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José Hélio Costa1,2*, Gunasekaran Mohanapriya2,3, Revuru Bharadwaj2,3,
Carlos Noceda2,4, Karine Leitão Lima Thiers1,2, Shahid Aziz1,2, Shivani Srivastava2,5,
Manuela Oliveira2,6, Kapuganti Jagadis Gupta2,7, Aprajita Kumari2,7, Debabrata Sircar2,8,
Sarma Rajeev Kumar2,3, Arvind Achra2,9, Ramalingam Sathishkumar2,3, Alok Adholeya2,5

and Birgit Arnholdt-Schmitt 1,2*

1 Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of
Ceará, Fortaleza, Brazil, 2 Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism
Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal, 3 Plant Genetic Engineering
Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India, 4 Cell and Molecular Biotechnology of
Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura,
Universidad de las Fuerzas Armadas-ESPE, Sangolquı́, Ecuador, 5 Centre for Mycorrhizal Research, Sustainable Agriculture
Division, The Energy and Resources, Institute (TERI), TERI Gram, Gurugram, India, 6 Department of Mathematics and CIMA -
Center for Research on Mathematics and Its Applications, Universidade de Évora, Évora, Portugal, 7 National Institute of
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In a perspective entitled ‘From plant survival under severe stress to anti-viral human
defense’ we raised and justified the hypothesis that transcript level profiles of justified
target genes established from in vitro somatic embryogenesis (SE) induction in plants as a
reference compared to virus-induced profiles can identify differential virus signatures that
link to harmful reprogramming. A standard profile of selected genes named ‘ReprogVirus’
was proposed for in vitro-scanning of early virus-induced reprogramming in critical
primary infected cells/tissues as target trait. For data collection, the ‘ReprogVirus
platform’ was initiated. This initiative aims to identify in a common effort across scientific
boundaries critical virus footprints from diverse virus origins and variants as a basis for
anti-viral strategy design. This approach is open for validation and extension. In the
present study, we initiated validation by experimental transcriptome data available in
public domain combined with advancing plant wet lab research. We compared plant-
adapted transcriptomes according to ‘RegroVirus’ complemented by alternative oxidase
(AOX) genes during de novo programming under SE-inducing conditions with in vitro
corona virus-induced transcriptome profiles. This approach enabled identifying a major
complex trait for early de novo programming during SARS-CoV-2 infection, called ‘CoV-
org July 2021 | Volume 12 | Article 6736921
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MAC-TED’. It consists of unbalanced ROS/RNS levels, which are connected to increased
aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression
of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously
target ‘CoV-MAC-TED’ in primary infected nose and mouth cells through prophylactic and
very early therapeutic strategies. We also discuss potential strategies in the view of the
beneficial role of AOX for resilient behavior in plants. Furthermore, following the general
observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at
the very beginning of viral infection, we highlight that ‘de-stressing’ disease and social
handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.
Keywords: SARS-CoV-2, redox biology, alternative oxidase, tubulin, mTOR, melatonin, repurposing drugs
INTRODUCTION

Towards the tail end of 2019, a corona virus disease caused a
pandemic outbreak. The virus is designated as ‘severe acute
respiratory syndrome corona virus 2’ (SARS-CoV-2) and has
apparently zoonotic origin. SARS-CoV-2 is a virion enveloping a
single positive-stranded RNA genome, which is capable of
entering into human cells by using the physiologically
important, hormone-related receptor ACE2 (angiotensin
converting enzyme, 2). The complex and diverse multi-
systemic effects of the virus on individuals and its pandemic
impact are widely discussed in comparison to two other similar
viruses with endemic impacts from the Coronaviridae family,
SARS-CoV and MERS-CoV (1–6). These similar viruses exhibit
more drastic clinical impairment, but showed less human-to-
human transmission rates and lower mortality (7). Also, SARS-
CoV-2 has thermodynamic advantages than former Corona
virus SARS-CoV through binding with higher affinity to ACE2
receptors (8).

The intense damage caused by viruses to human and the
possibility of similar virus threats in the future triggered a
worldwide debate and tremendous efforts have been initiated
across all society levels. The global academic community aims to
widen the knowledge dimensions for developing specific and
wider antiviral concepts and strategies. In this context, we intend
to contribute with relevant knowledge, which can be useful for
developing intervention strategies well before virus spread can
start to become an exponentially growing threat for the infected
person and, thus, for the community.

Viruses are non-living structures. However, they are able to
gain power over human cell programs and individual organism
fitness due to their dominating presence. This is in conformity
with knowledge on structuralism and biosemiotics in Theoretical
Biology, which acknowledges the importance of relationships
and signs rather than characteristics of individual components
for the functioning of systems (9). In an abstract sense, virus
reproduction depends on the virus-inherent ‘structural power’ in
relation to other components in the system. This term is taken
from peace research related to socio-economic systems, where
inequality is recognized as the main driver for structural violence
(10, 11). This view can also be applied for the relation of viruses
to their hosts. In fact, viruses have comparatively low Gibbs
org 2
energy due to their chemical compositions (12, 13). This makes
their replication highly competitive and a driving force against
the host cell metabolism. Virus-induced cell reprogramming
favors virus replication, but demands at the same time cell
reprogramming for host defense and survival. As a
consequence of this conflict, any viral infection provokes
struggling for commanding coordination of host cell program
and this starts in the initially infected cells. Competing for
bioenergy and for ‘territories’ is decisive for the success of
virus reproduction and evolution.

Virus spread and its natural evolution escaped quite
successfully human control. Currently, there is no awareness of
any effective and simple broad anti-viral treatment available that
could also be used to treat SARS-CoV-2 infections. When viral
structures enter in contact with living cells, the latter cannot
ignore their presence. Ignorance would be helpful and nothing
harmful would happen to the host cells. However, this is way
behind possible, because viral structures interact at the outer cell
surface in a way that stimulates cell’s program-commanding
components, such as reactive oxygen species (ROS) (14) and
growth factors (15), which in turn induce changes in intracellular
signaling cascades. Successful virus propagation relies on
manipulated cell programming that allows abusing the host’s
energy resources by help of the proper host. Since viruses are
non-living structures, damage of the host is not a target but
might happen as collateral circumstance (16). Therefore, virus
docking to cell membranes and the subsequent membrane fusion
event that enable entrance of the virus particles into living cells
can be seen as ‘structural violence’. It is a sort of ‘hostile takeover’
as it is known from economy. Correspondingly, virus affects host
system management and makes it act in favor of the incoming
structures and risks thereby the healthy status or even life of the
host cell and, finally, the overall organism (16).

Primarily virus-infected cells act as super-spreaders. In case of
corona viruses, cell-cell fusion between infected and adjacent,
uninfected cells were reported to form giant, multinucleated cells
that allow rapid spread within infected organisms obviously even
without being detected and neutralized by virus-specific
antibodies (17). Massive virus replication is energy-costly,
weakens and endangers the host and can cause a pandemic
threat. And there is a second danger too that comes ‘secretly and
as gratis’ when virus replication is not stopped during the very
July 2021 | Volume 12 | Article 673692
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early phase of infection: virus coding sequences might undergo
modifications due to the host’s and/or virus-driven error-prone
molecular machinery. Consequently, when the rate of virus
replication progresses and reaches massive propagation, the
probability of virus code evolution increases and, this might
enhance in turn virulence (18, 19). However, a widened diversity
of virus coding structures reduces the chance that the immune
system of individual organisms and of present and future
networking populations are prepared to keep virus threat at
low level. And thirdly, in case of SARS-CoV-2, once acquired
immunity might also not last for a prolonged time (20). For these
three reasons, it is of utmost importance to understand the very
first steps in virus-induced cell reprogramming. This is
influential to develop efficient and sustainable anti-viral
concepts for confronting viral infection by administrating early
or even prophylactic therapies.

In a parallel perspective paper entitled ‘From plant survival under
severe stress to anti-viral human defense’ we proposed using a
standard profile of selected genes (‘ReprogVirus’) to trace early
footprints of wide varieties of viruses under standardized in-vitro
conditions (21). We raised and justified the hypothesis that transcript
level profiles of justified target genes established from in vitro somatic
embryogenesis (SE) induction in plants as a reference compared to
virus-induced profiles can identify differential virus signatures that
link to harmful reprogramming. This interdisciplinary approach was
explained in details, including especially the use of SE induction in the
two plant species Arabidopsis thaliana and carrot (Daucus carota L.)
as efficient experimental tools to identify markers for early
reprogramming and resilience and the focus on alternative oxidase
(AOX). Here, we follow strictly that approach in order to initiate
scientific validation of the underlying hypothesis and enable
progressing in a common effort towards the wider perspective for
anti-viral strategy-design.
BACKGROUND

Virus Captures Host Cell Signaling and
Metabolism
Viral infections causing respiratory complications are known to
change host cell redox homeostasis, which involves balancing ROS/
RNS as a critical event (22). RNA viruses were suggested to utilize
oxidative stress during infection to control genome RNA capping
and genome replication (14, 23, 24). In airway epithelial cells, virus-
induced ROS was found to originate from diverse oxidase activities,
including NADPH oxidases, dual oxidase, and xanthine oxidase
[reviewed in (22)]. Similar to plant superoxide dismutase (SOD),
animal SOD plays a central role as an oxidative stress indicator and
also as an anti-oxidative stress defender along with a set of other
ROS scavenging enzymes, such as, catalase, GPX (glutathione
peroxidase) and GSR (glutathione reductase) was found to be
induced upon viral infection (25) and also highlighted in stem cell
research as an indicator for cell reprogramming (26). Likewise,
nitric oxide (NO) was found to be involved in virus replication (27,
28). In humans, NO production during viral infection depends on
nitric oxide synthase (NOS). Inducible NOS (NOS2) produced
Frontiers in Immunology | www.frontiersin.org 3
much higher amounts of NO for a prolonged duration as
compared to constitutively expressed neuronal (NOS1),
endothelial (eNOS or NOS3) and mitochondrial NOS (29).
Biogenesis of higher levels of NO can suppress type 1 helper T-
cell-dependent immune responses, which can impair type 2 helper
T-cell-biased immunological host responses (29). eNOS is mostly
present in endothelial cells and its functionality can be restored with
renin- and angiotensin-converting enzyme-inhibitors or
angiotensin receptor blockers, both commonly used to regulate
blood pressure in hypertensive patients (30).

Several metabolic changes have been reported in virus-infected
animal and/or plant host cells that were related to central carbon
metabolism: e.g. (a) increased rate of glycolysis linked to pools of
nucleotides and amino acids essential for replication (31, 32), (b)
differential mTOR (mammalian target of rapamycin) pathway
regulation and intracellular calcium signaling linked to enhanced
Krebs cycle, (c) down-regulation of glycolysis that severely affected
viral infection (33–35), (d) encoding mitochondria-related proteins
that disturbed normal functioning of mitochondria (36), (e)
increased production of lactic acid from glucose pumped out of
cell (37), (f) knock-down of ADH (Alcohol dehydrogenase) and
pyruvate decarboxylase that diminished virus replication rates (38),
and, (g) interplay between glycolysis and fermentation that is
suggested to serve metabolome channeling for virus replication
highlighted as paradigm change (39). Bojkova et al. (40) observed
that blocking of glycolysis resulted in prevention of SARS-CoV-2
replication in infected cells. Lactate present in the circulating system
had been identified besides interleukin-6 as independent prognostic
factors for disease progression in a relatively small clinical data
collection. In addition, increased lactate was found to impair
antiviral immunity (41). Subsequent to the appearance of
symptoms, disease severity was classified by monitoring disease
progression during 24h to 48h and beyond this duration of disease
progression, lactate was not found to be useful to predict fatality
(survivor vs non-survivor) (42). In primary lung epithelial cells
validated by biopsies of COVID-19 patients, SARS-CoV-2 induced
oxidative stress due to mitochondrial dysfunction (32). In these
studies, endoplasmic stress symptoms were related to modulation of
lipid metabolism. Transcriptional responses in primary lung
epithelial cells and data from biopsies were shown to be
predominantly of metabolic nature (59% to 65% of all
differentially expressed genes). They indicated upregulation of
glycolysis and dysregulation of citric acid cycle, which was
mediated by the transcription factors NF-kB and RELA. In
patients, elevated blood glucose was found to be a risk factor
independently from diabetes. SARS-CoV-2 infection was
associated to marked increase in intracellular glucose and
transcriptional modulation in glucose metabolism along with
elevated lactate levels (32). Several authors report that in virus
research transcriptome data and a focus on gene sets revealed to be
critically relevant for cell and organism performance (43–47).

Host Microtubule Assembly Is Critical for
Virus Entry, Replication and Spread
Microtubules (MT) interfere with viral infection process right from
the very start. Thus, the aspects related to regulation of biosynthesis
July 2021 | Volume 12 | Article 673692
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and organization of the MT assembly determines critically the
frame for reprogramming and the acquiring of basal defense of
the host cells. Virus attach and enter at specific sites of human host
cells in relation to the spatial organization of surface receptors and
entry factors, which is partially controlled by MT and their
polarization (48). MT-driven transport within the cells by dynein
and kinesin family of motors has been shown to have crucial role in
virus replication and spread (49). Interaction of alpha-corona virus
spike (S) proteins with tubulin has been shown to support S protein
transport and incorporation into virus particles (50). Virus can
promote MT polymerization, stabilization or disruption and actin-
MT crosstalk depending on the cellular status with regard to the
stage in viral infection. Receptor engagement by viruses’ influences
MT dynamics facilitating viral infection during the early stages of
infection. MTs or MT-like proteinaceous filaments are found to be
highly relevant for infections by diverse viral classes and across
kingdoms and species (48). a-Tubulin has been shown to be
involved in regulating cell death and program decisions linked to
cell cycle activation (51, 52). Enzymes catalyzing post-translational
MT modifications are realized to be suitable targets for drug
development for combating viral infection (52).

Viruses Can Influence Host Cell Cycle in
Favor of Their Own Replication
Viruses can affect host cell cycle regulation in favor of viral
replication, which might seriously affect host cell physiology with
impacts on pathogenesis (53–55). Viruses were shown to influence
different stages of the host cell cycle resulting in either progression
or arrest of cell cycle with the involvement of homologous proteins
(54, 56). Cellular levels of phosphorylated retinoblastoma tumor
suppressor protein (pRb) were found to be critical for the
progression of cell division to S phase (57). Hyperphosphorylation
of Rb allows activation of E2F family of transcription factors,
resulting in the transcription of genes associated with S phase
of the cell cycle (58). In Rb-deficient mouse embryos, mutation of
E2F1 was found to markedly suppress apoptosis and also entry of
cells into S-phase resulting in prolonged cell survival (59).
Impressively, TOR-suppression in plants either by silencing or by
inhibitor treatment (AZD8055) was shown to reduce virus
replication, leading to conferring virus resistance in the host plant
or even to total elimination of viral infection [reviewed in (60)].
Corona viruses have been shown to notably arrest cells in G0/G1
stage of cell cycle. Enrichment of coronavirus-infected cells had also
been found in G2/M stage (54). SARS-CoV is known to produce 3b
and 7a non-structural proteins, which together decrease level of
cyclin D3 and dephosphorylation of pRb in order to arrest cell cycle
at the S phase (61). SARS-CoV-induced synthesis of protein 3a was
reported to arrest cell cycle at the G1 stage via the operation of the
earlier mentioned pathways (62). Recently, Laise et al. (55) identified
12h, 24h, and 48h signatures from calu-3 lung adenocarcinoma cells
infected with SARS-CoV, which included genes related to cell cycle
progression, viz., E2F and mTOR.

Host Microbiome Can Influence Viral
Infection Progress
Host microbiomes are individual specific. They can affect viral
infection either negatively and positively (63, 64). Host
Frontiers in Immunology | www.frontiersin.org 4
microbiome can increase virion stability, provide DNA
replication machinery, stimulate the lytic phase of virus and
counteract host immune responses. Further, microbiota can even
enhance viral genetic recombination through adhering host cells
and facilitating thereby infection of two or more viruses in a
single cell (65). In contrast, probiotic bacteria, such as
Bifidobacterium and Lactobacillus , increased cellular
biosynthesis of cytokines and interleukins upon viral infection
(66, 67). Additionally, Lactobacillus vaginalis inhibited infection
through human immunodeficiency virus (HIV) by producing
lactic acid and maintaining acidic environment in vagina (68).
Vaginal lactic acid can profoundly increase biosynthesis of anti-
inflammatory cytokines, which was shown to help preventing
infection by Herpes virus (69). These observations demonstrate
that it can be important to better understand the interaction of
microbiota with virus-induced early reprogramming in target
cells and to apply this knowledge when prophylactic and early
therapies are required.
MATERIAL AND METHODS

Gene Expression Analyses of RNA-Seq
Data From Arabidopsis thaliana and
Virus-Infected Human Cells
Genes for expression analyses correspond to standard profile of
genes selected for studying virus-induced early reprogramming
(named ‘ReprogVirus’) [(21), in press]. For plant material,
‘ReprogVirus’ was complemented by alternative oxidase (AOX)
and genes of plant secondary metabolism. In summary, the
selected genes related to ROS/RNS equilibration (AOX, ADH2/
ADH5), anti-oxidant activities (SOD, Cat, GPX, GSR, plant-PAL,
CHS, C3H, CAD), NO production (plant-NR, NOS), glycolysis
(Hexokinase, PFK-M, GAPDH, enolase, pyruvate kinase), G6PDH,
MDH1/2, fermentation (LDH, ADH1), structural cell organization
(alpha-tubulin, actin), energy status-signaling (SNRK), cell cycle
regulation (TOR/mTOR, E2F1-3, E2F5) and regulation of apoptosis/
cell death (BAG,Meta-CASP, Caspase In, Caspase Ex, Bcl-xL). In the
case of virus-infection trials, a set of additional genes from the
immune system (IRF9 and IRF3) and the two transcription factors
NF-KB1 and NF-KB-RELA were included. For SARS-CoV-2related
profiles, we added receptor ACE2 and the priming protease
TMPRSS2. Additionally, we searched transcriptomes of virus-
infected cells for the melatonin synthesis-related gene ASMT (N-
acetylserotonin O-methyltransferase). ASMT is involved in
melatonin synthesis in human cells (70).

Gene expression was evaluated in specific RNA-seq experiments,
which were collected from Sequence Read Archive (SRA) database
of GenBank, NCBI. Expression analyses were performed from
Arabidopsis and virus infected human cells. Experimental and
projects details were given in Supplementary Table S11. Specific
regions (3’ end) of each cDNA were aligned against RNA-seq
experiments using mega BLASTn tool (71) to obtain the mapped
reads according to Saraiva et al. (72). Specific parameters of mega
BLASTn as word size were adjusted to allow specific read detection
of each gene. The mapped reads were also verified using the Magic-
Blast (73), a more recent tool with accurate features for RNA-seq
July 2021 | Volume 12 | Article 673692
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data. The number of mapped reads (on each gene/experiment) was
normalized using the RPKM (Reads Per Kilo base of transcript per
Million of mapped reads) method (74). The following equation was
applied: RPKM = (number of mapped reads X 109)/(number of
sequences in each database X number of nucleotides of each gene).
According to the mined datasets, transcript levels of Arabidopsis
seedlings consisted of the values of three biological replicates. All
viral infection experiments had three biological replicates, except
RSV infection to A459 cells, which had only two biological
replicates. The number of reflected technical replicates varied in
the RSV datasets between one and three.

All Selected Genes Are Listed Below:
For Arabidopsis: total AOX (Alternative oxidase) [AOX1a
(AT3G22370.1); AOX1b (AT3G22360.1); AOX1c (AT3G27620.1);
AOX1d (AT1G32350.1); AOX2 (AT5G64210.1)], LDH (Lactate
dehydrogenase) (AT4G17260.1), ADH1 (Alcohol dehydrogenase)
(AT1G77120.1), Total enolase [cyt-ENO1 (AT2G29560.1); cyt-
ENO2 (Cytosolic-enolase) (AT2G36530.1); plast-ENO1 (Plastidial-
enolase) (AT1G74030.1)], cyt-Fe-SOD1 (Cytosolic-iron-Superoxide
dismutase 1) (AT4G25100.1), mt_Mn-SOD1 (mitochondrial
manganese superoxide dismutase 1) (AT3G10920.1), CAT3
(catalase), (AT1G20620.1), Total GPX (Gluthatione peroxidase)
[GPX1 (AT2G25080.1); GPX2 (AT2G31570.1); GPX3
(AT2G43350.1); GPX4 (AT2G48150.1); GPX5 (AT3G63080.1);
GPX6 (AT4G11600.1); GPX7 (AT4G31870.1); GPX8
(AT1G63460.1)] , Cyt-GSR1 (Gluthatione reductase)
(AT3G24170.1), total PAL (Phenylalanine ammonia lyase) [PAL1
(AT2G37040.1); PAL2 (AT3G53260.1); PAL3 (AT5G04230.1);
PAL4 (AT3G10340.1)], total CHS (Chalcone synthase) [CHS-A
(AT1G02050.1); CHS-B (AT4G34850.1); CHS-C (AT4G00040.1);
CHS-D (AT5G13930.1)], C3H (p-coumarate 3-hdroxylase)
(AT2G40890.1), CAD (cinnamyl alcohol dehydrogenase) [CAD4
(At3g19450); CAD5 (At4g34230); CAD7 (At4g37980); CAD8
(At4g37990)], total NR (nitrate reductase) [NIA1 (AT1G77760.1);
NIA2 (AT1G37130.1)], ADH2 (AT5G43940.2), total ACT (actin)
[ACT1 (AT2G37620.1); ACT2 (AT3G18780.1); ACT3
(AT3G53750.1); ACT4 (AT5G59370.1); ACT7 (AT5G09810.1);
ACT8 (AT1G49240.1); ACT9 (AT2G42090.1); ACT11
(AT3G12110.1); ACT12 (AT3G46520.1); ACT (AT2G42170.1)],
to ta l a lpha- tubul in [TUA1 (AT1G64740 .1) ; TUA2
(AT1G50010.1); TUA3 (AT5G19770.1); TUA4 (AT1G04820.1);
TUA5 (AT5G19780.1); TUA6 (AT4G14960.2)], SNRK (sucrose
non-fermenting related kinase) [KIN10 (AT3G01090.1); KIN11
(AT3G29160.1)], TOR (target of rapamycin) (AT1G50030.1), E2F
[E2F1 (AT5G22220.2) ; E2F3 (AT2G36010.1) ; E2F5
(AT1G47870.1)], total BAG (Bcl-2 associated gene) [BAG1
(AT5G52060.1); BAG2 (AT5G62100.1); BAG3 (AT5G07220.1);
BAG4 (AT3G51780.1); BAG5 (AT1G12060.1); BAG6
(AT2G46240.1); BAG7 (AT562390.1)], Meta-caspase (MC-1
(AT1G02170.1); MC-2 (AT4G25110.1) MC-3 (AT5G64240.1);
MC-4 (AT1G79340.1); MC-5 (AT1G79330.1); MC-6
(AT1G79320.1); MC-7 (AT1G79310.1); MC-8 (AT1G16420.1);
MC-9 (AT5G04200.1)], ASMT (AT4G35160).

For Homo sapiens: total LDH [LDH-A (NM_005566.4); LDH-B
(NM_002300.8); LDH-C (NM_002301.4); LDH-AL6A
(NM_144972.5); LDH-AL6B (NM_033195.3)] , SOD1
Frontiers in Immunology | www.frontiersin.org 5
(NM_000454.5), SOD2 (M36693.1), Catalase (NM_001752.4),
total GPX [GPX-1 (NM_000581.4); GPX-2 (NM_002083.4); GPX-
3 (NM_002084.5); GPX-4 (NM_002085.5); GPX-5 (NM_001509.3);
GPX-6 (NM_182701.1); GPX-7 (NM_015696.5); GPX-8
(NM_001008397.4)], GSR (NM_000637.5), NOS1 (nitric oxide
synthase) (NM_000620.5), NOS2 (NM_000625.4), NOS3
(NM_000603.5), ADH5 (NM_000671.4), Hexokinase [HK1
(NM_000188.3); HK2 (NM_000189.5); HK3 (NM_002115.3)],
PFK-M (NM_001166686.2), GAPDH (NM_002046.7), Enolase
[Eno1 (NM_001428.5); Eno2 (NM_001975.3); Eno3
(NM_001976.5)], Pyruvate kinase [PKLR (XM_006711386.4);
PKM (NM_002654.6)], G6PDH (NM_000402.4), MDH1
(NM_005917.4), MDH2 (NM_005918.4), SNRK (NM_017719.5),
mTOR (NM_004958.4), E2F1 (NM_005225.3), Actin [ACT-A1
(NM_001100 .4) ; ACT-B (NM_001101 .5 ) ; ACT-G1
(NM_001199954.2)], IRF9 (NM_006084.5), IRF3 (NM_001571.6),
NF-KB1 (NM_003998.4), NF-KB-RELA (NM_021975.4), Caspase
in [CASP8 (NM_001228.4); CASP9 (NM_001229.5); CASP10
(NM_032977.4)], Caspase ex [CASP3 (NM_004346.4); CASP6
(NM_001226.4); CASP7 (NM_001227.5)], BCL-xL (Z23115.1),
ACE2 (NM_001371415.1), TMPRSS2 (NM_001135099.1),
ASMT (NM_001171038.2).

Induction of Somatic Embryogenesis in
Daucus carota L. for the Identification of
Markers for Early Reprogramming
Carrot seeds (cv. Kuroda) were surface-sterilized with 75%
ethanol for 1 min and 4% sodium hypochlorite solution for
20 min. Later, seeds were washed thrice with sterile water and
dried on filter paper under laminar air flow. Dried seeds were
collected into sterile screw-cap tubes and stored in dark at room
temperature. Surface sterilized seeds were inoculated on B5 solid
medium supplemented with 0.5 mg l-1 2,4-D according to
Mohanapriya et al. (75), also supplemented with 0% and 2%
sucrose. Plates were incubated in culture room at 22-25˚C with
16h/8h photoperiod. Triplicates of 40 seeds per plate were
maintained for each treatment. At 0, 6, 12, 24, 48 and 72 hours
after inoculation (HAI) numbers of seeds with induced callus
were recorded and samples were collected simultaneously for
ADH assay. The embryogenic nature of calli was routinely
evaluated by microscope till 45 days after inoculation. With 0%
sucrose, non-embryogenic calli were induced, while in presence
of 2% sucrose, embryogenic calli were obtained. In this system,
the efficiency of SE induction can be optimized by increasing
sucrose to 3%, that induces a significantly higher number of calli
leading to SE when compared to 2% sucrose (unpublished data).

For studying the influence of the AOX, inhibitor salicyl
hydroxamic acid (SHAM) and its interaction with sucrose on
the morphogenetic effect of auxin-treatment, seeds were
inoculated on 0.5 mg l-1 2,4-D supplemented solid B5 medium
at 0% and 3% sucrose along with 10 mM SHAM (dissolved in
50% DMSO and sterilized by using 0.22 µm filters). Seeds were
harvested at 0, 6 and 12HAI, and 10 days after inoculation, and
then shifted into SHAM-free media. Emergence of calli was
recorded at every 24h intervals until 240 HAI (24, 48, 72, 96, 120,
144, 168, 192, 216, and 240 HAI). Experiments of callus
differentiation consisted in two sets of 40 seeds each per
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treatment, and ADH measures were performed with duplicated
pools of 40 seeds, according to the description of the experiment.

Alcohol Dehydrogenase (ADH) Assay
Performed During SE Induction From
Carrot Seeds to (a) Confirm Generality of
the Observed Increase in ADH Expression
at Transcriptome Level in the Model Plant
Arabidopsis in a Second Plant System
Using a Biochemical Approach and (b) to
Study the Link Between Early ADH
Enzyme Expression, External Sucrose
and Initiation of Cell Proliferation
Forty seeds were collected at 0, 12, 24, 30, 48, and 72 HAI grown
on 0.5 mg l-1 2,4-D supplemented solid B5 medium. They were
bulked and ground into powder in a sterile mortar and pestle by
using liquid nitrogen. Fine powder was extracted using 1 mL of
1X phosphate saline buffer (pH 7.2) and centrifuged for 30 min
at 10,000 rpm at 4°C. The obtained supernatant was used as
crude protein extract for enzyme assay. The assay was performed
according to the protocol given in Kagi and Vallee (76). Briefly,
the reaction mixture consisted of 1.3 ml 50 mM sodium
phosphate buffer (pH 8.8), 0.1 ml 95% ethanol, 1.5 ml 5 mM
ß-nicotinamide adenine dinucleotide (ß-NAD+) and 0.1 ml of
crude protein extract. This mixture was immediately inversed
several times for homogenization and absorbance at 340 nm was
recorded from 0 to 6 min. Alcohol dehydrogenase from
Saccharomyces cerevisiae was used as positive control. Active
enzyme units (IU - international units) were calculated
according to the following formula:

(DA340=minTest�DA340=minBlank)(3:0)(df )
(6:22)(0:1)

3.0 = Total volume (ml) of assay
df = Dilution factor
6.22 = millimolar extinction coefficient of reduced ß-

nicotinamide adenine dinucleotide (ß-NAD+) at 340 nm
0.1 = Volume (ml) of crude extract used
In Figure 1A.2, the calculated IU of ADH was multiplied by a

factor (x5) for better visualization of the relationship between
ADH (IU) and number of seeds with showing callus.

Bacterial Endophyte and Mycorrhiza
Treatments of D. carota L. Seeds to
Explore Whether Microbiota Might
Potentially Interact With Oxidative
Metabolism/Redox Status Regulation
During Early Cell Reprogramming and
Whether This Might Depend on the
Individuality of Organisms
Seeds of two carrot varieties, Kuroda and Early Nantes, were used
for the experiments. At first, they were pretreated to remove
native endophytes by an established protocol (75). Briefly, stock
solutions of 1 mg ml-1 tetracycline (antibiotic) and miconazole
nitrate (antifungal) were prepared and 5 ml of each solution was
Frontiers in Immunology | www.frontiersin.org 6
transferred onto a Petri plate. 200 mg of carrot seeds were
weighed and added into the plate containing antibiotic and
antifungal solutions and kept under constant shaking (100
rpm) for 6 hrs. Thereafter, seeds were washed with sterile
deionized water for three times and kept under laminar air
flow until they were completely dried. To confirm the
effectiveness of the treatment, few seeds were collected
randomly and cut into small pieces. These pieces were placed
on nutrient agar/potato dextrose agar (Himedia, India) and
incubated at 35°C/28°C for overnight (bacteria) to 2 days
(fungi). Absence of bacterial/fungal growth indicated that seeds
were free from native endophytes.

For bacterial endophyte treatment, Single colonies of native
bacterial endophytes (EN1, EN2, EN3) were inoculated in 100 ml
of autoclaved nutrient broth (HiMedia, India) and incubated at
35°C overnight. Overnight grown bacterial cultures were
centrifuged for 5 min at 4000 rpm to collect the pellet. The
pellet is diluted with sterile deionized water until the optical
density (O.D) reached to 0.2 (2 x 108 cells ml-1). The endophyte-
free seeds were immersed in 20 ml of each bacterial culture and
kept under shaking at 100 rpm for 2 h. Then, seeds were dried
under laminar air flow to remove excess moisture.

For arbuscular mycorrhizal fungi (AMF) treatments, 90 days
old root organ culture (ROC; stock culture) of Rhizophagus
irregularis and Rhizophagus proliferus was obtained from the
Centre for Mycorrhizal Culture Collection (CMCC), TERI,
India. The stock cultures of AMF1 and AMF2 were harvested
at 25°C in 100 ml sodium citrate buffer using a shaker (Kuhner
Shaker, Basel, Switzerland) (78). After deionization, buffer
containing harvested spores (without roots) was sieved through
a 325 British Standard (300 mm) Sieve (BSS) (Fritsch, Idar-
Oberstein, Germany). Spores retained on the sieve mesh were
washed with sterile distilled water (twice). Finally, the spores
were collected in 20 ml of sterile distilled water (all steps were
performed under aseptic conditions) (79).

For experimental set-up, autoclaved germination papers
(Glasil Scientific Industries, New Delhi, India) were placed
onto Petri dishes and moisturized with 5 and 10mM SHAM.
Forty bacterial endophyte-treated seeds were placed onto dishes
using sterile forceps. In the case of the AMF1 and AMF2
treatments, 40 endophyte free seeds were placed onto the
dishes and 5 spores of R. irregularis were inoculated per seed.
All treatments were setup with three replicates. Triplicates of
controls were maintained by inoculating seeds in sterile distilled
water. After inoculation, seeds were kept in darkness for 40 h and
then transferred to light conditions. The plates were incubated in
a culture room at 22-25°C with a 16h/8h photoperiod.
Germinated seeds were counted and data were recorded at 24,
30, 48, 72, 96 and 120 HAI. Seed germination was identified by
radicle emergence.

Statistical Analyses
Normality and homogeneity of variances from the samples were
tested with Shapiro-Wilk test and Bartlett or Levene tests,
respectively. If data were parametric, Student’s t-test (two
populations) or one-way ANOVA were used. ANOVA was
followed by Tuckey´s post hoc test when a significant effect of
July 2021 | Volume 12 | Article 673692

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Costa et al. CoV-MAC-TED
the tested factor was detected. When pre-requisites for
parametric analyses were not kept, variable transformations
were made [ln(x) and sqrt(x)] to perform parametric analyses,
or non-parametric tests were used. These last tests were
performed only for ADH levels in auxin-induced seeds
(Wilcoxon test, Figure 1B) and transcript levels obtained after
viral infections of MRC5 cells (Krukal-Wallis test, Figure 1B.4).
After ANOVA, post hoc analyses (Tukey’s) were performed.
Statistical packages used were InfoStat v. 2018 and R v. 4.0.2.

We highlight that we interpret our data as ‘real’ observations
under the employed conditions involving only small samples, which
certainly provide insights that cannot get relevance or not relevance
by using significance calculation. Nevertheless, we applied
significance calculations at usual p-values for biological research
as an aid to appropriately focus our insights. This is the reason for
describing our observations in figure legends by reporting the
attributes of the data as either significant or non-significant only
as additional information in parenthesis. Readers are encouraged to
making themselves familiar with the current paradigm change
related to the usage of statistical significance (80–84).
RESULTS & DISCUSSION

Following the perspective of Arnholdt-Schmitt et al. [(21), in
press], our principle goal of this study on coronaviruses with
special reference to SARS-CoV-2 was the validation of the
hypothesis that transcript level profiles of justified target genes
established from in vitro somatic embryogenesis (SE) induction
in plants compared to virus-induced profiles can identify
differential virus signatures that link to harmful reprogramming.

Thus, we first established a reference transcript profile from a
plant model experimental system and subsequently compared
this reference profile step-by-step along the outlined five
characteristics with transcriptome profiles of corona virus-
infected cells. As a consequence, we were able to extract targets
promising for developing a strategy to avoid virus spread already
in primary infected cells.

In Figure 1, we present functional transcriptome profiles
related to reprogramming under SE-inducing conditions in the
model species Arabidopsis thaliana (Figure 1A.1) and from
corona virus-induced human cell lines (Figure 1B.1–4).
Results of detailed observations and complementing wetlab
research results are highlighted in the subfigures and in Figure
legend. In the main text, we focus on the principle line of
this research.

In summary, we found (A) that the reference plant transcript
level profile marked early de novo cell programming by five
salient characteristics as follows:

(1) Modified complex oxidative stress signaling pattern and a
special role for increased superoxide dismutase (SOD) as
stress indicator

(2) Decreased transcript levels of NO-producing NR

(3) Signals that indicate arrested cell cycles at reduced alpha-
tubulin transcript levels
Frontiers in Immunology | www.frontiersin.org 7
(4) Transient increase in aerobic fermentation connected to
enhanced glycolysis

(5) Activation of the cell death-regulating system without cell
death down-regulation

By comparing this reference profile step-by-step along these
outlined five characteristics with transcriptome profiles of corona
virus-infected cells, we (B) noted the following observations:

(for 1) increased SOD2 transcript levels marked also early corona
viral infection in cultured human cells (MERS-CoV, SARS-
CoV and SARS-CoV-2). However, considering the pattern of
anti-oxidant enzymes, virus-infected cells responded with
differential complex patterning depending on infection
pressure, hours post infection, virus type and host cell type;

(for 2) in MERS-CoV infected calu-3 cells at MOI 4.0, up-
regulation of NOS3 transcript level was observed already at
6hpi, which strongly increased at 24hpi. However, in SARS-
CoV-2 infected NHBE cells at MOI 2.0, no transcription of
NOS genes was observed;

(for 3) as in the reference profile, SARS-CoV-2 infected A459
cells at low MOI (0.2) signaled arrested cell cycle at
significantly reduced alpha-tubulin transcript levels.
However, SARS-CoV-2 infected NHBE cells at 10 times
higher MOI (2.0) signaled cell cycle progression combined
with significant increase in tubulin transcript levels. Also,
MERS-CoV-infected calu-3 cells at high MOI (4.0) signaled
cell cycle progression early at 6hpi, but in the presence of
already significantly down-regulated tubulin transcripts. At
24hpi, arrested cell cycles were indicated, which was then
combined with more drastic down-regulation of tubulin
transcript levels. In agreement with the latter result, in
MERS-CoV- and SARS-CoV-infected MRC5 cells at 24hpi
and 48hpi, no sign of cell cycle progression or proliferation
was found, which was independent on lower (0.1) or higher
(3.0) MOI. Cell cycle arrest-signaling was combined with
down-regulated tubulin transcript levels as also seen in the
reference profile;

(for 4) SARS-CoV-2 infected NHBE cells (MOI 2.0) signaled
significant increase in aerobic fermentation through increased
LDH transcript levels, which was linked to enhanced
transcript levels for enzymes associated with glycolysis. In
MERS-CoV-infected calu-3 cells (MOI 4.0) at 6hpi, LDH
levels were found to be basal. This was linked to reduced
transcript levels for glycolysis. At 24hpi, transcript levels of
LDH and glycolysis related genes were drastically reduced

(for 5) SARS-CoV-2 infected A549 cells at low MOI (0.2)
indicated cell death arrest at 24hpi. NHBE cells that were
infected at 2.0 MOI with SARS-CoV-2, signaled at 24hpi
activation of the cell death-regulating system. RSV-infected
A549 cells at 15 MOI indicated at 24 hpi cell death arrest.
MERS-CoV infected calu-3 cells (MOI: 4.0) indicated strong
induction of the cell death regulatory system at 6hpi and
suppression of the system at 24hpi. Also, in MERS-CoV
infected MRC5 cells, suppression for the cell death-
regulating system was observed at 24hpi and at 48hpi at
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MOI 0.1 and 3.0. SARS-CoV infected MRC5 cells under the
same experimental conditions, showed much lower
replication rates than MERS-CoV infection (transcriptional
ORF reads, not shown). It might be due to this context that
initial activation of the cell death regulatory system is
indicated at 24hpi also in SARS-CoV-2 infected cells, but
that this initial activation was still followed at 48hpi by a trend
for increasing caspase (initiator and executor) transcript
levels.

As a consequence from our observations described under A
and B, we (C) could extract as main result the following targets
promising for developing a strategy to avoid early virus spread:

1. Balanced pattern of oxidative stress pattern
2. Decreased NO production
3. Avoidance of cell cycle progression by disconnecting

increased aerobic fermentation from energy canalization to
alpha-tubulin-based cell restructuration early during viral
infection

4. Avoidance of prolonged cell death promotion
5. Considering the unique holobiont nature of individuals in

firstly virus-infected cells

Taken together, this complex approach resulted in arriving at
two principle conclusions:

- Comparing in vitro coronavirus-induced transcriptome profiles
with plant cell transcript profiles during de novo
programming as a reference enabled to identify main
characteristics for early SARS-CoV-2-induced transcript
changes. Collectively, they indicate one major complex trait
for early de novo programming, named here as ‘CoV-MAC-
TED’: unbalanced ROS/RNS levels connected to increased
aerobic fermentation that links to alpha-tubulin-based cell
restructuration and cell cycle progression.

- In plant systems, it could be shown that the extent of aerobic
fermentation induced during de novo programming that
linked to the initiation of embryonic or non-embryonic cell
proliferation was regulated by interacting sucrose- and AOX-
levels. Early up-regulation of alcoholic and lactic aerobic
fermentation was connected to higher glycolysis and
oxidative stress levels. This was associated with increased
AOX transcript accumulation. Furthermore, our results
suggested that a mutant’s capacity for more efficient
reprogramming compared to wild type (WT) was linked to
the capacity of limiting aerobic fermentation, which
associated positively to AOX transcription levels.

These results are in good agreement with several studies,
which showed the occurrence of ROS/RNS disturbances during
early viral infection, a potential role of hijacked aerobic
fermentation for virus replication, involvement of cytoskeleton
during viral infection and virus-induced cell cycle modulation
(see in background). The findings further pinpoint to the
beneficial role of AOX for plant resilience that is related to
both ROS/RNS equilibration and redox homeostasis, able to
Frontiers in Immunology | www.frontiersin.org 8
avoid acidification and excess of toxic ethanol, and regulating at
the same time adaptive energy supply for growth performance
[(21), in press, (77), preprint]. Interestingly, Ito et al. (85)
discovered in Arum that temperature-dependent switching
between critical AOX polymorphisms in the binding site for
AOX-pyruvate can determine energy-related metabolic
regulation, which in turn results in plant performance. This
striking finding underlines again the multifunctional role of
AOX that includes besides ROS/RNS equilibration adjusting
energy metabolism at the threshold between mitochondrial
respiration and aerobic fermentation. AOX polymorphisms
have been identified and widely explored as genetic trait (86–
96), besides being epigenetic (97) and developmental
manifestation (98, 99). Also, polymorphisms in neighboring
regions of conserved functional sites had been shown to
discriminate AOX isoenzymes (100). Furthermore, it was
found that AOX polymorphisms could be used to distinguish
individual plants from the same species (101). Symbiotic AMF
revealed substantial AOX gene polymorphism within and
between spores (102), an observation which awaits to be
functionally explored in relation to adaptive plant holobiont
performance (103–107).

Our results demonstrated that endophytes can interfere with
the redox biology of the host system related to the initiation of
cell proliferation (Figure 1A.4). Plant-mycorrhizal fungi
interaction is suggested to involve AOX from both symbiotic
partners (102–104, 106). Consequently, the holobiont nature of
primary virus-infected cells should be considered as influencer
on the impact of early virus infections on cell redox status. We
suppose that endophyte interaction is important for program
initiation/realization rather than for early program induction
(75, 109). This view is in agreement with Visser-Tenyenhuis et al.
(110), who observed enhanced SE by bacterial co-cultivation,
although bacteria per se could not induce SE. Bharadwaj et al.
[(77), preprint] extended here reported results from endophyte
effects during germination and could show that sucrose critically
affected early endophyte impacts on the initiation of cell division
growth dependent on the quality of microbiota. It was concluded
that endophytes and symbiotic fungi can buffer negative effects of
excess in sucrose during early reprogramming. In this way,
microbiota and AOX are supposed to interact in support of
equilibrated rapid adaptation to sugar-transmitted inner and
outer environment signaling [see concept in (77), preprint].

The sophisticated role of AOX in plants had developed along
evolution in the context of complex holobiont systems.
Currently, AOX is developed as a tool for understanding the
functionality of its beneficial mechanisms also in mammals that
naturally do not enclose AOX [see references in (21), in press]. It
showed good integration into normal physiology when
constitutively overexpressed in animals. However, mammals
did not evolve AOX genes as an integral part in their complex
metabolic and multi-organism networks. Thus, whether AOX
could be useful in therapy as proposed for mitochondrial
respiratory deficiency diseases (111–116)) will, in our view,
crucially depend on its adaptive (positive and negative)
regulation, which includes also interaction with endophytes. In
July 2021 | Volume 12 | Article 673692
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FIGURE 1 | In silico explored transcripts of Arabidopsis thaliana wild type (WT) seedlings compared to seedlings from the mutant clf/swn. Results (1): At 55h of
auxin treatment, the mutant did not show signs of oxidative stress: none of the selected transcripts involved in oxidative stress regulation were increased against the
control and AOX remained close to control level. In contrast, the according transcript profile of WT seedlings indicated at that time high oxidative stress. AOX shows
strongly enhanced transcript accumulation against the control (5.71 folds, significant) along increased complex transcript levels of several anti-oxidants (SOD, GPX,
GSR1, CH3, CAD). (2) WT displays at 55h of auxin treatment strongly decreased NOS1- and also significantly reduced NR - transcript levels, which together indicate
down-regulation of NO production. Significantly decreased NOS1 transcript accumulation was also observed for the mutant though less pronounced. NR transcript
level was indicated, but non-significant. No significant differences to the controls were observed for ADH2/GSNOR in both variants. (3) In both variants, we observed
after 55h of auxin-treatment similarly reduced transcript levels for alpha-tubulin (significant). For actin, the mutant shows the same significant reduction in transcript
levels as for tubulin, while in WT a reduction for actin is only indicated (non-significant). In WT, increased transcript levels for E2F5 (cell cycle suppressor gene)
associated to reduced levels of cell cycle activator E2F1 (both significant) and equal-to-control levels for E2F3 (activator) at almost unchanged SNRK but lowered
TOR transcript levels (significant). All together, these results indicate cell cycle suppression for WT at this early stage of reprogramming. In contrast, the mutant
showed only slightly decreased TOR and E2F1/3 transcript levels (all non-significant) and no increase in E2F5 transcripts, but significantly reduced SNRK transcripts.
Collectively, these results signal that induction of cell cycle progression towards embryogenic callus growth were for the mutant already more advanced than non-
embryogenic callus growth induction for WT. However, in both cases, cell cycle arrest was indicated for that time point. (4) In WT, fermentation-related ADH1 and
LDH gene transcripts were strongly enhanced (17.8 folds and 3.5 folds, both significant), which associated to increased glycolysis presented by Enolase transcripts
(1.5 fold significant). In the mutant, the only profile components that increased against the respective mock control were ADH1 and BAG (both significant). However,
at 55h of auxin-treatment this increase in ADH1 in the mutant (4.9 folds of mock) was clearly and significantly less than the increase observed for WT (17.8 folds). In
Figure 1 and Supplementary Tables S1-S5 (both in Supplementary files), it can be seen that the mutant showed in the control higher transcript levels than WT
control for ADH1 (3.9 folds of WT, significant), LDH (2.4 folds of WT, non-significant) and Enolase (1.3 folds of WT, non-significant). However, after auxin treatment,
the increased absolute ADH1 transcript levels had been similar between both variants (1.1 fold of WT), whereas LDH levels remained basal and linked to decreased
enolase. Higher levels of transcripts related to aerobic fermentation in the mutant controls were connected to higher AOX transcript levels (1.37 folds, significant).
However, during auxin treatment AOX1 transcript levels were strongly increased in WT (significant), indicating a stress situation, while no further increased AOX1
transcript accumulation was observed in the mutant. This demonstrates that increased AOX transcript levels in the WT during auxin-induced reprogramming
corresponded to acute metabolic requirements that were not given in the mutant. Overall, these results point to a higher basal capacity of the mutant to limit aerobic
fermentation as relevant factor for the mutant’s generally higher efficiency for auxin-inducible reprogramming and an associated role for AOX. This capacity was
associated to already higher transcript levels of AOX in the mutant control. (5) A more advanced stage of reprogramming for the mutant is also obvious by looking to
apoptosis- or, in general, cell death-related genes, such as BAG (Bcl-2-related genes) and Meta-caspase. BAG transcript levels were similarly enhanced in both
variants (significant). However, while meta-caspase gene transcripts in WT were increased to about the same level as for BAG (significant), in the mutant, Meta-
caspase transcript levels were down-regulated (significant). This observation indicates that (a) activation of the complex cell death-related regulatory system formed
part of the reprogramming process and that (b) cell death-promoting enzymes were down-regulated during the later phase of reprogramming. Figure 1A.2
Biochemically determined ADH levels during 2,4-D-induced initiation of callus cell proliferation in carrot seeds. Results: Sucrose postponed initiation of callus growth
from second day onwards (significant at 72HAI). The initial arrest of callus growth associated to a lower ADH peak at 12h. Although the discrepancy in ADH peaks
here shown was non-significant, we had observed in further trials that higher sucrose supply (3%) further reduced this ADH peak level at 12h [(52), preprint]. In
conclusion, these results together with the findings in Figure 1A.1 confirm that reprogramming is, in general, linked to temporarily up-regulated ADH. It indicates a
general role for early regulated aerobic fermentation in reprogramming. In the three experimental systems described in the two figures, which include also different
plant species and genotypes, cell proliferation was suppressed at the earliest stage during de novo reprogramming and this was independently on later cell destinies.
These results also show that sucrose can be a critical factor for fermentation-related reprogramming during its early phase. Figure 1A.3 Dependency of auxin-
induced callus growth initiation on early SHAM (10mM) treatment (6h, 12h) and presence of sucrose (3%). Results: SHAM significantly affected callus growth initiation
at 0% sucrose. At 48HAI and 72HAI, it could be observed that SHAM suppressed emergence of callus growth with time of treatment duration (6HAI, 12HAI to its
permanent presence). In contrast, from 96HAI onwards, a short initial pulse of SHAM (6h) was sufficient to increase rate of callus emergence (significant). On the
other hand, if SHAM supply was prolonged to 12hrs, callus emergence rate was similar to the control. However, in the presence of external sucrose (3%), short
SHAM pulses of 6 or 12h did not affect callus initiation. Callus emergence was postponed to about the same degree as observed at 3% sucrose without SHAM and
the growth curves were similar. This indicates that oxidative stress regulation and AOX involvement interact with sucrose. When SHAM was present during all 10
days of the trial, callus growth was suppressed in control and sucrose-containing media, and thus, also embryogenic development was suppressed. Overall, these
results point to a superimposed role of fine-tuned oxidative metabolism/redox status regulation for hormone-dependent metabolic reprogramming during early
induction and also during later growth initiation and highlight its interaction with sucrose. These results also validate central AOX functionality for efficient cell
reprogramming under stress, which is highly relevant for breeding on plant resilience (75, 87). Figure 1A.4 Microbiota influence on SHAM effects early during
imbibition-induced seed reprogramming for germination in two genotypes. Results: SHAM had differential effects on root emergence monitored at 48 hours after
imbibition dependent on microbiota treatment. In cultivar Kuroda, 5mM SHAM together with AMF improved germination, whereas treatment of 5mM SHAM together
with EN1 and EN3 reduced root emergence. While SHAM effects had been dose-dependent for EN1 and AMF, under EN3 + AMF treatment, the higher
concentration of SHAM did not lead to less germination. The cultivar Early Nantes is germinating later and only under EN1 treatment, SHAM reduced germination in
this genotype. We identified main effects for all three factors (plant genotype, microorganism and SHAM concentration), and interactions for all factor combinations.
These results point to the general importance of the holobiont nature of cells and individual organisms when considering oxidative metabolism/redox status
regulation. They also support that genotype-dependent, differential AOX levels during early germination impact predictability of plant resilient performance (75, 152).
Figure 1B.1 Transcriptome profile of SARS-CoV-2 infected human lung adenocarcinoma cells (A549, MOI 0.2) 24 hours post infection (hpi). Results: SARS-CoV-2
infection stimulated the immunological system, presented here by interferon regulator factor IRF9 (significant), and transcript factor NF-KB-RELA (112%, non-
significant), although multiplicity infection rates were low (MOI 0.2) and ACE2 and TMPRSS2 could not be identified in A549 cells. Down-regulation of caspase
initiator gene transcript levels, stable levels of caspase executor genes and up-regulated levels of Bcl-xL (all non-significant) are conform with arrested apoptosis
activity in the host cell. Down-regulated SNRK (non-significant), unchanged transcript levels of mTOR and reduced E2F1 cell cycle activator (non-significant) point
together also to arrested cell cycle activity. This coincided with down-regulated GAPDH (significant), Pyruvate Kinase (non-significant) and G6PDH (significant) as well
as mt-MDH2 (non-significant). In this situation, LDH transcript level was found equal to control. However, transcript levels for SOD2 as a biomarker for oxidative
stress regulation was slightly increased (non-significantly) and for GPX as well as GSR down-regulated, whereas SOD1 and Catalase showed control level. ADH5/
GSNOR kept control level, but NOS1 was slightly down-regulated (non-significant). This together with significantly down-regulated tubulin indicates the start of
adaptive complex signaling and induced structural host cell reorganization. IRF9 demonstrated early response of the immune system, which might qualify as
functional marker candidate. IRF3 remained at mock control level. ACE2 (Angiotensin-converting enzyme 2), TMPRSS2 (transmembrane protease serine 2) gene
expression was not detected in the analysis and genes were not denoted in the Supplementary Table S6. Figure 1B.2 Transcript profiles of SARS-CoV-2 infected
primary human bronchial epithelial cells (NHBE, MOI 2.0) and respiratory syncytial virus (RSV) - infected A549 cells (MOI 15) at 24hpi Results: In NHBE cells, ACE2
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and TMPRSS2 were identified. While the transcript level of ACE2 remained unchanged, a significant decrease for ACE2-priming molecule TMPRSS2 was observed.
Nevertheless, SARS-CoV-2 infection stimulated again the immunological system, presented here by IRF9, and NF-KB1 (both significant). However, in this context
different from Figure 1B.1, an equally strong increase in SOD2 transcript level compared to IRF9 was observed along with slightly up-regulated SOD1. This was
accompanied by down-regulated levels of catalase, GPX and to a higher extent GSR (all non-significant) (Supplementary Table S7). Combining these last results,
they signal changed oxidative stress level and complex fine-tuning activities. NOS1 transcript level seems to be unchanged regarding the control. However, ADH5/
GSNOR was down-regulated to 34% (significant), signaling a change in NO homeostasis. Increased mTOR transcript level and at the same time down-regulated
SNRK level (both non-significant) coincide with significant E2F1 transcript level increase, which goes along with a similarly strong transcript level increase of Tubulin
(significant) and also of Actin (non-significant). Overall, this points to rapidly induced cell cycle activity. This picture is supported by an increase in LDH transcript level
(significant) linked to an increase in glycolysis enzyme transcripts from GAPDH (significant) onwards and also mt-MDH2 (non-significant), whereas ct-MDH1
transcripts were reduced (non-significant). G6PDH transcript level was unchanged. The transcript level of anti-apoptotic Bcl-xL is significantly up-regulated, but also
caspase initiator and caspase executor transcription were up-regulated though to an obviously lesser extent (both non-significant). In comparison, RSV-infected A549
cells responded under the applied experimental conditions strikingly similar in relation to the most pronounced host cell responses due to increased transcript levels
of mt-SOD2 and IRF9 (number of replicates for transcripts was in part less for this experimental system, which can be responsible for missing significances). In both
variants, IRF3 remained basal. However, the overall response was differential and varying transcript level changes were also indicated for NF-KB-RELA and NF-KB1.
Anti-oxidative enzyme transcript levels were more reduced apart from higher transcript accumulation for GSR. Also, NOS1 transcripts were in this case down-
regulated to 72.5% (non-significant). ADH5/GSNOR was reduced to a similar level (28%) as seen for SARS-CoV-2 infected NHBE cells. Although LDH transcripts
were up-regulated to a similar extent as observed for SARS-CoV-2-infected NHBE cells, and again linked to up-regulation of the glycolysis pathway, the overall
response was different. GAPDH transcript level was down-regulated and in this case, Hexokinase and PFK-M were up-regulated and enolase (significant) and
pyruvate kinase showed higher transcript levels and G6PDH was down-regulated. A striking difference comes by the observation that SNRK was more strongly
down-regulated, but mTOR was not up-regulated and E2F1 did also not show up-regulation. This together linked to contrasting down-regulation of transcript levels
for tubulin and obviously unchanged actin transcription. Collectively, it indicates that in this system at the given time point (24hpi), cell reprogramming was taking
place, but cell cycle progress was not stimulated. No sign of cell death up- or down-regulation can be recognized. The transcript level of anti-apoptotic Bcl-xL is
again significantly up-regulated, caspase initiator level remained basal and caspase executor transcription was down-regulated (non-significant). Figure 1B.3
Dependency of auxin-induced callus growth initiation on early SHAM (10mM) treatment (6h, 12h) and presence of sucrose (3%). Results: SHAM significantly affected
callus growth initiation at 0% sucrose. At 48HAI and 72HAI, it could be observed that SHAM suppressed emergence of callus growth with time of treatment duration
(6HAI, 12HAI to its permanent presence). In contrast, from 96HAI onwards, a short initial pulse of SHAM (6h) was sufficient to increase rate of callus emergence
(significant). On the other hand, if SHAM supply was prolonged to 12hrs, callus emergence rate was similar to the control. However, in the presence of external
sucrose (3%), short SHAM pulses of 6 or 12h did not affect callus initiation. Callus emergence was postponed to about the same degree as observed at 3% sucrose
without SHAM and the growth curves were similar. This indicates that oxidative stress regulation and AOX involvement interact with sucrose. When SHAM was
present during all 10 days of the trial, callus growth was suppressed in control and sucrose-containing media, and thus, also embryogenic development was
suppressed. Overall, these results point to a superimposed role of fine-tuned oxidative metabolism/redox status regulation for hormone-dependent metabolic
reprogramming during early induction and also during later growth initiation and highlight its interaction with sucrose. These results also validate central AOX
functionality for efficient cell reprogramming under stress, which is highly relevant for breeding on plant resilience (75, 87). Figure 1B.4 Transcriptome profiles of
MERS-CoV (a) and SARS-CoV (b) infected human fetal lung fibroblast cells (MRC5) by MOI 0.1/3.0 at 24hpi and 48hpi Results: For MRC5 cells, ACE2 was not
identified. MERS-CoV-infection observed at 24hpi and 48hpi (Figure 1B.4a) showed for all profile components down-regulation at different degrees of significance
(see letters in figure). This included also SOD2 and IRF9 (both with significant reduction at 48hpi and low MOI). NOS1 seemed to be slightly less affected (39.5%,
significant) than mt-SOD2 (29%). However, ADH5/GSNOR levels are significantly reduced to 10%. At 24hpi, low MOI (0.1) showed within each component always
highest transcript levels by comparing MOI and infection times. In general, at higher MOI the effect of time seemed to be reduced. SNRK responded exceptionally
among all components. Transcript levels stayed comparatively more stable across all variants and had not been significantly reduced to control level at any time.
mTOR showed a small reduction to the control at low MOI at 24hpi (non-significant), but transcripts were significantly reduced by time and also at higher MOI at
24hpi. E2F1 showed a parallel pattern to mTOR, but was at 48hpi and low MOI more drastically reduced (25% to control) (significant) than mTOR (65% to control)
(significant). Again, GAPDH was the most affected enzyme from the glycolysis path at both MOI (10.5% and 37.5%) and G6PDH was decreased to slightly lower
extent (8% and 30%) (significant at 48hpi for both, low MOI). Tubulin and Actin revealed similarly drastic and significant reduction in transcript levels at low MOI 48hpi
(to 12% and 10%). LDH transcript levels decreased with time at both MOI (significant for 48hpi, low MOI) (Supplementary Table S9). In SARS-CoV-infected MRC5
cells (Figure 1B.4b), we found from transcriptional ORFs much lower virus replication for SARS-CoV than for MERS-CoV (data not shown). This might have
contributed to only moderate broad down-regulation in comparison to MERS-CoV infection. Under these conditions, we see in SARS-CoV infected cells up-regulated
SOD2 at 48hpi at both MOI and differential down-regulation of most of the anti-oxidant components (non-significant). NOS1 was downregulated with time and MOI
(significant), but 48hpi at high MOI transcript levels were increased again to basal. Also ADH5/GSNOR transcript levels were down-regulated at higher MOI, but, in
general, demonstrated slightly increased levels at 48hpi (non-significant). IRF9 was slightly up-regulated (non-significant) only at 24hpi and higher MOI. SNRK was
consistently up-regulated (113 - 126%, non-significant). To the contrary, initial mTOR values above the control were down-regulated with time at high MOI. Further,
strong down-regulation was observed in mean values for E2F1 at both MOI levels (non-significant). Tubulin and actin transcript levels also tended to decrease with
time at both MOI levels. Though all these observations were separately not significant, together they suggest early energy depletion and suppression of cell cycle
progression or cell proliferation at 48hpi. In agreement with this observation, LDH transcripts seemed to be unchanged to the control (no significant differences)
(Supplementary Table S10). Nevertheless, a tendency of enhanced transcription of LDH was observed at 48hpi at both MOI, which went along with increased
levels for enzymes related to glycolysis. Together, these observations indicate increased energy-dependent metabolic reprogramming with time. The anti-apoptosis
gene Bcl-xL tends to be reduced with time. Both caspases remained at control level at low MOI, but both indicate a tendency for increasing transcription levels with
time, which is more obvious, though non-significant, for the executing caspase (138%). Thus, it seems that apoptosis/cell death was stimulated by time: *Significant
(p < 0.05) and ** highly significant (p < 0.01) differences regarding control. Letters indicates significant differences betweet treatments (A.3, A.4) or HPI/MOI (B.3, B.4).
Arrows indicate the behaviour of transcript levels along time, considering statistical (B3). Leter a is not labeled and correspond to the mock treatment (100%) (B.4),
except in B.4B for SOD2 and mTOR, which labels for mock are abc and ab, respectively, as indicated.
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this context, it is also pertinent to mention that recently an AOX-
degrading protein has been discovered that might be added as a
tool in potential AOX-based therapies (85).

In search for similarities between the beneficial role of AOX in
plants in relation to adaptive oxidative stress level equilibration
Frontiers in Immunology | www.frontiersin.org 11
relevant for virus tolerance and that of natural agents in human
cells, melatonin seems to be a strong candidate. Melatonin is a
natural hormone in humans, which has also been recognized as a
phytohormone (117). It is produced in most organs and cells (70,
117–120), including also human salivary gland cells (121).
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Melatonin is known to possess anti-oxidant properties and shows
high fluctuation in its cellular concentration. In plants, melatonin
seems not to enhance AOX transcription (117) as it has been shown
for auxin (75). In turn melatonin interacts with other enzymes
involved in ROS/RNS balancing and was suggested to be in plants
mainly involved in biotic stress defense rather than in growth
regulation (117). Further, melatonin was reported to enhance the
induction of adventitious roots through interaction with auxin-
mediated signaling, which suggests a role for melatonin also in early
reprogramming (122). All evidence put together, it could be
suggested that melatonin might substitute early anti-oxidant
function of AOX during reprogramming (75, 99, 123). By looking
at the transcription of melatonin synthesis-related genes ASMT (N-
acetylserotonin O-methyltransferase) and NAT (serotonin N-
acetyltransferase) in WT A.thaliana our model system showed
that auxin-induced AOX transcript level changes, we found up-
regulated ASMT/NAT transcript levels 55 hours after 2,4-D
treatment though at a low level (not shown). This preliminary
observation might lead to future interest and encourages further
studies. Currently, the molecular-physiological and clinical
relevance of melatonin is found to be a hot topic. It was
highlighted to show important functionality in physiology,
pathophysiology and chronobiology. Since long melatonin was
also recognized as a beneficial agent for managing viral infections
(124). However, despite its widespread use as a drug for many other
purposes, its functional role and application still needs stronger
confirmation through extensive biochemical and clinical research
(125–127). Apart from acting as an anti-oxidant, melatonin
demonstrates anti-inflammatory activity and immune-enhancing
features besides interacting with ACE2 (118, 124, 127, 128).
Recently, the proposed rationale for employing melatonin as a
potential anti-viral agent in general and anti-SARS-CoV-2 agent in
particular has been indicated by Zhang et al. (127). Extensive efforts
are being made to identify drugs for treating SARS-CoV-2
infections via a network-based drug repurposing (127). By
adopting this methodology, melatonin has been identified as a
promising drug, which can be administered either alone or in
combination with immune-suppressant agents. In our studies, we
focused additionally on melatonin-synthesis related genes to work-
out its drug potentials. Results of the present study showed
enhanced ASMT transcript accumulation at low level in SARS-
CoV-2-, RSV-, MERS-CoV- and SARS-CoV-infected human cells
of various origins (Figures 2A, B). Related to MERS-CoV-infected
MRC5 cells, it can be seen that ASMT transcript levels were
increasing dependent on MOI level and infection time
(Figure 2B). However, we did not identify ASMT transcripts in
MERS-CoV-infected calu3 cells (MOI 4.0). Nevertheless, these
observations might encourage further research on the significance
of melatonin actions during early viral infection in the primarily
affected nose and mouth cells.

Another interesting approach in agreement with the focus of
our study is the potential anti-viral use of ergothioneine (ET)
(129). ET is a natural amino acid that enters via diet into the
human body and can be found in all animal cells. It has
multifunctional characteristics of interest for anti-viral
functionality that includes flexible regulation of redox biology.
ET makes an attractive option for its use as an alternative to AOX
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functionality in plants essentially due to its highly plastic
distribution based on an appropriate adaptive transporter
system (OCTN1) and its ubiquitous availability. However, in
order to be functional during the early phase in mouth and nose
cells ET needs to have direct effect on avoiding virus-induced
reprogramming that connects to initiating viral replication,
which awaits future research (129).

In plants, impressive success has been achieved in confronting
viral infections by applying TOR inhibitors or TOR silencing
[reviewed in (60)]. Avoiding cell cycle progression in primary
virus-threatened nose and mouth cells could be critical during the
early phase of virus entry. Drugs that target mTOR and tubulin are
available (55, 128) and they might be repurposed and adapted to
early treatment of primary corona virus-threatened cells in mouth
and nose. However, prolonged suppression of cell renewal in nose
and mouth could be fatal due to collateral bacterial or other
infections or contaminations. Consequently, pulsed treatment
strategies could be considered to avoid virus-induced cell
progression that benefits virus replication, but at the same time
allowing intermittent relaxation from cell cycle inhibition for cell
renewal. This type of treatment might enable ‘growing-out of
danger’ of host mouth/nose cells. This is a general strategy
followed in plants in vivo and in plant biotechnology systems in
order to get rid of virus spread. Comparably, pulsed treatment
strategymight contribute to stimulation of cell proliferation in a way
that virus replication cannot follow in the same velocity as healthy
new cells are emerging.

In plant biotechnology, it is well established that
phytohormones and their relative intracellular concentrations
are essentially involved, either directly or indirectly, in program
decisions about growth and differentiation. However, the impact
of phytohormones depends on available bioenergy as the critical
frame for program realization. Phytohormones are known to be
critical for de novo membrane-based cell restructuring
(‘innovation’) during quiescent cell reprogramming, whereas
sucrose is required for structural organization (‘performance’)
(130). In human cells, the entry receptor of SARS-CoV-2, i.e.
ACE2, is also known to function as a negative regulator of the
hormonal renin-angiotensin system (RAS). RAS plays an
important role in regulating cellular growth, proliferation,
differentiation, and apoptosis besides extracellular matrix
remodeling and inflammation (131). The receptor has been
shown to protect lung from injury (132). However, for SARS-
CoV infection and the Spike protein it had been shown that they
reduce ACE2 expression. Spike injection into mice worsened
acute lung failure in vivo, which could be attenuated by blocking
the renin-angiotensin path (133). Actual studies are being
focused to enable efficient anti-SARS-CoV-2 treatment via
competing soluble ACE2 drugs (hrsACE2) (132). We are in
favor of this approach and suggest extending studies on hrsACE2
by considering the early indicated metabolic effects, which are
presented as complex trait ‘CoV-MAC-TED’.

Rodrıǵuez et al. (134) showed that differential action of
phytohormones on the induct ion of new program
(adventitious organogenesis) was epigenetically regulated. RAS
action has also been linked to changes in the epigenome (135).
During auxin-induced de novo cell programming, genome-wide
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hyper-methylation is known to take place [firstly reported for SE
by (136)]. Gross hyper-methylation combined with genome-
wide reduction in the amount of repetitive DNA linked to the
occurrence of small DNA fragments had systematically been
observed before cell cycle progression started (137). Therefore,
we would like to suggest exploring the effect of soluble ACE2
drugs also on the level of epigenetic events that occur early
during reprogramming before the cell cycle activation. Genome-
wide repetitive DNA reduction linked to an increase in small
DNA-fragments was also reported to happen before actual cell
cycle start as a determinant for cell proliferation (137–139) and is
supposed to be another powerful candidate linked to the
induction of cell proliferation.

The possibilities of using controlled pH to support these
strategies by early testing and treatment, should, in our view,
be explored with priority. Cell reprogramming and its relation
also to cell death (140), changes in anti-oxidant activity also
related to AOX (141–143), aerobic fermentation (144) and viral
infections (144–148) are all influenced or indicated by
extracellular pH. Extracellular pH might also by its interaction
with intracellular pH influence complex tasting, which includes
not only sour tasting (149, 150). The relation between smell and
pH is, to our knowledge, not sufficiently explored yet. However,
SARS-CoV-2 entry proteins were found to be expressed in
olfactory epithelial cells (151).
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CONCLUSION

This is the first research to start validating hypothesis and wider
perspective published by a non-institutional, voluntary
competence focus under the title ‘From plant survival under
severe stress to anti-viral human defense – a perspective that calls
for common efforts’

We identified a corona virus-induced complex trait
named ‘CoV-MAC-TED’ (coronavirus major complex trait for
early de novo programming). It is well established during
first few hours of viral infection and consists of unbalanced
ROS/RNS levels connected to increased aerobic fermentation
that links to alpha-tubulin-based cell restructuration and cell
cycle progression.

Primary infected nose and mouth cells become rapidly ‘super-
spreaders’. This can have serious consequences for neighboring
cells, the infected organism and for the environment.

Virus structures as non-living particles would be harmless, if
the entry cells could ignore their presence. It is the proper host
cell-reaction that is required and ‘abused’ for virus replication.
Consequently, as long as we cannot avoid virus structures from
establishing contact ‘with us’, we need to support the entry cells
to become ignorant. If possible, this should happen proactively
or, at least very rapidly and much before any symptoms of viral
infection appears.
A

B

FIGURE 2 | Expression of ASMT (acetylserotonin O-methyltransferase) gene involved in 1041 melatonin biosynthesis in virus-infected human cells. (A) ASMT
transcript levels in SARS-CoV-2- and RSV-infected cells at 24hpi. (B) ASMT transcript levels in MERS-CoV- and SARS-CoV-infected human lung fibrolast cells
(MRC5) depends on MOI level (1.0;30) and infection time (24hpi; 48hpi).
July 2021 | Volume 12 | Article 673692

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Costa et al. CoV-MAC-TED
Considering our results, the first fingerprint of viral infection
is complex and needs combined strategies that rigorously target
the components of ‘CoV-MAC-TED’ in primary infected nose
and mouth cells.

Thus, it is the need of the hour to develop efficient strategies
to early equilibrate or rebalance ROS/RNS levels and to control cell
progression in nose and mouth cells. We have discussed some
promising approaches that are in agreementwithourobservations.

As a wider conclusion from our observation of the
importance of balanced redox biology during early virus
infection, we want to highlight our view that de-stressing in
disease and social handling and communication should not be
ignored as meaningless ‘luxury’, but rather considered as being
essential part of an overall strategy to promote healthiness.
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134. Rodrıǵuez JL, Valledor L, Hasbún R, Sanchez P, Rodrıǵuez R, Canal MR. The
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