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The COVID-19 pandemic severely impacted long-term care facilities resulting in the death of
approximately 8% of residents nationwide as of March 2021. As COVID-19 case rates declined
and state and county restrictions were lifted in spring 2021, facility managers, local and state
health agencies were challenged with defining their own policies moving forward to appro-
priately mitigate disease transmission. The continued emergence of variants of concern and
variable vaccine uptake across facilities highlighted the need for a readily available tool that can
be employed at the facility-level to determine best practices for mitigation and ensure resident
and staff safety. To assist leadership in determining the impact of various infection surveillance
and response strategies, we developed an agent-based model and an online dashboard
interface that simulates COVID-19 infection within congregate care settings under various
mitigation measures. This dashboard quantifies the continued risk for COVID-19 infections
within a facility given a designated testing schedule and vaccine requirements. Key findings
were that choice of COVID-19 diagnostic (ex. nasal swab qRT-PCR vs rapid antigen) and testing
cadence has less impact on attack rate and staff workdays missed than does vaccination rates
among staff and residents. Specifically, low vaccine uptake among staff at long-term care fa-
cilities puts staff and residents at risk of ongoing COVID-19 outbreaks. Here we present our
model and dashboard as an exemplar of a tool for state public health officials and facility di-
rectors to gain insights from an infectious disease model that can directly inform policy de-
cisions in the midst of a pandemic.
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1. Introduction

Nursing homes, skilled nursing facilities and assisted living facilities, collectively known as long-term care facilities
(LTCFs), provide care for some of the most vulnerable populations in society. Shared sleeping quarters, bathrooms, dining
facilities, and common spaces; and the need for daily contact between staff and residents create an opportunistic environ-
ment for the spread of respiratory pathogens. In particular, the morbidity and mortality within LTCFs throughout the COVID-
19 pandemic was estimated at nearly 8% as of March 2021, demonstrating the extreme vulnerability of both LTCF residents
and staff to a transmissible viral illness (Curiskis et al., 2021). Approximately 40% of COVID-related deaths in the United States
were among residents of LTCFs as of March 2021, and yet clinical research in LTCFs during COVID-19 has been limited (IKim
et al., 2020; Quinn et al., 2021). Moreover, LTCF staff represent a disproportionately high percentage of SARS-CoV-2 infections
as compared to non-healthcare community members regardless of whether LTCF staff have direct patient contact. In one
report, whole-genome sequencing suggested that SARS-CoV-2 infection among LTCF staff had more likely come from staff-
staff transmission than community import events (Gallichotte et al., 2020).

In recognition of the difficulty mitigating or preventing SARS-CoV-2 within LTCFs, the Centers for Disease Control (CDC)
recommended that LTCFs have first priority for vaccine access and developed The Pharmacy Partnership for Long Term Care
Program to distribute the first available vaccines to LTCF residents and staff. However, early vaccine acceptance among LTCF
staff was quite variable. Before vaccination requirements started rolling out, one study reported that among the 11,460 LTCFs
with at least one vaccination clinic conducted via the CDC Pharmacy Partnership for Long Term Care Program, only 37.5% of
staff members received the vaccine as compared to 77.8% of residents (Gharpure et al.,, 2021). These data were and are
concerning because unvaccinated staff can sustain SARS CoV-2 infection within LTCFs, making infection control extremely
difficult. Furthermore, even with higher vaccination rates, new variants (e.g., delta and omicron variant) pose a risk because
they may be more resistant to vaccine-induced immunity (Cavanaugh, 2021; White et al., 2021). In a study of infections in
LTCFs in Catalonia, Spain during spring 2021, researchers found that once more than 70% of the facility population was
vaccinated, approximately 75% of COVID-19 deaths and infections in the facility were prevented (Salazar et al., 2021).
Vaccination rates are of critical importance even for LTCF residents that were previously infected with COVID-19 as a sub-
stantial proportion have been found to have nondetectable antibodies six months post infection (Moore et al., 2021).

Centers for Medicare and Medicaid Services (CMS), and state and local public health recommendations for SARS-CoV-2
surveillance testing in LTCFs to identify and isolate presymptomatic/asymptomatic SARS-CoV-2 positive individuals evolved
over time. A number of learnings have emerged throughout the pandemic that highlight limitations with a “one size fits all”
approach to surveillance and outbreak response in LTCFs. Mitigation and prevention approaches rarely considered the simul-
taneous influences of test type, predicted sensitivity/specificity, testing frequency, testing goal (surveillance versus diagnostic),
test result latency period, and vaccine acceptance rates. Given the rapidly changing climate surrounding COVID-19 prevalence,
testing availability, vaccination acceptance, and community prevalence, we sought to create a model to better understand
potential outcomes within LTCFs using inputs related to these real-life and fluid variables as they change throughout time.

Agent-based models (ABMs) are a powerful tool for understanding complex dynamic processes, such as infectious disease
transmission (Bonabeau, 2002). During the COVID-19 pandemic, these models have been used to assess the impact of non-
pharmaceutical interventions on infections within schools, a small town, and France (Naimark et al., 2021; Truszkowska et al.,
2021; Hoertel et al., 2020). Researchers further demonstrated that delaying the second dose of mRNA vaccines for those under
65 led to more positive outcomes under certain conditions with an ABM (Romero-Brufau et al., 2021). Within LTCFs specifically,
ABMs were used to study the impact of testing and immunity-based staffing interventions, and early in the pandemic were used
to simulate the spatiotemporal transmission process of COVID-19 under varied virus infectiousness levels and within-facility
mobility restrictions (Holmdahl et al., 2021; Cuevas, 2020). An advantage of ABMs over compartmental models based on dif-
ferential equations is that they can be programmed to capture important micro-level behavior unique to a specific setting.

The agent-based framework has several advantages for modeling LTCFs. First, LTCFs are focused settings with relatively low
populations. Second, the ABM permits simple tracking of individuals' health and behavior over time. This point is important in the
LTCF setting, where staff are transient members of the population as they move in and out of the population according to work
schedules. Accounting for this behavior is key as infectious individuals only pose a risk to the facility when present. Moreover,
ABMs track the state of individual agents in the model. If a member of the night staff is infected, that specific agent can be isolated
until they no longer pose an infection risk to other agents in the facility. These features make the ABM a suitable framework for a
decision support tool used to analyze the impact of different testing protocols, vaccination rates, and visitation policies.

State and county COVID-19 regulations began to relax heavily in May 2021. This left LTCF managers and local health of-
ficials to define their own COVID-19 policies. Some facilities required their staff to be vaccinated, leaning on existing re-
quirements for the influenza vaccine to argue this was a natural policy (Paulin, 2021). Other facilities decided not to require
vaccination and instead relied on surveillance testing to continue to monitor their facility for infection in unvaccinated in-
dividuals. While both strategies have advantages and disadvantages, it was unclear how much continued risk a facility is at
given a specific level of staff vaccine uptake, testing regime, and community prevalence.

Due to slight nuances across facilities that can greatly affect transmission patterns, we created an interactive online
dashboard that accepts facility-specific parameters and forecasts infection rates and worker days missed under a set of
transmission characteristics and testing protocols (dashboard is accessible here: https://Itcf-covid.shinyapps.io/ltcf_covid_
dashboard/) (Dilliott, 2021). This dashboard allowed facility administrators to evaluate the relative impact of various stra-
tegies moving forward. In what follows, we explore the trade-off between a high cadence testing regime at a moderately
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vaccinated facility to a no testing regime at a highly vaccinated facility to demonstrate how the ABM and dashboard could be
utilized by practioners.

2. Methods

Consider the scenario where a facility manager is tasked with deciding on policies for summer 2021. The facility has 90
residents, 125 day staff, and 45 night staff. Assume residents and staff are vaccinated at rates mirroring the national averages,
78%, and 38%, respectively at this time, and the 7-day case rate average for the community is approximately 84 people per
100,000/week. The manager is concerned about potential future outbreaks due to their impact on resident and staff physical
health, the number of worker days missed due to quarantined staff, and the emotional toll of a return to a lock-down state.
Thus, the manager considers a facility-wide vaccination requirement for staff and asks: How many fewer worker days would
be missed? How many fewer individuals would be infected with COVID-19? Could infection levels instead be limited by
regular testing of unvaccinated staff and residents?

To answer these concrete questions, we programed an agent-based model that simulates the key daily behaviors and events
that impact disease transmission in a facility. Like the traditional infectious disease compartmental models, all agents (staff and
residents) are labeled as either susceptible, exposed, asymptomatic infected, symptomatic infected, orimmune (also referred to as
recovered). Each agent transitions between these states based on events in the simulation. For example, all unvaccinated in-
dividuals start out as a ‘susceptible’, but after they come into contact with an infectious agent, there is a chance that they contract
the virus and become ‘exposed’ for a short period of time before being labeled as ‘infected’ and able to spread COVID-19 to others.
Finally, after the active infection period has subsided, the agent moves to the ‘immune’ state. Recognizing vaccine efficacy is not
100%, most vaccinated individuals are given the ‘immune’ label from the start with a small number remaining ‘susceptible’.

The progression of events in a day is described in Fig. 1(a). A random fifth of the day staff and fifth of the night staff are
selected to show up to work. Each infected staff member has a chance of showing symptoms, self-isolating, and staying home
from work. All other staff attend work and have interactions with each other and the residents. While interactions are
assumed to be random each day, a contact matrix dictates the relative number of contacts between different subgroups. For
example, day staff and night staff are assumed to have limited contact that occurs just during shift changes. Finally, we model
staff infection via community transmission based on the local 7-day case rate. Community case rates were shown to be the
strongest predictor of COVID-19 cases and outbreaks at LTCFs (Gorges & Konetzka, 2020). Fig. 1(b) depicts the transmission
network for the ABM. We assume a vaccine efficacy of 95% in an “all-or-nothing” framework, such that 5% of those vaccinated
remain susceptible to infection (Bubar et al., 2021).

The primary means for COVID-19 monitoring and outbreak response during the latter half of 2020 and today is facility-
wide testing. There are two primary options for surveillance testing: rapid antigen and qRT-PCR tests. The advantage of
qRT-PCR tests is that they are extremely accurate, with a sensitivity and specificity greater than 95%; however, the time
between the test and receiving the result is often 36—72 h depending on the lab processing it. Conversely, antigen test results
can be acquired the same day but are limited by lower sensitivity. In this study, we assume an qRT-PCR test with 95%
sensitivity and 99.5% specificity, and a rapid antigen test with 64.2% sensitivity on symptomatic positive individuals, 35.8%
sensitivity on asymptomatic individuals and 99.5% specificity. If vaccine uptake among staff and residents is limited or
moderate, a facility director may consider regular facility-wide testing of unvaccinated individuals to combat the possibility
and extent of an outbreak. Upon a positive test result, we use a 14-day quarantine for staff. A complete description of the ABM
is provided in Appendix A.

Daily Behavior Simulator Transmission Network

. Work force selected: Random subset of the day and night staff
are selected to work at the facility.

o

. Staff symptom tracker: Symptomatic staff self-isolate with
some probability.

)

. Within facility transmission: Day staff, night staff, and
residents interact with one another throughout the work day.

&

. Community transmission: Staff possibly infected through
interactions with the community.

. Facility-wide testing: If today is a testing day, all unvaccinated / o
staff and residents (regardless of work schedule) are assumed
Facility

o

to be tested.

o

. Agent infection status update: Susceptible agents transferred
to Exposed status based on transmission events. Exposed
agents transferred to asymptomatic/symptomatic status based
on days post transmission.

(@) (b)

Fig. 1. (a) Description of events throughout a day during the simulation. (b) Avenues of transmission within and into the facility.
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3. Results

We simulate the LTCF-ABM to illustrate two continued risks to LTCFs: 1) low staff vaccination rates, and 2) relaxed
screening protocols. LTCF staff are a conduit for risk to LTCF residence because they interact with the outside community
when not at work. Our model suggests that outbreaks are likely to occur when 78% of residents and 37.5% of staff are
vaccinated even with a weekly testing protocol in place. Fig. 2 shows the distribution of the total number of infections across
three vaccination scenarios (37.5%, 80%, and 90%) and three testing scenarios (None, qRT-PCR, and Rapid) for 500 simulations.
The variation in results across simulations is due to the stochastic transmission functions in the model. The results indicate
that while a testing protocol makes a difference, staff vaccination rates are the primary determinant of the total number of
infections in both staff and residents. In staff, increasing vaccination from 37.5% to 98% reduces the attack rate by 89% (from
63% to 7%) without a testing protocol. A weekly qRT-PCR-based testing protocol can provide further protection reducing the
staff attack rate to a mean of 3% in the 98% staff vaccination case. The combination of high staff vaccination (98%) and weekly
gRT-PCR-based testing protocol reduces the attack rate in residents by 78% (from 23% to 5%). In the low staff vaccination
scenario, the qRT-PCR-based testing protocol reduces the attack rate in residents by only 11% (from 26% to 23%). The reduced
sensitivity of the rapid antigen test has a much smaller effect, especially with relatively low staff vaccination rates.

While testing protocols provide protection against transmission, they also lead to staff absenteeism as individuals that test
positive are required to isolate. We assume that symptomatic staff will report their illness and self-isolate with some
probability. Fig. 3 plots the distribution of staff absenteeism measured by the number of days staff are assigned to work but
are unable to because of a positive test or self-isolation. Again, higher staff vaccination rates are the most effective mechanism
for reducing staff absenteeism because vaccination prevents infection. When comparing the qRT-PCR to the rapid antigen
testing protocols, we find that absenteeism is higher under the rapid antigen protocol due to the shorter delay in receiving the
test result (immediate versus two days). In the low vaccination scenario (37.5% staff vaccination rate), the absenteeism rate is
86% under the rapid antigen testing protocol versus 80% under the qRT-PCR testing protocol. The difference between the
testing protocols becomes smaller as staff vaccination rates increase.

4. Discussion

Our model and dashboard highlighted the potential for COVID-19 outbreaks in long-term care facilities even when staff
and residents are partially vaccinated and screened regularly in summer 2021. This result was not just theoretical. 627 cases of
COVID-19 in staff and residents at 75 skilled nursing facilities were documented from December 28, 2020 to March 31, 2021
(Teran, 2021). Of those 627, 22 occurred in fully vaccinated individuals more than two weeks after the second dose, and 145
occurred in partially vaccinated individuals.

While our model and analysis are tailored to LTCFs in the United States, our model could be adapted to other countries in
which vulnerable populations live in facilities with staff that provide care. Our ABM model of LTFCs could also be coupled with
forecasting models that predict community prevalence (Dawoud, 2020) via the probability that staff become infected while
off duty.

The results of the LTCF-ABM should be considered along with model limitations. We strived to use realistic parameters
when estimates were available from the literature. However, some parameters were not well studied at this time. We
assumed a contact structure between staff and residents that is static over the simulation. This may not be true if staff limit
their contact with each other and residents in the event of an outbreak. Researchers have also documented increased risk to

Residents Staff

98% Vacc. 4 &

Al

80% Vace, | iemm——— A

/[ \\ 2V

/| I\
JIA\ A

37.5% Vacc. o it T ————
0% 20% 40% 60% 0% 20% 40% 60%

Attack Rate (% of population infected)

None | | qRT-PCR Rapid

Fig. 2. The attack rate in residents (left panel) and staff (right panel) populations over 60-day simulation by vaccination and testing scenario. The distribution
represents the variation in results due to stochastic transmission during 500 simulations. Summary statistics are reported in Table A.3.
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Fig. 3. Staff absenteeism by vaccination and testing scenario over 60-day simulation. Absenteeism is defined as workdays missed because of a positive test result
or symptomatic self-reporting. The distributions are based on 500 model simulations. Summary statistics are reported in Table A.4.

facilities whose staff work at other facilities (Chen et al., 2021). This additional risk was not explicitly modeled here but could
be captured by assuming a higher community prevalence quantifying the risk of outside infection to staff.

The testing protocol is determined at the beginning of the simulation and does not change. Facilities that detect a positive
case may engage in investigation and more rigorous testing procedures to mitigate the further spread of the virus. However,
one important result from our analysis is that when community transmission is present, there is a continual risk that a staff
member reintroduces the virus.

5. Conclusions

Despite increasing vaccination and declining cases in spring 2021, the future of the pandemic was very much uncertain.
There existed potential for outbreaks in unvaccinated health care worker populations and vaccinated populations with the
arrival of new variants such as delta and omicron, which were more infectious or more resistant to vaccines (Wingerter,
2021). Our decision support tool was created to help LTCFs and regional public health departments develop strategies to
mitigate the risk of outbreaks and contain them as they emerge.

While test availability, decaying immunity, and COVID-19 treatments changed over the latter half of 2021, the ABM and
dashboard developed here gradually lost is applicability. However, minor updates of the model parameters and structure could
make the tool reflective of the current pandemic landscape. Collaboration between researchers and policy makers is essential for
modeling tools, such as ABMs, to inform decision making. Our work here acts as an example of how a rich infectious disease
model can be programed and integrated into a user-friendly dashboard to serve public health administrators. Importantly, this
tool could also be adapted relatively easily to model the particulars of any existing or future respiratory pathogen.
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Appendix A. Overview, Design concepts and Details Protocol for LTCF Agent-Based Model
1. Purpose

This model's purpose is to study the spread of SARS-CoV-2 in a long-term care facility environment over a short time
window, e.g. 3—6 months, under various vaccination levels of staff and residents and differing testing protocols. It is designed
to allow facility managers to understand the trade-offs between adopting, for example, a vaccination mandate versus rapid
testing staff weekly versus requiring qRT-PCR tests biweekly. The primary outcomes considered are the total number of
infected individuals in the facility and the number of staff workday missed as a result of isolation. Complete code for the
dashboard and model are available (Dilliott, 2021).

2. Entities, State Variables, and Scales

The model includes three types of entities: day staff, night staff, and residents. Each entity is an individual and is char-
acterized by their vaccination status (vaccinated or unvaccinated), their current infection state (Susceptible, Exposed,
Asymptomatic infected, symptomatic Infected or Recovered) and whether they are in quarantine from a positive test. An all-
or-nothing vaccine model is assumed such that 5% of vaccinated individuals are still susceptible to infection, while the
remaining 95% are fully protected after being vaccinated (Bubar et al., 2021). Vaccine status of each entity is held constant. The
simulation proceeds 1 day at a time, where entity infection and quarantine status is updated.

3. Process overview, scheduling

At the start of each day, a random subset of day staff and night staff are selected to work at the LTCF. Staff and residents
have contact with one another based on the contact matrix. Susceptible individuals that have contact with infected in-
dividuals stochastically transition to the Exposed state based on their number of infectious symptomatic and asymptomatic
contacts in the facility. Staff are also susceptible to becoming exposed from the community based on the community prev-
alence, where it is assumed they contact 5 community individuals per day. Individuals in the Exposed state stochastically
transition to an infected state, either Asymptomatic infected or symptomatic Infected, according to an exponential distri-
bution. In addition, Asymptomatic infected and symptomatic Infected individuals stochastically transition to Recovered ac-
cording to an exponential distribution. If testing is scheduled for the given day, all non-quarantined staff and residents are
tested. If the test result delay is zero, such as for a rapid test, then those that test positive, whether a staff member or resident,
are immediately placed in quarantine where they have no contact with others. Otherwise, positive testers are placed into
quarantine the after the test delay has elapsed. Although positive residents would continue to contact the staff at the LTCF, it is
assumed that the PPE protocols for staff are such that there is no probability of transmission. Note there is nonzero probability
of a false positive or false negative test based on the sensitivity and specificity of the test used. Symptomatic Infected in-
dividuals possibly self-quarantine. Finally, Asymptomatic infected and symptomatic Infected individuals that complete their
quarantine are transitioned to the Recovered state, and Susceptible individuals that completed their quarantine (due to a false
positive test) remain Susceptible.
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4. Design concepts

Basic principles — This model adapts a basic SEIR agent-based model to a LTCF environment by incorporating variability in
day and night staff schedules, as well as the relative number of contacts between day staff, night staff and residents.

Emergence — The emergence of new infections results from onsite contacts among the scheduled staff and residents at the
LTCF, as well as from staff contracting COVID-19 from the community.

Sensing — Individuals do not have any knowledge of others’ infection status.

Interaction — Agents present at work interact according to a contact matrix based on agent type (i.e., day staff, night staff,
resident). Table A.2 defines the contact matrix used in simulations.

Stochasticity — A random subset of non-quarantined staff show up to work at the LTCF each day. While interactions be-
tween agents present at the facility are dictated by the contact matrix, viral transmission is random and occurs when an agent
interacts with an infectious (symptomatic or asymptomatic) agent and follows a Poisson distribution. The number of days in
the Exposed state is random and follows an exponential distribution. The number of days in the symptomatic Infected and
Asymptomatic infected states are also random and exponentially distributed. Symptomatic infected individuals indepen-
dently randomly decide whether to self-quarantine each day according to a fixed probability. The accuracy of the test results
are random according to the sensitivity and specificity of the test used by the facility.

Observation — The total number of staff and resident infections is monitored, as well as the number of staff workdays
missed due to quarantining.

5. Initialization
The composition of the facility in terms of number of day staff, night staff and residents must be specified and is fixed
throughout the simulation. A fixed fraction of staff and residents are specified to be fully vaccinated at the start of the

simulation and a fixed fraction of staff and residents are assumed to be initially infected. No individuals are in quarantine at
the start of the simulation.

6. Input data
This model does not include any input of external data.
7. Submodels

All model parameters are listed in Tables A.1 and A.2 below.

Table A1
Input parameters and values used in simulations.

Input parameter Simulation values Source

Facility
Number of day staff 125 Example facility
Number of night staff 45 Example facility
Number of residents 90 Example facility
Number of day staff scheduled each day 25 Example facility
Number of night staff scheduled each day 9 Example facility

Starting conditions

Symptomatic residents (%)

Asymptomatic staff and residents (%)

Staff vaccinated or previously infected in last 6 months (%)

Residents vaccinated or previously infected in last 6 months (%)
Testing

0% -

2%
37.5%, 80%, 98%
78%

Gharpure et al. (2021)
Gharpure et al. (2021)

Test result delay (days)
Testing cadence (days)

Test sensitivity symptomatic (%)

Test sensitivity asymptomatic (%)

469

2 (qRT-PCR),
0 (Rapid)
7

95% (qRT-PCR), 64.2%
(Rapid)

95% (qRT-PCR), 35.8%
(Rapid)

Hanson et al. (2020) (QRT-PCR),
Prince-Guerra et al. (2021)
(Rapid)
Prince-Guerra et al. (2021)
(Rapid)

(continued on next page)
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Table A.1 (continued )

Input parameter Simulation values Source

Test specificity (%) 99.5% Hanson et al. (2020) (QRT-PCR),
Hanson et al. (2021) (Rapid)
Epidemiology (Advanced)

RO* 14 —

Community 14 day case rate/100K 168 NYT Covid Tracker
Probability of symptomatic infection 0.4286 Buchwald et al. (2021)
Mean latent period (days in Exposed category) 5 Sanche et al. (2020)
Mean time in infected state (either asymptomatic or symptomatic) before transition to 8 Bi et al. (2020)
recovered

Quarantine period (days) 14 LTCF Recommendation
Probability symptomatic infected individual self-quarantines each day 0.28* -

Relative secondary attack rate for asymptomatic individuals compared to symptomatic .667 Buchwald et al. (2021)
individuals

Simulation (Advanced)

Start date 2021-05-01 -
Duration (days) 60 —
Number of runs 500 -

* Given the heavy usage of personal protective equipment in LTCFs, RO values estimated for other settings, such as schools or the community, are unlikely to
hold in LTCFs. The RO value was selected by the authors as something reasonable to explore the impacts of other transmission factors.

* Probability was specified such that cumulative probability a symptomatic infected individual self-quarantines over the course of 7 days is 0.9, where the
probability of self-quarantining each day is assumed independent.

Table A.2
Daily contact matrix governing interactions between entities in different subgroups.

Day staff Night staff Residents
Day staff 7 1 7
Night staff 1 3 2
Residents 7 2 1

Probability staff member infected from community

The probability a random individual in the community is infectious is estimated to be 14/100,000 times the 14-day case
rate, which roughly assumes an individual is infectious for a full 14-day interval. Although this estimate may be high based on
literature on the infectiousness period of COVID-19, it is known that case rates are censored due to lack of testing and thus, the
hope is this provides a reasonable estimate of a staff member's risk of obtaining COVID-19 through community spread. Each
staff member is assumed to come into contact with five individuals each day so this probability they are infected from the
community is 1 — (1—-14/100,000*(14-daycase rate))"5.

Translating RO to transmission parameter

The user inputs an Ry value, which we use to calibrate the parameter (. Beta represents the probability that a contact
between an infectious agent and a susceptible agent results in transmission. Define Ry as

Ro=(8p+2/36(1 - p))max(eig(C))
where p is the probability that an agent is infectious and max(eig(C)) is the maximum eigen value of the contact matrix, C
(Diekmann et al., 1990). We rearrange this equation solving for § as a function of R,
Ro
(p+2/3(1 — p))max(eig(C))

=

Timing of transmission

In a typical compartmental epidemiological model (e.g., SEIR), the generation interval is the mean duration in the exposed
class (latent period) plus the mean duration in the infectious class (infectious period), which we assume are 5 and 8 days,
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respectively. These assumptions imply a generation interval of 13 days which is longer than the time between generations
observed during the COVID-19 pandemic (Tang et al., 2021). However, this calculation of the generation interval is based on a
model without testing and quarantine. In our model, agents are routinely testing and isolating if infected, which effectively
reduces the mean generation interval since many infectious agents stop making contacts shortly after infection is detected.
The effective time between generations depends on the testing cadence and compliance of the agents in LTCFs.

Appendix B. Additional Results

Table A.3
Attack rate by vaccination and testing scenario over 500 simulations. Mean (10th percentile, 90th percentile).

Vaccination Rate None qRT-PCR Rapid
Residents 37.5%. 26% (23%, 29%) 23% (20%, 27%) 26% (23%, 29%)
80% 26% (23%, 29%) 12% (7%, 18%) 23% (19%, 27%)
98% 24% (20%, 28%) 5% (1%, 9%) 12% (5%, 19%)
Staff 37.5% 64% (62%, 65%) 57% (53%, 61%) 63% (61%, 65%)
80% 24% (22%, 25%) 15% (12%, 19%) 22% (19%, 24%)
98% 7% (5%, 9%) 3% (2%, 5%) 5% (3%, 7%)

Table A4
Staff absenteeism by vaccination and testing scenario over 500 simulations. Mean (10th percentile, 90th percentile).

Vaccination Rate None qRT-PCR Rapid
37.5% 39% (34%, 44%) 80% (74%, 86%) 86% (82%, 89%)
80% 16% (13%, 20%) 20% (14%, 27%) 29% (24%, 34%)
98% 6% (4%, 8%) 4% (1%, 7%) 7% (4%, 11%)
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Fig. A.1. Number of infectious residents (red) and staff (blue) at the facility by day over 60 days. The line represents the mean daily value and the shaded area
represents the tenth (lower) and ninetieth (upper) percentile of the distribution based on 500 model simulations.
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