, Idaho Milk Products) and SPI (SUPRO
670, DuPont Nutrition & Health).

3Mineral Mix S10026 (Research Diets, Inc) contains (in g/kg of mineral mix):
NaCl, 259; MgO, heavy, 41.9; MgSO4�7H2O, 257.6; (NH4)6Mo7O24 4H2O, 0.3;
KCrS2O8, 1.925; CuCO3, 1.05; C6H5FeO7, 21; CO3MnH2O, 12.25; KIO3, 0.035;
NaF, 0.2; Na2SeO3, 0.035; ZnCO3, 5.6; sucrose, 399.105.

4Vitamin Mix V13401(Research Diets, Inc) contains (in g/kg of vitamin mix): vitamin
A palmitate (500,000 IU/g), 0.8; vitamin D3 (100,000 IU/g) 1.0; menadione sodium
bisulfate (62.5% menadione), 0.08; biotin (1%), 2.0; cyanocobalmin (0.1%), 1.0;
folic acid, 0.2; nicotinic acid, 3.0; calcium pantothenate, 1.6; pyridoxine-HCl, 0.7;
riboflavin, 0.6; thiamin-HCl, 0.6; sucrose 988.42.

Diets differed from AIN-93G in macronutrient composition, in that
the diets were higher in fat and contained sucrose. This was done so
that the diets would mimic a Western-style diet (35), each providing
19% of energy from protein, 45% from carbohydrate, and 36% from fat.
The isoflavone content of the SPI protein (μg aglycone/g protein) was
as follows: 453 μg daidzein/g protein, 731 μg genistein/g protein, and
62μg glycitein/g protein. Isoflavone content of the SPI diet was 90.6 mg
of daidzein, 146.2 mg of genistein, and 12.4 mg of glycitein; isoflavone
content of the MIX diet was 45.3 mg of diadzein, 73.1 mg of genistein,
and 6.2 mg of glycitein. The calcium content (mass %) of the SPI, MIX,
andMPI diets was 0.74%, 0.96%, and 1.18%, respectively; the phospho-
rus content was 0.56%, 0.58%, and 0.60%, respectively. The MPI and
MIX diets had higher calcium and phosphorus contents because of the
calcium and phosphorus associated with the MPI protein.

Animal sacrifice and tissue collection
At 20 wk of age, the final body mass was measured, then rats were anes-
thetized via intraperitoneal injection of pentobarbital (80 mg/kg) and
exsanguinated via removal of the heart, as previously described (34).
Blood was collected via cardiac puncture, allowed to clot for 20 min at
room temperature, then spun at 1500 × g for 10 min at 4°C for serum

collection. Serum was aliquoted and stored at –80°C for subsequent
analysis of metabolic markers and serum markers of bone formation
(N-terminal propeptide of type I collagen, P1NP) and resorption (C-
terminal telopeptide of type I collagen, CTx). Right tibias and femurs
were collected, cleaned of soft tissue, wrapped in 1× PBS-soaked gauze,
and frozen at –80°C for subsequent analysis.

Metabolic outcomes
Fasting serum glucose, insulin, free fatty acids, triglycerides, and total
cholesterol were measured using commercially available kits as previ-
ously described (34).

Serum markers of bone formation and resorption
The concentrations of the bone formationmarker P1NP and the resorp-
tionmarker CTxweremeasured in serumusing commercially available,
rodent-specific ELISA kits (ImmunoDiagnostic Systems). The intra-
assay CVs were <4% for CTx and <6% for P1NP. All assays were run
on the same day to avoid inter-assay variation; all samples were run in
duplicate.

Femur calcium and phosphorous contents
Right femurs were cleaned of all soft tissue, weighed, and then defatted
in hexane and diethyl ether each for 24 h. Following lipid extraction, fe-
murs were dried to a constant weight at 60°C. Femurs were then placed
in a muffle furnace (800°C) overnight to collect ash. The final weight
of the ash content was recorded and ashed femurs were dissolved in
12 N HCl for subsequent analysis of calcium and phosphorus contents
via inductive coupled plasma-optical emission spectroscopy (University
of Missouri, Agricultural Experiment Station Chemical Laboratories).
Results are expressed as milligrams of calcium or phosphorus per gram
of dry bone (mg/g).

Tibia cortical geometry and trabecular microarchitecture
Microcomputed tomography (μCT) imaging of the tibia was per-
formed using a high-resolution (32-µm slice increment) imaging sys-
tem (Siemens INVEON Micro SPECT/CT, Siemens Medical). The
methods used were in accordance with guidelines for the use of μCT
in rodents (36). Scans were acquired using an isotropic voxel size of
0.0316 mm, a peak X-ray tube potential of 80 kVp with a tube cur-
rent of 500 µA, and a 600-ms exposure at a medium-high magnifica-
tion using a bin of 2. In a single rotation, 360 projections were col-
lected at 1° increments and calibration images were collected prior to
data acquisition. Images were reconstructed in real time using a Feld-
kamp cone beam filtered back projection algorithm (2D-FDP). Trabec-
ular bone microarchitecture was evaluated in a 1-mm region of interest
that started 1 mm below the growth plate of the proximal tibia. Cortical
bone cross-sectional geometry was evaluated in the tibiamid-diaphysis,
between the crest of the tibia and the distal edge of the tibiofibular joint
in a 0.5-mm region of interest 0.25 mm proximal and 0.25 mm dis-
tal to the midslice. The optimize threshold function was used to de-
lineate mineralized bone from soft tissue. Segmentation thresholds of
214mg/cm3 and 570mg/cm3 were used for evaluation of trabecular and
cortical bone, respectively. Scans were analyzed using BoneJ software
(37), a subset of ImageJ (ver. 1.50d) (National Institutes of Health public
domain), andmeasures of cortical geometry and trabecularmicroarchi-
tecture were collected. Cortical morphometric outcomes included: tibia
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length, total cross-sectional area inside the periosteal envelope (Tt.Ar),
marrow area (Ma.Ar), cortical bone area (Ct.Ar), cortical area fraction
(Ct.Ar/Tt.Ar, %), average cortical thickness (Ct.Th), and robustness (R,
total bone area over tibia length, calculated as R= Tt.Ar/Le). Outcomes
for trabecular microarchitecture included: total volume (TV, volume of
region of interest), bone volume (BV, volume of region segmented as
bone), bone volume fraction (BV/TV), connectivity density (Conn.D,
degree of trabeculae connectivity normalized to TV), trabecular num-
ber (Tb.N, mean number of trabeculae per unit length, calculated as
1/(Tb.Th + Tb.Sp) (38)), trabecular thickness (Tb.Th, mean trabecular
thickness), trabecular separation (Tb.Sp, distance between trabeculae),
structural model index (SMI), and degree of anisotropy.

Tibial biomechanical properties
Torsional loading to failure was used to assess the biomechanical prop-
erties of the tibia. The distal and proximal ends of the right tibia were
embedded in a cylindrical steel holder that was placed in a test fix-
ture. A machined cross bar was used to prevent the proximal end of the
holder/tibia from rotating about its long axis while the distal endwas ro-
tated about its long axis at a speed of 10mm/swith a load cell of 5 kg. The
machine’s control software (Stable Micro Systems) measured the cable
force (F, in grams) and the applied torque (T). The load-displacement
curve from this analysis is analogous to the torque-twist curve, which
was used along with geometrical properties determined fromμCT (i.e.,
length of specimen and polar moment of inertia) to calculate: maximal
torque at fracture (Tmax), torsional stiffness (Ks), shear modulus of elas-
ticity (G), ultimate tensile strength or maximal shear stress (Su), and
energy absorbed to failure (U) as previously described (30).

Statistics
Four-wk-old, hyperphagic male OLETF rats were randomly assigned
to 1 of 3 experimental diet groups (MPI, MIX, or SPI). Pearson cor-
relations between metabolic (body weight, body fat percentage, and
serum insulin, glucose, triglycerides, and cholesterol) and bone (bone
turnover markers, trabecular microarchitecture, and cortical geometry
and biomechanical strength) outcomes were performed to determine
direct effects of diet compared with indirect effects of metabolic health
on bone outcomes.One-wayANOVAwas used to test for significant dif-
ferences between groups for metabolic outcomes, serum bone turnover
markers, and trabecular outcomes. Body weight is a strong predictor
of cortical bone growth and biomechanical strength, so cortical and
biomechanical outcomes were assessed by one-way ANCOVA, with fi-
nal body weight included as a covariate. When there was a significant
difference among groups, post hoc pairwise comparisonsweremade us-
ing the least significant difference technique. Data are means ± SEMs;
statistical significance was set at P < 0.05. All analyses were performed
using SPSS software (SPSS/23.0).

Results

Rat characteristics
Metabolic characteristics, including liver function and microbiome
composition, of a subset of OLETF rats have been reported previously
(34). Initial body mass (P = 0.808), final body mass (P = 0.259), serum
glucose (P = 0.519), triglycerides (P = 0.118), and free fatty acids

(P = 0.119) were not significantly different among groups (34). How-
ever, percentage body fatwas lower in SPI-fed rats (P= 0.026) compared
with MIX-fed rats, but not MPI-fed rats. Rats consuming the MIX diet
had the highest average weekly food intake (181.0 ± 2.3 g) compared
with rats consuming the SPI (174.0 ± 2.7 g) and MPI (170.4 ± 2.9 g)
diets (34). At time of death, all rats were insulin resistant, as they had
elevated fasting insulin but normal glucose concentrations (31). Fasting
insulin was significantly different among groups (P= 0.002): it was sig-
nificantly lower in MPI-fed rats than in those fed MIX (P = 0.006) and
SPI (P = 0.001). Rats consuming the SPI diet had significantly reduced
serum cholesterol compared with those consuming the MPI and MIX
diets (P = 0.001 and P = 0.002, respectively) (Figure 1).

Serum markers of bone formation and resorption
Rats fed the MIX diet had significantly greater P1NP than those on
the MPI diet (P = 0.017). SPI-fed and MIX-fed rats had significantly
lower CTx than MPI-fed rats (P < 0.001). Consequently, the ratio of
P1NP/CTx was significantly different between groups (P< 0.001), with
the ratio being significantly greater in rats consuming theMIX diet than
on either the SPI (P = 0.026) or MPI (P < 0.001) diet and the ratio in
the SPI group being greater than that in the MPI group (P < 0.001)
(Figure 2).

Femur calcium and phosphorous content
Therewere no differences in calcium content (milligrams ofmineral per
gram of dry bone) among groups (P = 0.105). However, phosphorus
content (milligrams of mineral per gram of dry bone) trended toward
group differences (P = 0.059), with the MPI group having the highest
phosphorus content and the MIX group the lowest (Figure 3).

Tibial cortical geometry
Tibia length was not different among groups, suggesting no differences
in longitudinal growth. Tt.Ar, Ma.Ar, Ct.Ar, Ct.Th, R, and Ct.Ar/Tt.Ar
of the tibia mid-diaphysis were not different among groups, indicat-
ing similar bone mass accumulation (36). There were no differences in
maximum or minimum moment of inertia (Imax, Imin) among groups;
the Imax/Imin ratio, which is a measure of the circularity of the diaph-
ysis (39), also showed no difference, indicating similarly shaped tibias
among groups (Table 2).

Tibia trabecular microarchitecture
BV/TV (P = 0.364), Tb.Th (P = 0.242), and degree of anisotropy
(P= 0.251) of the proximal tibiawere not different among groups.How-
ever, Tb.Spwas significantly lower in rats fed the SPI diet comparedwith
those fed the MIX (P = 0.014) and MPI (P = 0.025) diets. Tb.N was
also significantly increased in the SPI group relative to the MIX group
(P = 0.011), but not compared with the MPI group (P = 0.297). There
was also a trend for Conn.D (P = 0.077) and SMI (P = 0.060) to be dif-
ferent among groups, with the SPI group having the highest Conn.D but
the lowest SMI compared with the MIX and MPI groups (Figure 4).

Tibial biomechanical properties
Whole-bone (Tmax, P = 0.929; Ks, P = 0.753; U, P = 0.836) and tissue-
level (G, P= 0.152; Su, P= 0.151) biomechanical properties of the tibia
mid-diaphysis were not different among groups (Figure 5).
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FIGURE 1 Final body weights and fasting metabolic characteristics in OLETF rats fed a Western-style diet with SPI, MPI, or MIX. Body
mass (A), body fat percentage (B), plasma glucose (C), plasma insulin (D), triglycerides (E), free fatty acids (F), and serum total cholesterol
(G). Data are means ± SEMs; n = 9–10 rats/group. Different letters denote significance, P < 0.05. For reference, normoglycemic and
normoinsulinemic values have been provided. MIX, a 50/50 mixture of MPI and SPI; MPI, milk protein isolate; N, normoglycemic and
normoinsulinemic; OLETF, Otsuka Long Evans Tokushima Fatty; SPI, soy protein isolate.

CURRENT DEVELOPMENTS IN NUTRITION



6 Dirkes et al.

FIGURE 2 Serum markers of bone turnover in OLETF rats fed a Western-style diet with SPI, MPI, or MIX. P1NP (A), CTx (B), and
P1NP/CTx (C). Data are means ± SEMs; n = 9–10 rats/group. Different letters denote significance, P < 0.05. CTx, C-terminal telopeptide
of type I collagen; MIX, a 50/50 mixture of MPI and SPI; MPI, milk protein isolate; OLETF, Otsuka Long Evans Tokushima Fatty; P1NP,
N-terminal propeptide of type I collagen; SPI, soy protein isolate.

Pearson correlations
Body weight was significantly positively correlated with Ct.Th
(r = 0.260, P = 0.047), Tmax (r = 0.436, P = 0.003), and Ks (r = .0481,
P = 0.001), and trended toward significance with G (r = .0257,
P = 0.098) and Su (r = 0.250, P = 0.102). Body fat percentage was
significantly positively correlated with Tmax (r = 0.496, P = 0.019), Ks

(r = .0568, P = 0.006), G (r = 0.460, P = 0.031), and Tb.Sp (r = 0.392,
P = 0.036), and trended toward significance with Su (r = 0.411,
P = 0.058). There was a significant negative correlation between body
fat percentage and Conn.D (r = −0.398, P = 0.033). There was a
significant positive correlation between serum insulin and serum P1NP
(r = 0.437; P = 0.020). No other correlations were significant.

Discussion

In this study, we examined the effects of 3 experimental diets (MPI,
MIX, and SPI) on cancellous and cortical bone outcomes in obese,
insulin-resistant rapidly growing male OLETF rats. We chose the
OLETF rat model because the progression of obesity and insulin re-
sistance relative to skeletal maturity in that model is similar to that
of humans (30). We hypothesized that soy- and milk-based proteins
would have an equivalent effect on bone outcomes during a time of rapid
growth. In support of our hypothesis, the diets had a similar effect on
cortical geometry and biomechanical properties of the tibia. However,
rats fed the SPI diet showed significant improvements in trabecular mi-
croarchitecture, specifically trabecular spacing and trabecular number,

and rats fed theMIXdiet showed an increased ratio of bone formation to
bone resorption, as measured by serum markers. Taken together, these
results suggest that, in a male rodent model of young obesity, soy- and
dairy-based proteins are comparable for cortical bone geometry and
biomechanical strength, soy protein might favorably affect cancellous
bone microarchitecture, and a mix of both proteins might benefit bone
remodeling.

Rats fed the MPI diet had significantly greater serum CTx than
rats fed the SPI and MPI diets (104% and 172% higher, respectively),
suggesting a suppression of bone resorption with the presence of soy
protein. This supports previous studies where soy protein suppresses
bone resorption through decreased levels of receptor activator of nu-
clear factor-κB ligand (RANKL), a known promoter of osteoclastogen-
esis (40). Additionally, this significant increase of CTx in the MPI diet
group is clinically relevant, as evidence points to a fracture relative risk
of 2.1 owing to a 25% increase in serum CTx (41). While soy protein
independently improved bone remodeling, the effect of combining soy-
and milk-based proteins resulted in a significant increase in bone for-
mation relative to resorption based on serum markers, which is con-
sistent with a previous report on the combination of milk protein and
soy isoflavones in protection against the loss of BMD in hind-limb un-
loading through an increase in osteogenic genes in the bone marrow
(42). This implies that the combination of soy- andmilk-based proteins
might be most beneficial to bone remodeling in rapidly growing rats.
This is significant, considering that an imbalance in bone remodeling
in favor of resorption could be one of the primary mechanisms behind
the impaired bone health seen in childhood obesity (43).
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FIGURE 3 Mineral content of the femur in OLETF rats fed a Western-style diet with SPI, MPI, or MIX. Ca/dry weight (A), P/dry weight (B),
and Ca-to-P ratio (C). Data are means ± SEMs; n = 5 rats/group. Different letters denote significance, P < 0.05. MIX, a 50/50 mixture of
MPI and SPI; MPI, milk protein isolate; OLETF, Otsuka Long Evans Tokushima Fatty; SPI, soy protein isolate.

A proposed mechanism behind the effects of soy on bone are the
estrogen-like actions of soy isoflavones on the estrogen receptor (ER),
specifically ERβ (44), and the effects of soy protein intake on bone
health in women have been studied extensively (45–47). Fewer studies
have examined the skeletal effects of soy in men, partly because of con-
cerns surrounding increased levels of estrogen-like molecules in males
and the possibility that bioactive phytoestrogens could have an effect on
reproductive hormones inmen (48). However, most studies have shown
that soy intake has no effect on reproductive hormone levels in either

adults or children (49, 50). Additionally, 1 study in older rats showed
that soy protein could attenuate orchidectomy-induced bone loss (51),
and estrogen levels are generally a stronger predictor of BMD in males
than testosterone (52). In addition to its estrogen-like actions (53), other
studies show that soy protein may decrease levels of calveolin-1 (54),
which could lead to a decrease in osteoblast senescence through a de-
crease in PPAR-γ (11). SPI could also prevent bone deterioration in-
duced by a high-fat diet by preventing loss of insulin signaling in the
bone (12). Additional studies in this area are warranted.

TABLE 2 Cortical geometry of the tibia mid-diaphysis in OLETF rats fed a Western-style diet with SPI, MPI, or MIX1

SPI MIX MPI P-value (Diet)2

Tibia length, mm 44.60 ± 0.30 45.04 ± 0.36 44.46 ± 0.32 0.43
Tibia diameter, mm 3.93 ± 0.08 3.99 ± 0.08 3.92 ± 0.08 0.78
Tt.Ar, mm2 9.75 ± 0.11 9.89 ± 0.11 9.91 ± 0.10 0.43
Ma.Ar, mm2 2.52 ± 0.06 2.69 ± 0.06 2.59 ± 0.06 0.11
Ct.Ar, mm2 7.22 ± 0.12 7.20 ± 0.11 7.32 ± 0.12 0.74
Ct.Ar/Tt.Ar, mm2 0.74 ± 0.01 0.73 ± 0.01 0.74 ± 0.01 0.30
Ct.Th, mm2 1.02 ± 0.01 1.02 ± 0.01 1.01 ± 0.01 0.69
Imax, mm4 7.61 ± 0.09 7.55 ± 0.10 7.50 ± 0.10 0.72
Imin, mm4 4.70 ± 0.10 4.78 ± 0.11 4.74 ± 0.11 0.86
Imax/Imin 1.63 ± 0.03 1.58 ± 0.03 1.60 ± 0.03 0.40
K, mm4 13.8 ± 0.55 12.9 ± 0.56 13.2 ± 0.57 0.53
R, mm .219 ± 0.003 .220 ± 0.003 .223 ± 0.003 0.48
1Data are means ± SEMs adjusted with final body weight as a covariate; n = 18–20 rats/group. Ct.Ar, cortical area; Ct.Ar/Tt.Ar, cortical volume fraction; Ct.Th, cortical
thickness; Imax, maximum moment of inertia; Imin, minimum moment of inertia; Imax/Imin, ratio of maximum to minimum moment of inertia; K, polar moment of area;
Ma.Ar, marrow area; MIX, a 50/50 mixture of MPI and SPI; MPI, milk protein isolate; R, robustness (Tt.Ar/length); SPI, soy protein isolate; Tt.Ar, total area.

2P-values are a one-way ANCOVA with body weight as a covariate.
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FIGURE 4 Trabecular microarchitecture of the proximal tibia in OLETF rats fed a Western-style diet with SPI, MPI, or MIX. BV/TV (A), TbN
(B), TbTh (C), TbSp (D), Conn.D (E), SMI (F), and DA (G). Data are means ± SEMs; n = 19–20 rats/group. Different letters denote
significance, P < 0.05. BV/TV, trabecular bone volume fraction; Conn.D, connectivity density; DA, degree of anisotropy; MIX, a 50/50
mixture of MPI and SPI; MPI, milk protein isolate; OLETF, Otsuka Long Evans Tokushima Fatty; SMI, structural mode index; SPI, soy protein
isolate; TbN, trabecular number; TbSp, trabecular separation; TbTh, trabecular thickness.
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FIGURE 5 Biomechanical strength measures of the tibia mid-diaphysis in OLETF rats fed a Western-style diet with SPI, MPI, or MIX. Tmax

(A), Ks (B), G (C), Su (D), and U (E). Data are means ± SEMs adjusted with final body weight as a covariate; n = 19–20 rats/group. Different
letters denote significance, P < 0.05. G, shear modulus of elasticity; Ks, torsional stiffness; MIX, a 50/50 mixture of MPI and SPI; MPI, milk
protein isolate; OLETF, Otsuka Long Evans Tokushima Fatty; SPI, soy protein isolate; Su, ultimate tensile strength or maximal shear stress;
Tmax, maximal torque at fracture; U, energy absorbed to failure.

Cancellous bone and cortical bone responded differently to 16 wk
of a soy-protein diet. Cortical geometry and biomechanical properties
were not significantly different among the dietary treatments, but the
trabecular microarchitecture was affected. Specifically, Tb.Sp was sig-
nificantly decreased and Tb.N was significantly increased in rats fed
the SPI diet. One explanation for the effects of soy protein on cancel-
lous, but not cortical, bone is the distribution of the ER isoforms α and
β . Soy isoflavones preferentially bind to the ER-β subspecies (44), and
cancellous bone has greater expression of ER-β compared with cortical
bone (55). Additionally, the rate of turnover in trabecular bone is con-
siderably higher than that of cortical bone (56), owing to an increase
in active surface area (57). Other researchers have also shown that soy
preferentially protects trabecular bone through increases in bone for-
mation (58), which would be consistent with our findings. However, the
bone markers that we measured represent the whole body, and cannot

distinguish between cancellous and cortical bone. Loss of individual
trabeculae and thinning of existing trabeculae (59), as well as a lower
trabecular bone volume (60), significantly contribute to loss of bone
strength. Thus, data from the present study suggest that soy protein iso-
late might increase cancellous bone strength. However, we did not have
the capacity to test the compression strength of cancellous bone and fur-
ther study is warranted.

Finally, we measured the calcium and phosphorus contents of the
femur, as mineral content is an important determinant of BMD and
bone strength in growing rats (61). While there were small differences
in the calcium and phosphorous contents of the MPI and SPI proteins
and, therefore, the respective diets, all of the diets met or exceeded the
calcium and phosphorous recommendations for growing rodents (62).
Thus, it was not surprising that there were no differences in calcium
content of the femur. While there was a trend toward a difference in
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total femoral phosphorus content, with the MPI group being the high-
est, the ratio of calcium to phosphorus was not different among groups,
indicating that th eprotein source did not significantly affect the relative
composition of the 2 primary minerals in bone during skeletal growth.

Because overweight and obesity are now linked to poor bone heath
and increased fracture risk (3, 7), there is potential for dietary pro-
tein intake to indirectly improve bone health in overweight adoles-
cents through improvements in metabolic health. Epidemiologic evi-
dence suggests that a dietary pattern incorporating more low-fat dairy
products might lower the risk of type 2 diabetes (63) and hypertension
(64). In adolescents, dairy consumption is inversely associatedwith cen-
tral adiposity (65). Soy protein has also been widely studied for its re-
ported metabolic health benefits (66, 67). In adults, soy consumption
results in a clinically significant decrease in circulating total and LDL
cholesterol (68, 69) and triglycerides (53). In this study, there were few
metabolic differences among the dietary treatments. However, the rats
fed the SPI diet had a lower body fat percentage compared with the rats
fed the MIX diet, and had decreased circulating cholesterol compared
with those fed MIX or MPI. Additionally, the rats fed SPI had signifi-
cant improvements in liver function (34), which is often used as a surro-
gatemeasure ofmetabolic health, indicating improvedmetabolic health
following a soy-based diet. This improvement in metabolic health and
decrease in circulating cholesterol have significance for skeletal health,
as both excess adiposity (4) and hypercholesterolemia (70) have detri-
mental effects on bone, and mouse models show that adiposity induced
by a high-fat diet especially affects cancellous bone (71).

All groups showed insulin resistance, but rats in the SPI group had
higher serum insulin than those in the MPI group. We observed a sig-
nificant positive correlation between insulin and P1NP. This result was
contrary to our hypothesis that insulin resistance would be detrimental
to bone health. However, insulin is a major anabolic hormone that can
have significant effects on bone growth through osteoblast activity (72),
and previous studies have shown that insulin resistance can be benefi-
cial to trabecular microarchitecture (73, 74). Additionally, we showed
positive correlations between body weight and body fat percentage and
all biomechanical strength outcomes, as well as a significant positive
association between body weight and cortical thickness. This was un-
surprising, considering body weight is a strong determinant of cortical
bone growth and strength (75). Finally, we showed a positive correla-
tion between body fat percentage and Tb.Sp and a negative correlation
between body fat percentage andConn.D. These results support our hy-
pothesis that dietary protein intake could indirectly affect bone health
through actions on metabolic health.

In summary, our findings suggest that, in the context of excess adi-
posity, soy-based and milk-based proteins have comparable effects on
cortical bone geometry and biomechanical properties, while soy-based
proteins favorably affect trabecular microarchitecture, and the combi-
nation of both proteinsmay offer additional benefits to bone remodeling
in young, rapidly growing male OLETF rats. These findings are of key
significance as many people consume protein from a variety of animal-
and plant-based sources.
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