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Adaptive immunity, orchestrated by B-cells and T-cells, plays a crucial role in protecting the
body from pathogenic invaders and can be used as tools to enhance the body’s defense
mechanisms against cancer by genetically engineering these immune cells. Several
strategies have been identified for cancer treatment and evaluated for their efficacy
against other diseases such as autoimmune and infectious diseases. One of the most
advanced technologies is chimeric antigen receptor (CAR) T-cell therapy, a pioneering
therapy in the oncology field. Successful clinical trials have resulted in the approval of six
CAR-T cell products by the Food and Drug Administration for the treatment of
hematological malignancies. However, there have been various obstacles that limit the
use of CAR T-cell therapy as the first line of defense mechanism against cancer. Various
innovative CAR-T cell therapeutic designs have been evaluated in preclinical and clinical
trial settings and have demonstrated much potential for development. Such trials testing
the suitability of CARs against solid tumors and HIV are showing promising results. In
addition, new solutions have been proposed to overcome the limitations of this therapy.
This review provides an overview of the current knowledge regarding this novel
technology, including CAR T-cell structure, different applications, limitations, and
proposed solutions.
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1 INTRODUCTION

The global cancer burden, cancer incidence, and mortality estimations have increased rapidly.
According to the International Agency for Research on Cancer, 19.3 million diagnosed cases and 10.0
million deaths worldwide in 2020 have been attributed to cancer (Sung et al., 2021). The relationship
between cancer and the immune system was shown by Rudolf Virchow more than 150 years ago
(Adams et al., 2015). Interest in immune system activation as a therapeutic approach for treating
cancer began in the late 19th century when William Coley injected heat-inactivated bacteria into the
tumormass, resulting in its size reduction. Although the failure to achieve desirable clinical outcomes
with early immunotherapies such as interferon-gamma (IFN-γ) and interleukin (IL)-2 treatments,
novel immunotherapies launched in the 21st century have achieved robust clinical results,
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establishing cancer immunotherapy as one of the foremost
anchors of anticancer therapies (Lesterhuis et al., 2011; Jiang
T. et al., 2016; Castro et al., 2018).

The effective eradication of cancer cells via the immune system
involves several steps known as the cancer-immunity cycle,
defined as a series of steps involving increased antitumor
T-cell responses that are initiated upon recognition of the
tumor-associated antigens (TAAs) captured from dying tumor
cells by antigen-presenting cells (APCs) such as dendritic cells
(DCs). Upon capturing TAA’s, DCs get activated, express CCR7,
mature, and 1) migrate to draining lymph nodes, 2) present the
captured antigens to naïve CD4+ and CD8+ T-cells via the major
histocompatibility complex (MHC) class I and II molecules, 3)
express T-cell costimulatory molecules, for example, CD40,
CD80, and CD86, 4) secrete critical cytokines to regulate
T-cell responses, 5) activate naïve CD8+ T-cells converting
them into cytotoxic T-cells, which immigrate from lymphoid
organs into the bloodstream and reach tissues and ultimately
infiltrate the tumor. Activated cytotoxic T cells recognize the
specific TAA (presented to them by DC’s) found on MHC class I
(MHC-I) molecules of tumor cells and kill the tumor cells via
secreting perforins and granzymes that result in the release of
additional TAAs, which trigger the initiation of another cycle of
cancer immunity (Chen and Mellman, 2013).

Cancer eradication through cytotoxic immune responses is
evident; however, cancers can grow progressively, suggesting
their ability to mask and not be recognized by the immune
system as seen in carcinogen-induced mouse models. This
mechanism prompted Schreiber and others to hypothesize the
immunoediting concept to explain the progressive growth of
otherwise immunogenic cancers (Shankaran et al., 2001; Dunn
et al., 2004; Schreiber et al., 2011; Matsushita et al., 2012). The
immunoediting process of human cancers can be related to
neoepitope presentation. Non-silent point mutations that lead
to antigenic neoepitopes (T-cell recognition) are lost more
frequently in cancers than in silent point mutations, thus
preventing T-cells from recognizing and identifying cancer
cells (Rooney et al., 2015). This concept suggests that the
ability of cancers to progress and grow could be impaired by
loss of immunogenicity; however, this perception alone
contradicts another evidence that T-cells are adequately
activated to enhance their cancer recognition by the
administration of immune-activating cytokines or immune
checkpoints releases such as programmed cell death-1 (PD-1)
or cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) that
leads to robust tumor responses in patients and mice (Chambers
et al., 2001; Pardoll, 2012). T cells are central infiltrates of the
heterogeneous tumor microenvironment (TME), and their
population consists of naïve, effector, memory, and regulatory
T cells (Hashimoto et al., 2018). The antigen stimulation of T cell
receptors (TCRs) initiates an intrinsic program that guides the
differentiation of T cells into cytotoxic effectors capable of
eradicating the antigen; however, these cells start dying
gradually except for a small number of surviving memory
T cells that provide long-term protection against the antigen
(Chang et al., 2014). Chronic exposure of T cells to the same
antigen leads to remarkable alterations, thus affecting their

activation and differentiation and eventually causing T-cell
exhaustion (Wherry, 2011; Schietinger and Greenberg, 2014).
T effector cell exhaustion is highlighted by the loss of effector
functions such as proliferation, cytotoxicity, metabolic and
transcriptional molecule alterations, and immune checkpoint
upregulation (Guo et al., 2018; Li H. et al., 2019). Different
factors have been identified that play several roles in T-cell
exhaustion; the intrinsic factors relate to transcription,
epigenetic, and metabolic factors, whereas the extrinsic factors
include extracellular and cytokine interactions that create the
TME and the immunosuppressive network (Maimela et al., 2019;
Zhang et al., 2020). Therefore, the use of engineered T-cells
targeting specific cell-surface antigens is considered a great
approach to ensure specificity and overcome the shortcomings
of other available immunotherapies.

In this review, we present a comprehensive prospect of the
developmental and experimental progress in the field of chimeric
antigen receptor (CAR) T-cell therapy while relating to some
aspects of adaptive immunity as the rationale behind the
evolution of this cutting-edge technology. The significance of
this review is the broad inclusiveness of current therapeutic
applications of CAR T-cells in hematological malignancies,
solid tumors, and human immunodeficiency virus (HIV)
infection while focusing on some recently published results of
pre-clinical and clinical trials, pointing out some drawbacks, and
suggesting some modifications.

2 ADOPTIVE IMMUNE THERAPY

Cancer immune therapy, which exploits the body’s immune
system to combat cancer cells, can be classified into three
categories: adoptive cell therapies (ACTs), tumor vaccines, and
immune checkpoint inhibitors (ICIs). These therapies have
proven beneficial in patients with advanced tumors, and some
have reached complete remission (Li D. et al., 2019). ACT is
mainly based on the concept that the immune system can control
a patient’s cancer in the long-term and has been demonstrated by
three independent approaches. The first approach involved
tumor-infiltrating lymphocytes (TILs), which can be isolated
from tumor lesions (e.g., melanoma) and expanded in vitro,
followed by patient re-infusion, resulting in tumor regression
and remission in a considerable number of patients. However, the
downsides of the TILs approach included access limitations to the
removable metastases or tumors, time-consuming preparation of
T cells, and tumor-reactive T-cell clones were rarely found, which
hindered the success of this strategy. The second approach
involved T-cell receptor (TCR) engineering, where TCRs
identified from TILs were virally transduced into peripheral
blood T-cells, making them capable of inducing tumor
regressions upon re-infusion into the patient. Unfortunately,
this method was explicitly restricted because of its dependency
on identifyingMHC peptides expressed by tumors via their MHC
complexes (Dudley et al., 2002; Zacharakis et al., 2018;
Benmebarek et al., 2019). The third ACT approach is CAR-
engineered T cells and is marked as the beginning of a new era in
cancer therapy by providing a transformative approach to tumor
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exclusion and gained attention over the other two as it offered a
series of innovative modifications (Kershaw et al., 2006; Lamers
et al., 2011; Mikkilineni and Kochenderfer, 2017). CARs are
synthetic receptors that have the specificity of a monoclonal
antibody and a signaling domain capable of inducing a
cascade of events in the CAR-engineered immune cells (e.g.,
T-lymphocytes) upon target engagement. Engineering immune
cells to express CARs is achieved by transferring protein-coding
sequences using viral vectors (e.g., Lentiviral or Retroviral). CAR
T-cells display immunological characteristics similar to activated
T cells such as generating an immune response against target cells
and expanding within the patient ensuring long-term protection
(Porter et al., 2011; Grupp et al., 2013; Heiblig et al., 2015).

3 EVOLUTION OF CAR-T CELLS

Conventional T cells can distinguish between foreign peptide-
MHCs (pMHCs) and the body’s pMHCs via their TCRs, which
can trigger a small number of agonist pMHCs compared with
thousands self-pMHCs (Sykulev et al., 1996; Irvine et al., 2002;
Huang et al., 2013). Genetic insertion of CARs, in immune cells,
particularly T-cells, redirects them to target a preferred antigen
(Jackson et al., 2016). CARs are bioengineered receptors which
specifically target a desired antigen; almost 30 years ago, the first
CARs were generated and undergone multiple modifications
since they contributed to their development and evolution
(Kobold et al., 2015; Lim and June, 2017). The flexibility of
CARs arises from their ability to recognize antigens in the
absence of MHC presentation, which is the opposite of innate
TCRs (Lim and June, 2017). Additionally, CARs have advanced
properties compared with conventional T-cells, as they combine
the antigen-binding ability of monoclonal antibodies with T-cell
self-renewal and lytic capacity (Ramos and Dotti, 2011; Curran
et al., 2012; Maher, 2012). Also, TCRs can recognize short peptide
sequences, whereas CAR T-cells can recognize several tumor
antigens in different forms, such as proteins, glycolipids, and
carbohydrates (Abbott et al., 2020). CAR T-cell recognition and
destruction of tumor cells occur in an independent-manner of
MHCs; this promotes enhanced cell recognition undisturbed by
the tumor’s ability to avoid MHC-restricted recognition of
T-cells, such as the tumor’s ability to encourage defective
antigen processing by downregulating human leukocyte
antigen (HLA) class I molecules (Dotti et al., 2014). It is
considered an advantage where MHC expression is suppressed
or lost due to the immunosuppressive cancer microenvironment
(Garrido et al., 2016). CARs have been proven effective in
treating cancers, especially hematological tumors. The
specificity of CARs in targeting cancers makes them an
appealing alternative to standard cancer treatments such as
chemotherapy and radiation (Sadelain et al., 2013). CARs
consist of three major domains: 1) extracellular domain
(ectodomain), which can be further divided into an antigen-
recognition domain, a single peptide on the cell surface cleaved
from the mature CAR cell (Goulart et al., 2017). The antigen-
recognition domain is a single-chain fragment variant (scFV)
chiefly comprising of heavy and variable light chain regions

composed of an antigen-specific immunoglobin separated by a
flexible linker and attached to the transmembrane domain by a
spacer (hinge) responsible for the transmission of receptor-
binding signals (Zhang et al., 2017). 2) transmembrane
domain is essential for receptor stability and surface
expression; it is a hydrophobic alpha helix that extends in the
cell membrane (Ramos and Dotti, 2011; Zhang et al., 2017). 3)
intracellular domain (endo-domain), which upon stimulation,
clusters and undergoes conformational changes, thus enabling
the recruitment and phosphorylation of downstream signaling
proteins (Cantrell, 2002; Su and Vale, 2018). The intracellular
domain classifies CARs into five generations: first has a single
activation domain, a cytoplasmic domain mostly CD3 zeta
(CD3ζ), and some studies used the gamma chain (γ) of the Fc
receptors, the second generation has CD3ζ plus one
costimulatory domain, obtained from costimulatory molecules
such as 4-1BB or CD28 connected to an activator domain (CD3ζ/
γ chain of Fc receptor) to enhance both cell proliferative and
cytotoxic competences of CAR T cells (Finney et al., 1998;
Hombach et al., 2001; Acuto and Michel, 2003). The third
generation is similar to the second generation but has multiple
costimulatory domains with CD3ζ, such as 4-1BB and CD28,
CD134, and CD137 (Sadelain et al., 2013; Zhang et al., 2017;
Guedan et al., 2019). The fourth generation CARs, known as
T cells redirected for universal cytokine-mediated killing
(TRUCKs), were engineered to release transgenic cytokine-like
interleukin 12 (IL-12) upon CAR signaling in the tumor tissue to
overcome TME immunosuppression and endorse robust
therapeutic outcomes (Chmielewski et al., 2014; Chmielewski
and Abken, 2015, 2020). IL-12 is responsible for the induction of
IFN-γ, perforin, and granzymes in T-cells, and inhibits Treg
proliferation (Kubin et al., 1994; Cao et al., 2009). Other
cytokines studied in the fourth generation are IL-15 and IL-18
(Hurton et al., 2016). IL-15 belongs to the γ-chain family and
holds important properties for T cell expansion and survival
(Klebanoff et al., 2004). Additionally, IL-18 CAR T-cells
treatment of large pancreatic and lung tumors exhibited
changes in the immune cell landscape related to the tumor; a
significant increase in the macrophages (CD206− M1) and NKs
(NKG2D+) was observed besides a decrease in Tregs such as M2
macrophages suppressive CD103+ DCs, suggesting the ability of
“IL-18 TRUCKs” to sensitize large tumor lesions for efficient
immune destruction (Chmielewski and Abken, 2017).The fifth
generation of CARs is currently being explored; it is mainly
designed based on the second generation. However, it contains a
truncated cytoplasmic receptor (IL-12) and a β-chain domain
(IL-2Rβ truncated intracellular interleukin 2β chain receptor)
along with the transcription factor STAT3/5 binding motif
(Tokarew et al., 2019) (Figure 1).

The structure and design of CARs contribute to their signaling
mechanisms, effector functions, efficacy, and toxicity. The ligand
recognition and signaling of CARs are affected by both the single-
chain variable fragment (scFv) and cytoplasmic domains;
however, the transmembrane and spacer domains (non-
signaling) affect the function of CARs (Jayaraman et al., 2020).
Generally, CAR T-cells can specifically recognize cancer cells and
lyse them (Maggs et al., 2021).
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4 CLINICAL PREPARATION OF CAR-T
CELLS

Despite various designs and tumor-specific scFVs, the
manufacturing process of CAR-T cells remains constant
(Wang and Rivière, 2016). In general, the personalized clinical
production of CAR-T cells encompasses several steps followed by

quality control testing through the entire process (Levine, 2015).
The first step is collecting leukocytes from the patient
(autologous) or the donor (allogeneic) from the peripheral
blood via leukapheresis, in which only the leukocytes are
extracted, and the rest of the blood products are returned to
circulation (Brown and Adusumilli, 2016; Zhang et al., 2017).
Second, T cells are augmented, separated, and washed with

FIGURE 1 | Structure of CARs and different generations. (A) Highlights the general structure of CARs; they have an extracellular domain containing scFV derived
from antibody variable heavy and light chains, linker, and a hinge/spacer region. All the extracellular structures provide flexibility and improve the binding affinity of the
antigen. A transmembrane domain helps anchor molecules to the T cells, and an intracellular domain containing ITAM motifs, responsible for transmitting activating and
costimulatory signals to T cells, is also present. (B)CARs have witnessed rapid advancement since the first generation, which contained only ITAM (CD3ζ) motifs as
the T cell stimulatory molecule within the intracellular domain. The second generation had one costimulatory molecule, whereas the third generation had two
costimulatory molecules to improve cytotoxicity and robustness of CAR-T cells. The fourth generation was designed based on the second generation but was paired
with cytokine expressors (e.g., IL-12) under the control of NFAT transcription factor; therefore, this generation is referred to as T cell redirected for universal cytokine-
mediated killing (TRUCKs). The fifth generation was also based on the second generation with additional intracellular domains of cytokine receptors (e.g., IL-2Rβ) to
activate JAK and STAT3/5, stimulate cell proliferation, and enhance its persistence.
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leukapheresis buffer (Zhang et al., 2017; Gomes-Silva and Ramos,
2018). Third, at the CD4/CD8 composition level, the T-cell
subsets are separated using specific antibody-coated bead
conjugates or markers. The isolated cells are then cultured and
activated by purified allogeneic or autologous APCs or by
introducing beads coated with anti-CD3 or anti-CD28
monoclonal antibodies (or both along with feeder cells and
interleukins) (Guedan et al., 2019). IL-2 is the most common
growth factor used to induce the rapid growth of T cells (Wang
and Rivière, 2016; Guedan et al., 2019). Recently, a study reported
that a cytokine cocktail of IL-2, IL-7, and IL-15 induced better
expansion of CD4 and CD8 CAR-T cells (Coppola et al., 2020).

Fourth, different methods have been considered to enable
nucleic acid delivery to the obtained T cells. Usually, a foreign
gene material (RNA or DNA) delivery into human cells can be
accomplished using viral or non-viral vectors. Viral vectors are
preferable for basic and clinical research because viruses have
diverse expression characteristics, spend a fraction of time to
reach clinically desired numbers of cultured T cells, and possess
high transfer competency (Zhang et al., 2017; Gomes-Silva and
Ramos, 2018). Viral vectors are used to encode CARs; with their
reverse transcription potential, vectors convert RNA into
permanently integrated DNA in the genome of the obtained
T cells. These viral vectors include retroviruses, lentivirus,
adenovirus, and adeno-associated virus. The most popular
ones are genetically engineered retroviruses, more frequently
used than gamma retroviral vectors. During the activation
period, viral vectors are washed out of the culture by dilution
and medium exchange (McGarrity et al., 2013; Zhang et al.,
2017).

However, viral vectors present a possible safety hazard. The
limitations of the viral vectors include tumorigenesis and toxicity
caused by the insertion mutation used to generate immune
reactions, and the limited carrier capacity and achieved titers
are not sufficient (Wang et al., 2008). Therefore, to overcome the
shortcomings of viral vectors, other methods such as mRNA
transfection and non-viral vectors were used in the production of
CAR-T cells. The most common were transposon-based non-
viral vectors, facilitating safe and consistent DNA transfer into
CAR T-cells. The sleeping beauty (SB) transposon system is the
currently used substitute for viral-based vectors. It has been used
to prepare CD19+ CAR T-cells with antitumor properties in vivo
and in vitro (Singh et al., 2015; Chicaybam et al., 2019). In 2014,
an optimized protocol (GMP-compliant) was suggested to utilize
the production of modified CAR T-cells by electroporation with
CAR-encoding RNA, which helps in overcoming several
drawbacks of classic viral transfection such as viral
contamination, low time-efficiency, higher resource
consumption, and off-target effects (Krug et al., 2014). In
2019, the optimized protocol was used in producing
genetically modified CAR T-cells against melanomas; the CAR
T-cells were electroporated and expanded with mRNA that
encoded CAR targeting CSPG4, a surface protein highly
expressed in most melanomas. The results showed that a high
dosage of modified CAR T-cells could lyse 80% of melanoma cells
after 20 h; the authors suggested a future expansion of their study
to a full clinical trial (Wiesinger et al., 2019).

This approach has several advantages, such as improved
integration of the transduced genetic material due to its low
promoter activity (Yant et al., 2000), fewer epigenomic changes at
the integration site, and reasonably low manufacturing costs
(Izsvák et al., 2010). The only limitation in this approach is
the low rate of transgenic material; however, it was considerably
enhanced (Geurts et al., 2003). Nevertheless, the concerns remain;
for instance, transient mRNA transfection requires several
rounds of infusion, the possibility of mutagenesis, and SB
transposon remobilization (Beatty et al., 2014). The fifth step
is CAR-T cell expansion using bioreactors, which help cells divide
and express CARs on the cell surface (Harrison et al., 2019).
Finally, when the cells reach the clinically required volume, they
are reinfused into the patient as a therapeutic agent. The infusion
occurs 48–96 h after lymphodepletion chemotherapy to make
room for the infused CAR-T cells (Turtle et al., 2016). The patient
is then kept under observation for possible adverse effects within
the first few days of infusion. The process lasts around 3 weeks,
where cell preparation is the most time-consuming phase of
treatment (Zhao and Cao, 2019) (Figure 2).

Interestingly, lymphodepletion chemotherapy is a crucial step
before CAR T-cells infusion as it reduces endogenous lymphocyte
numbers, thus increasing hemostatic cytokine availability
promoting infused cells survival (Liang et al., 2020).
Administration of T-cells to lymphodepleted patients has
shown superior anti-tumor properties compared to
lymphoreplete patients (Bechman and Maher, 2021). There
have been several benefits to the lymphodepletion regimens,
such as the non-myeloablative chemotherapeutic approach;
this regimen results in the removal of endogenous
lymphocytes that act as “cytokines sinks,” which facilitate the
accessibility of the infused T-cells to hemostatic cytokines like IL-
15, IL-7, and IL-2, which stimulate JAK-STAT-mediated
expansion (Gattinoni et al., 2005; Neelapu, 2019). In a
lymphodepleted host, the memory cells proliferate in an
antigen-dependent manner, unlike naïve T cells homeostatic
expansion, which occurs in an MHC-dependent manner
(Gattinoni et al., 2005; Klebanoff et al., 2005). It has been
reported that lymphodepletion decreases immunosuppressive
cells, such as myeloid-derived suppressor cells (MDSCs) and
regulatory T cells (Tregs), while enhancing the APC cells’
functionality and availability (Bechman and Maher, 2021).
Immunosuppressive networks are negatively affected by
lymphodepleting agents such as tryptophan metabolizing
enzyme and indoleamine dioxygenase (IDO) (Hanafi et al.,
2014; Ninomiya et al., 2015). Lymphodepletion also exerts
certain positive effects on the microbiome. It enhances the
translocation of microbes from the gastrointestinal tract, which
lead to immunostimulatory impacts through Toll-like receptor
ligation, resulting in an augmented release of IL-1β (Viaud et al.,
2013; Lee et al., 2019). According to imaging studies, post
lymphodepletion, the tumor-trafficking properties of
adoptively infused cytotoxic T-cells were enhanced (Pittet
et al., 2007). In a clinical trial (NCT03939026), which
evaluates the safety and efficacy of certain lymphodepletion
regimens, the phase I results suggest that fludarabine as a
component in the lymphodepletion regimen is critical and
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contributes to the efficacy of the procedure. Moreover, using a
combination of fludarabine and cyclophosphamide (Flu/Cy)
regimen is beneficial in multiple tumors; however, this

combination is required for optimization in certain types of
cancer and attenuation of the exerted toxicities of these agents.
Although the benefits of lymphodepletion are undeniable, there

FIGURE 2 | Clinical production of CAR T-cells. The peripheral blood is withdrawn from the patient (autologous) or it can be obtained from the peripheral blood of a
healthy donor (mononuclear cells), induced pluripotent stem cells (iPSC), or umbilical cord blood (allogeneic). The targeted T-cells are obtained by leukapheresis. Then,
the T cells are separated and purified from other leukocytes using anti-CD3/CD28-coated beads; this process is followed by activation of the cells. Then, the genetic
material encoding chimeric receptors is introduced into the T-cells via several known methods (such as mRNA transfection), viral vectors (e.g., lentivirus), or
sleeping beauty (SB) transposons. The engineered T-cells expressing CARs are then expanded in a bioreactor. The patient receives chemotherapy for decreasing white
cells blood count; after 48–96 h, the CAR T-cells are reinfused into the patient, followed by close monitoring for a few days to observe any adverse effects.

FIGURE 3 |CAR T-cell action: (A)CAR T-cells recognition of targeted antigen. (B)Chimeric antigen receptor binding to tumor-antigen. (C) Initiation of the antitumor
(cytolytic) effects where the activated T-cells downstream the killing signaling by secreting granzymes and perforins, pro-inflammatory cytokines due to immune cell
invasion, as well as initiating the expression of TRAIL and FasL pathways.
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have been certain limitations, such as the short-lived span of
lymphodepletion and the consequent immune restoration phase
accompanied by a compensatory overshoot of both MDSCs and
Tregs as indicated by preclinical and clinical studies (Bechman
and Maher, 2021).

The mechanism of action of CAR T-cell involve the binding of
CARs to a targeted antigen present on tumor cell surface via scFV
recognition domain, which elicit anti-tumoral effects through the
secretion of inflammatory cytokines (e.g., IL-2, IFN-γ, and TNF-
α), cytolytic effector function via perforin and granzyme
(Benmebarek et al., 2019), TNF-related apoptosis-inducing
ligand (TRAIL), which binds to death receptors (e.g., DR4 and
DR5) on tumor cells cell surface to activate graft-versus tumor
effect (donor T-cells) (Watanabe et al., 2021). Also, tumor cell
apoptosis can be initiated via the activation of caspase 8 and the
formation of death-inducing signaling complex (DISC) leading to
cell death mediated by mature caspase 3 subsequent cleavage of
over 500 cellular substrate as a result of Fas and Fas ligand (FasL)
pathway activation (Waring and Müllbacher, 1999; Nagata and
Tanaka, 2017) (Figure 3).

5 CLINICAL APPLICATIONS OF CAR-T
CELLS

5.1 Hematological Malignancies
5.1.1 Acute Lymphoblastic Leukemia
CAR-T cells are primarily used in hematological malignancies
such as Acute lymphoblastic leukemia (ALL), characterized by a
rapid proliferation of naïve cells in the bone marrow. CAR-T cells
showed efficacy in treating ALL, especially the engineered T cells
against CD19, as CD19 is a highly expressed biomarker of the
B-cell lineage, responsible for B-cell malignancy of ALL. CD19 is
a transmembrane glycoprotein involved in B-cell activation and is
expressed throughout the developmental stages of B cells (Wang
et al., 2012). Another potential target in B-ALL is the light chain
of immunoglobulin CD20 (Gill et al., 2016; Jain and O’Brien,
2016). Conversely, T-cell malignancy of ALL (T-ALL) showed
limited efficacy when the engineered CAR T-cells targeted CD19;
therefore, another target (anti-CD5) showed effective elimination
of a specific T-cell line expressing CD5 (Mamonkin et al., 2015).
Anti-CD4 CAR-T cells are potential targets showing promising
results against T-cell lymphoma (CD4 positive) models in vivo
and in vitro (Pinz et al., 2016). Clinical trials evaluating
multitargeted CAR-T cell therapy against ALL, such as single
engineered CAR-T cells targeting both CD19 and CD22 and a
combination of CAR-T cells with anti-CD19 and anti-CD20 to
target each antigen independently, have yielded encouraging
results (Huang et al., 2018). KYMRIAH ™ (tisagenlecleucel),
which is a second generation CAR-T cell product (4-1BB
costimulatory domain) directed against CD19 antigen, was
approved by the Food and Drug Administration (FDA) for
ALL in 2017 based on multicenter clinical studies, which
established an overall remission rate of 81% in children and
young adults with relapsed/refractory acute B-cell acute
lymphoblastic leukemia (r/r B-cell ALL), and a best overall
response rate of 52% in adults with relapsed/refractory diffuse

large B-cell lymphoma (r/r DLBCL) (Thudium Mueller et al.,
2021).

5.1.2 Acute Myeloid Leukemia
Acute myeloid leukemia (AML) results from genetic alterations in
precursor cells that affect the growth and differentiation of
hematopoietic cells, resulting in the accumulation of immature
myeloid cells in the bone marrow and peripheral blood. These
cells are incapable of turning into mature hematopoietic cells.
CAR-T cell therapy in AML did not show the same success as
seen in ALL, and the target of CAR T-cells in AML was CD123
and CD33; the latter was used in treating a patient and showed a
significant reduction in tumor volume in the bone marrow;
however, 9 weeks post-infusion, the patient experienced a
relapse (Wang et al., 2015). Furthermore, the use of anti-
CD123 CAR-T cells as a potential treatment of AML showed
inadequate potency in “on-target-off-tumor” since CD123 is also
expressed in normal tissues (e.g., endothelial tissue) and
monocytes in relatively low levels compared with AML
(Tettamanti et al., 2014). Therefore, other antigens have been
investigated as new targets, including Lewis-Y (LeY) and
CLEC12A antigens, and anti-LeY CART-cells were used in
patients who eventually developed disease progression.

In contrast, the CD33was used as anti-CLEC12A-CD33 CAR
T-cells, showed complete remission in a 44-year-old female
patient with refractory AML (Ritchie et al., 2013; Morsink
et al., 2019). In AML the application of CAR T cell therapy is
limited by the absence of an AML-specific antigen. AML cells can
express several cell surface antigens such as CD34, CD33, CD123,
and many more. moreover, these antigens are also expressed by
healthy Hematopoietic stem and progenitor cells (HSPCs) and
their lymphoid and myeloid progenitors (Cummins and Gill,
2019). However, CAR-T cells are unable to distinguish between
malignant and normal cells, unlike CD19 CAR T-cells, their
complete elimination of the normal and malignant B cells
resulting in B cell aplasia is considered clinically benign and
manageable by intravenous immunoglobulin infusion; however,
this is not the same in targeting myeloid antigens shared with
normal myeloid progenitor as their elimination could be fatal due
to bleeding complications and neutropenic infections (Mardiana
and Gill, 2020). The aggressiveness of this disease and its ability to
develop resistance against treatments requires substantial efforts
to achieve remission. CAR T-cell therapy is a promising
technology; however, the lack of leukemia-specific cell surface
antigens could present a problem in designing CAR T-cells
against AML (Mardiana and Gill, 2020). HSPCs frequently
share antigens with AML. CAR T-cells expansion is threatened
by AML blasts or prior exposure to chemotherapy that damages
T cells. In addition, the AML’s ability to evade the immune
system by inducing various immunosuppressive mechanisms
makes it challenging to achieve desired outcomes (Mardiana
and Gill, 2020).

5.1.3 Chronic Lymphocytic Leukemia
Chronic lymphocytic leukemia (CLL) results in excessive mature
lymphocytes in the blood, bone marrow, and lymphoid tissue
(Kipps et al., 2017). The use of CD19 as a target in the case of CLL
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by producing anti-CD19 CAR-T cells has shown remarkable
results in patients with complete remission and minimal
residual disease, and anti-CD19-CD28ζ CAR-T cells have
shown promising results, according to the data from the
National Cancer Institute (Porter et al., 2011, 2015;
Kochenderfer et al., 2015). Pharmacokinetics plays an essential
role in enhancing the outcomes and safety of CAR-T cell
treatments, especially when it comes to the individual
persistence of treatments, as it is considered the main goal in
achieving the desired long-term antitumor effects (Norelli et al.,
2016). In a recent study (NCT01747486), 42 patients (18 years
and above) with CLL were treated with autologous CD19 CAR
T-cells and 38 patients were infused with anti-CD19 CAR T-cells.
Twenty-eight patients randomly received a low dose of (5 × 107)
and high dose of (5 × 108), and 24 were evaluable for response
assessment. After a short time, ten patients revived the high dose
while eight were evaluable for response assessment. Follow-up
ranged from 2 to 75 months; results showed that higher doses
effectively induce a complete remission (CR) without excessive
toxicities (Frey et al., 2020). One of the inevitable issues in CLL
treatment is the antigen-negative relapse that has been
threatening CAR T-cell therapy’s success in CLL patients
(Mancikova and Smida, 2021). The proportion of remissions
in patients with CCL post CAR T-cell therapy remains the lowest
compared to the spectrum of B-cell tumor patients. Current data
are crucial for utilizing the clinical effects, and ibrutinib
administration and partial reversing of the exhausted
phenotype of CAR T-cells in CLL patient seem substantially
promising. The genetic modification (insertion) of transgenic
vector in the recipient T cells with systems such as CRISPR/Cas9
may contribute to treatment efficacy. The low quality of non-
functional CAR T-cells derived from treated CLL patients could
be improved using allogeneic CAR T-cells. The antigen-negative
relapse could be alleviated using bispecific CARs targeting two
antigens presented on the tumor cell surface. Suitable biomarkers
must be identified and used as targets to design treatment and
avoid infusion failure (Mancikova and Smida, 2021).

5.1.4 Non-Hodgkin’s Lymphoma
Non-Hodgkin’s lymphoma (NHL) consists of a group of
neoplasms with various degrees of malignancy occurring in
lymphocytes, lymphoid tissue, and histocytes at any stage of
their development. These heterogeneous lymphoproliferative
malignancies have a greater chance of dissemination to
extranodal sites and are less predictable than Hodgkin’s
lymphomas (HL) (Singh et al., 2020). Anti-CD19 CAR-T cells
have shown remarkable results in treating chemo-resistant
lymphomas. Patients with refractory diffuse large B-cell
lymphoma (DLBCL) had complete remission for more than
2 years (Neelapu et al., 2017a; Schuster et al., 2017; Tiberghien
et al., 2017). CD22 is expressed in progenitor and differentiated
B cells and is highly expressed in B-cell lymphomas and leukemia.
Anti-CD22 showed promising results in four out of nine patients
with a negative minimal residual disease and complete remission
(Fry et al., 2015). Anti-CD20 and anti-CD23 CAR-T cells have
also been used to treat NHL (Till et al., 2012; Zou et al., 2018). In
2017, the FDA approved YESCARTA (axicabtagene ciloleucel),

which is a CD19 directed second generation CAR-T (CD28 co-
stimulatory domain) cell product for the treatment of NHL.

5.1.5 Hodgkin’s Lymphoma
Hodgkin’s lymphoma (HL) is a common lymphoma derived
from B cells. Hodgkin and Reed-Sternberg cells are rarely
found in the tissues derived from mature B cells that lose their
phenotype and co-express unusual hematopoietic cell markers
(Küppers et al., 2012). HL cells highly express CD30; therefore, it
was considered an ultimate target by engineered CAR-T cells, and
clinical trials showed encouraging results where patients
diagnosed with HL exhibited complete remission after anti-
CD30 CAR-T cell therapy, wherein other patients either
developed stable disease or relapse; however, the observations
of anti-CD30 CAR-T cells did not show any toxicities or adverse
events (Ramos et al., 2017; Wang et al., 2017).

5.1.6 Multiple Myeloma
Multiple myeloma (MM) is also a B-cell malignancy of long-lived
plasma cells, which play a significant part in the immune defense
system by producing antigen-specific immunoglobulins; in the
case of malignancy, these cells excessively produce a specific
immunoglobulin (containing two heavy chains and two light
chains) and additional light chains, which can be detected in the
blood. They are used to diagnose and monitor MM (Bird and
Boyd, 2019). Disease management was compromised because of
the unavailability of an ideal target. Syndecan 1 (CD138) was the
target for the treatment of MM. This surface protein was
expressed on both plasma cells and normal cells (epithelial),
causing “on-target-off-tumor” toxicity. Nonetheless, Chinese
clinical trials using CD138 as a target achieved stable disease
in 4/5 patients (Heffner et al., 2012). Another target is the B-cell
maturation antigen (BCMA), which is thought to be involved in
all stages of B-cell differentiation and maturation and is highly
expressed in myeloma cells; therefore, it is considered a better
target in CAR-T cell therapy (Ali et al., 2016). A phase 1 clinical
trial showed preliminary results regarding BCMA (anti-CD269)
CAR-T cell therapy; one patient achieved complete remission for
more than 3 months, whereas another patient showed an
outstanding partial response to therapy. Additionally, a
correlation was established between high treatment efficacy
and higher doses. However, the higher the dosage, the more
adverse events were seen, such as cytokine release syndrome,
regardless of the use of BCMA or CD138 in therapy (Yang X.
et al., 2019). The expression levels of CD19 in the plasma cells
were low, but they were observed to be slightly higher in
malignant cells and showed remission in a 43-year-old patient
using CTL019 cells and CD19 as a target in MM. Cytokine release
syndrome did not develop, and following several days of infusion,
CTL019 cells were detected in the bone marrow and blood
(Garfall et al., 2015). BCMA CAR T-cells were designed with
signaling domain (CD3ζ) and CD28 (costimulatory domain) in a
study (NCT02215967) conducted with 24 patients with MM; the
cytotoxicity observed was minor post an infusion of a minimum
dose (0.3–3.0 × 106 cells/kg). The objective response rate (ORR)
was 20%. The anti-tumor function with 81% ORR, while severe
cytokine release syndrome (CRS) was reported in higher dosage
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of CAR T-cells (9 × 106 cells/kg) (Brudno et al., 2018). Bispecific
CAR T-cell (LCAR-B38M) was designed to target VHH1 and
VHH2 epitopes of BCMA in a multicenter study (NCT03090659)
on patients with MM. The findings included 88% ORR and 68%
CR. The adverse events included leukopenia, thrombocytopenia,
CRS, and pyrexia (Zhao W.-H. et al., 2018). In 2021, the FDA
approved ABECMA (idecabtagene vicleucel) for MM. ABCEMA
is a second generation CAR-T cell product directed against the
BCMA tumor antigen.

5.2 Solid Tumors
5.2.1 Renal Cancer
Renal cancer (RCC) is one of the most diagnosed cancers in
both men and women worldwide. RCC development is
associated with several factors, including chronic kidney
disease, smoking, hypertension, and obesity (Rossi et al.,
2018; Capitanio et al., 2019). For many years, surgical
intervention was the most effective treatment for RCC,
known for its chemoresistance. Later, other treatments such
as cytokine and tyrosine kinase inhibitors (TKIs) were
approved, and when RCC showed possible immunological
sensitivity, other immunotherapies were approved as well
(Schepisi et al., 2020). CAR-T cell therapy of RCC targets
carboxy-anhydrase-IX (CA-IX) as an antigen, which
participates in the catalysis of carbon dioxide hydration
(Bagley and O’Rourke, 2020; Bagley and O’Rourke, 2020)
and is considered a critical antigen in RCC; however, it is
also found in other normal tissues of gastric mucosa
epithelium, small intestine epithelium, duodenum, and the
biliary tree where it is expressed moderately (Yeku et al.,
2017). The expression of CA-IX can be induced under
hypoxic conditions in various tissues (Tafreshi et al., 2014).
The first generation of CA-IX/CART-cells toward RCC was
associated with high cytokine secretion due to cytotoxicity (Li
et al., 2018).

5.2.2 Ovarian Cancer
Novel therapeutics are constantly required in Ovarian cancer
(OC) as it is known for its high recurrence levels post-surgery and
multi-agent chemotherapies. CAR-T cells are a novel therapy. In
the context of ovarian cancer, they target tumor-associated
glycoprotein 72 (TAG72); humanized TAG72-specific CAR-T
cells exhibited cytokine production and cytotoxic activity in OC.
In contrast, it also showed proliferation reduction and increased
mouse viability in mouse models (Murad et al., 2018). Another
target was mucin 16 (MUC16), which causes OC progression
depletion after intraperitoneal and intravenous injection in
mouse models, making it one of the potential targets, and an
in-vitro study using Her-2 CAR-T cells on human OC cell line
(SKOV3) expressing Her-2/neu reported growth suppression
potential (Chekmasova et al., 2010). The antigen mesothelin
was targeted by anti-Meso CAR-T cells, which inhibited
proliferation and increased mouse viability. Additionally, 5T4-
specific CAR-T cells and FRα-specific CAR-T cells exhibited
inhibitory effects against OC cellular growth and progression
(Zuo et al., 2017; Owens et al., 2018). In the dual design of CAR-T
cells targeting both CD19 and mesothelin (MSLN-CAR NK-92)

cells using lentivirus gene transfer, the MSLN-CAR molecules
were highly expressed on the surface of NK-92, which led to the
killing of MSLN+ OC cells such as SKOV3 and OVCAR3 in vitro
(Cao et al., 2020).

5.2.3 Lung Cancer
Lung cancer is one of the most diagnosed cancers worldwide and
is considered one of the leading causes of death. Several antigens
have been targeted to treat this cancer, including epidermal
growth factor receptor (EGFR), which is highly expressed in
the epithelium and epithelium-derived tissues compared with
normal lung tissues. Because the receptor provides significant
affinity for binding sites in lung carcinomas, it is one of the most
therapeutic targets of CAR-T cells. Second-generation EGFR-
CAR-T cells with CD137 co-stimulatory domain showed
feasibility and safety in treating refractory/relapsed non-small
cell lung cancer (Feng et al., 2016). Another candidate target was
HER2, as it exhibited good therapeutic outcomes in refractory/
recurrent HER2+ sarcomas without any respiratory distress
syndrome (RDS) signs. However, RDS was observed 15 min
after cell infusion in one patient diagnosed with metastatic
colon cancer to the lung and liver, plausibly because of an
autoimmune reaction. Generally, the safety and efficacy of this
anti-HER2 CAR-T cell in lung cancer depends on the levels of
HER1 in patients and might be compromised because of RDS
(Morgan et al., 2010).

Further antigens were considered, including MSLN, since it is
expressed in 69% of lung adenocarcinoma (1/5 patients) and not
in normal lung tissues and reduced tumor burden in mouse
models (Carpenito et al., 2009; Kachala et al., 2014). The NSCLCs
were found to overexpress transmembrane glycoprotein MUC1
and Prostate Stem Cell Antigen (PSCA), a
glycosylphosphatidylinositol (GPI)-anchored cell surface
antigen; therefore, they were preferred to be used in
combination as potential targets for MUC1-CAR-T cells and
anti-PSCA-CAR-T cells, which showed excellent efficacy
compared with using a single antigen (Wei et al., 2017).
Carcinoembryonic antigen (CEA) is overexpressed in nearly
70% of NSCLCs (Berinstein, 2002); however, patients who
received anti-CEA CAR T-cell treatment had transient acute
respiratory toxicity, possibly because of the expression of
CEACAM5 on lung epithelial cells (Thistlethwaite et al.,
2017). The tyrosine kinase-like orphan receptor 1 (ROR1) was
used as a target; however, toxicity concerns are growing since it
was also expressed in normal tissue. Therefore, to overcome this
issue, selectivity of the target was improved by engineering CAR
T-cells with synthetic Notch (synNotch) receptors specific for
EpCAM or B7-Homolog 3 (B7-H3), a member of the B7 family of
immune checkpoint molecules, which is expressed on ROR1+
tumor cells but not on ROR1+ stromal cells, resulting in the
regression of tumor cells without causing toxicity (Srivastava
et al., 2019). The costimulatory role of CD80/CD86 makes it a
suitable target for immune intervention, and upon binding to
CTLA4 (CTLA4-CD80/CD86), T cells are downregulated via
various mechanisms. In several NSCLC cells, the mRNA
expression of CD80/CD86 was detected in normal tissues,
risking autoimmunity reactions; hence, new strategies are
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encouraged to overcome this risk by using CD80/CD86 CAR-T
cells and enhancing its selectivity (Wroblewski et al., 2001; Egen
et al., 2002).

5.2.4 Breast Cancer
Breast cancer (BC) is one of the leading causes of death in women,
wherein 1.5 million women are diagnosed with BC worldwide
each year. BC is diagnosed during routine screening or
incidentally, and it could reach the lymph nodes and
metastasize to other organs such as the brain (Sun et al., 2017;
Seely and Alhassan, 2018). One of the most attractive targets for
CAR T-cell therapy is triple-negative breast cancer (TNBC). This
type of breast cancer lacks estrogen (ER), progesterone, and
epidermal growth factor (EGFR) receptors (Harrer et al.,
2019). The targeted receptors for CAR T-cell treatment
include folate receptor alpha (FRα); as a result, the anti- FRα
CAR T-cells killed in vitro TNBC cells. This antitumor activity
correlates with the FRα antigen levels in the cells (Song et al.,
2016). The MUC1 antigen is associated with different tumor
invasiveness and metastatic behavior, including breast cancer,
making it a potential treatment target (Zhou et al., 2019). Integrin
αvβ3 is another tumor antigen expressed in different tumors,
including BC tumors, and stimulates tumor cell survival and
metastasis (Felding-Habermann et al., 2001). Tyrosine-protein
kinase Met (c-Met) is a cell surface molecule expressed in almost
50% of breast tumors. After an intratumoral injection of c-Met
CAR mRNA, the tumors were excised and analyzed via
intratumoral injection immunohistochemistry, revealing
inflammatory and necrotic responses (Tchou et al., 2012; Zhao
et al., 2017). The ROR antigen was also used as a CAR T-cell
target in BC, eliminating multiple layers of tumor cells deep in the
tumor tissues above and beneath the basement membrane
(Wallstabe et al., 2019). Recent clinical trials have targeted
several antigens against BC, including HER2, MUCI, CEA,
CD70, CD133, ROR1, and NKG2D ligands (Williams et al.,
2017). The cell surface antigen mesothelin was found to be
overexpressed in 67% of TNBC samples and is considered a
potential target because of its involvement in the activation of
intracellular pathways including MAPK, NFlB, and PI3K,
resulting in tumor cell proliferation and resistance to apoptosis
(Morello et al., 2016; Tchou et al., 2017). CSPG4 is a tumor
glycoprotein found in 72.7% of TNBC lesions and believed to be
associated with tumor cell survival and recurrence; it was
primarily detected in TNBC stem cells responsible for
resistance and relapse. Using anti-CSPG4 CAR T-cells in
TNBC metastasis and progression can also be diminished; it
can attack more than one target, including stromal cells, primary
TNBC cells, and cancer-associated fibroblasts, which are
considered to be crucial for maintaining the TME (Wang
et al., 2010; Cooney et al., 2011; Harrer et al., 2019).
Disialoganglioside GD2 is a BC stem cell antigen expressed in
35.5% of metastatic TNBC and is considered an
immunotherapeutic target, and anti-GD2 CAR T-cells have
been reported to show cytolytic activity in GD2+ cell lines
(Seitz et al., 2020; Xia et al., 2020). The TEM8 marker was
found to be overexpressed in the vasculature of solid tumors.
When anti-TEM8 CAR T-cells were used in the TNBC mouse

model, explicit control of the tumor growth was observed without
exhibiting any toxicity. On the other hand, in healthy mouse
models, cytotoxic effects were observed, which might be due to
the retroviral vectors used that might have affected the abundance
of CAR T-cells (Risma and Jordan, 2012b; Chaudhary et al., 2012;
Byrd et al., 2018). Another intriguing target is the human
endogenous retrovirus family K (HERV-K) antigen, highly
expressed in basal BC cells, similar to TNBC. Importantly, it is
absent in nearly all normal human tissues. The anti-K CAR
T-cells experimented with in-vivo BC mouse models showed
slow tumor growth. The MDA-MB-231 cell line showed great
lysis post-exposure to anti-K CAR T-cells prepared from cells
obtained from patients with BC (Zhao et al., 2011; Wang-
Johanning et al., 2012; Krishnamurthy et al., 2015; Zhou et al.,
2015, 2016; Johanning et al., 2017).

5.2.5 Prostate Cancer
The second most frequently diagnosed malignancy in men is
prostate cancer (PrC) and the fifth leading cause of death
worldwide. According to GLOBOCAN 2018, the number of
newly reported diagnoses in 2018 reached 1,276,106 cases
worldwide, with a higher incidence in developed countries
(Rawla, 2019). Prostate-specific membrane antigen (PSMA)
has been used as a target by CAR T-cells in studies (in vivo
and in vitro) and causes the proliferation and differentiation of
PSMA+ cells (Maher et al., 2002; Gade et al., 2005). In mouse
models of metastatic PrC, diabetes, and severe combined
immunodeficiency, the use of PSMA CAR T-cells eradicated
metastatic PrC cells. The second generation CAR T-cells
(containing co-stimulator CD28) offer a novel immune-
targeted approach for metastatic PrC since it showed a better
eradication effect than the previous generation (Ma et al., 2014;
Zuccolotto et al., 2014). The anti-PSMA CAR T-cell dosage and
protocols for metastatic PrC patients is being investigated in
phase 1 clinical trials, in addition to the possible use of dual-
targeted CAR T-cells targeting PSMA and transforming growth
factor-β (TGFβ) and their safety in another phase 1 clinical trial
(Slovin et al., 2013; Kloss et al., 2018). The prostate stem cell
antigen (PSCA) is also an attractive target for CAR T-cell therapy;
the first generation of CAR T-cells with the scFV of 7F5
antibodies exhibits antitumor effects in mice. In another study
that used the 4-1BB co-stimulator, the activation of T cells was
better than that by the CD28 co-stimulator (Hillerdal et al., 2014;
Priceman et al., 2018). As a potential strategy, combined CAR
T-cell therapy uses low-affinity PSCA CAR T-cells and high-
affinity PSMA CAR T-cells to eliminate double-positive CAR
T-cells in PrC (Feldmann et al., 2017). A different approach is to
use diabodies (bispecific antibodies; BITEs) that simultaneously
bind to specific T-cell receptor-associated molecules on the T-cell
surface (e.g., CD3ε) and to a tumor-specific antigen expressed on
the cancer cell surface (e.g., CD19; PSMA). The simultaneous
engagement of BITEs with both CD3 and the specific antigen
resulted in tumor cell lysis via the activation of cytotoxic T-cells.
BITEs have also been reported to be overexpressed in tumor
tissues compared to normal ones (Stone et al., 2012; Stieglmaier
et al., 2015; Yang et al., 2016). These novel antibodies were
evaluated in combating cells by targeting PSMA (Baum et al.,
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2012; Friedrich et al., 2012; Feldmann et al., 2017). In animal
models, these novel antibodies failed to block the proliferative
activity of cancer; they only caused delayed tumor growth, which
suggests that the use of diabodies as a single treatment would not
achieve a sturdy cellular memory response (Hillerdal and Essand,
2015). However, in murine xenograft PrCmodels, the humanized
bispecific antibody MOR209/ES414 caused tumor growth
inhibition and improved survival. PSMA expression was
reduced only in transferred and adaptive human T cells. In a
recent study on xenograft models, BITE targets CD3 in T cells and
PSMA in PrC cells. The results revealed their antitumor potential
(Hernandez-Hoyos et al., 2016; Bailis et al., 2019). An additional
target of PrC is the epithelial cell adhesion molecule (EpCAM;
also known as CD326), a known stem cell antigen present in
several tumors, including PrC (Gires et al., 2009; Ni et al., 2012).
Recently in Europe, EpCAM-CD3 was approved for the
treatment of malignant ascites. Using it as a TAA, it was
developed to produce anti-EpCAM CAR T-cells capable of
combating PC3M cells overexpressing EpCAM, thereby
extending the survival of under-expressing EpCAM PC3 cells.
However, further investigation of its efficacy in metastatic PrC is
needed (Deng et al., 2015).

5.2.6 Liver Cancer
Liver cancer is a global health burden, with an estimated >1
million cases by 2025. The most frequently diagnosed type of liver
cancer is hepatocellular cancer (HCC), contributing ~90% of all
diagnosed cases. Many risk factors play a role in the progression
of various diseases, such as hepatitis B and C infection, non-
alcoholic steatohepatitis associated with diabetes mellitus, or
metabolic syndrome (Llovet et al., 2021). The glypican-3
(GPC3) cell surface has been targeted in CAR T-cell therapy
against the HCC xenograft mouse model and proved effective
(Gao et al., 2014; Jiang Z. et al., 2016). Other targets are being
investigated, including MUC 1, CEA, and epithelial cell adhesion
molecules (Chen et al., 2018; Katz et al., 2019). A different target is
the deletion-mutation form of EGFR (known as EGFRvIII),
expressed in a wide range of cancer tissues, including HCC
tissues. It was identified as a suitable target by CAR T-cells in
an in vivo model (female BALB/cA-nude mice) and an in vitro
SMMC7721 cell line (expressing high levels of EGFRvIII). The
researchers used CAR T-cells by applying the transposon system
(piggyBac), and the results showed antitumor effects in both in
vivo and in vitro models (Ma et al., 2020).

5.2.7 Gastric Cancer
Gastric cancer (GC) is the fourth most commonly diagnosed type
of cancer and the second cause of cancer-related death. Each year,
the number of diagnosed patients is 990,000, of which 738,000 die
(Machlowska et al., 2020). Different CAR T-cell targets against
GC have been investigated, including folate receptor 1 (FOLR1)
(KimM. et al., 2018). HER2 is also a target in GC, and anti-HER2
CAR-T cells showed antitumor effects in MKN1 cells and mouse
xenografts derived from a GC cell line with HER2 expression
(Song et al., 2017). Several markers with diagnostic and functional
importance have been studied as targets in GC, such as claudin
18.2 (CLDN 18.2), EpCAM, MUC1, CEA, EGFR2, natural-killer

receptor group 2, member D (NKG2D), and MSLN. Other
possible biomarkers that hold immense potential in GC
include actin-related protein 2/3 (APR 2/3), desmocollin 2
(DSC2), B7H6 ligand, neuropilin-1 (NPR-1), cancer-related
antigens CA-72-4 and CA-19-9, and anion exchanger 1 (AF1)
(Zhang Q. et al., 2016). The use of anti-PSCA CAR T-cells on
BGC-823, MKN-28, and KATO III GC cell lines and xenograft
GC mouse models showed antitumor cytotoxicity post CAR
T-cells peritoneal injection in mouse models resulted in tumor
progression restriction (Wu et al., 2020).

5.2.8 Colorectal Cancer
Colorectal cancer (CRC) incidence has reached 1.85 million cases
worldwide. The mortality rate has reached more than 850,000
deaths per year, making it the third most common cause of death
among cancer-related deaths (Biller and Schrag, 2021). The
targeted antigens in CRC are NKG2D, CEA, EGFR, MUC1,
HER2, and CD133 (Li et al., 2021). The membrane-bound
guanylyl cyclase2C (GUCY2C) has been used as a CAR T-cell
target. It showed antitumor activity in both human and syngeneic
xenograft CRC mouse models and is expressed in the intestinal
apical surface, epithelial cells, and a proportion of the
hypothalamic neurons (Magee et al., 2016, 2018). Anti-
EpCAM CAR T-cells used against CRC cells and models
exhibited cytotoxic lysis of the targeted cells that secreted
cytotoxic cytokines, including IFN-γ and tumor necrosis
factor-alpha (TNF-α), resulting in tumor growth and
development in xenograft mouse models (Zhang et al., 2019).
The tumor-associated glycoprotein 72 (TAG-72) was used as a
CAR T-cell target in CRC. It was infused in patients via the
hepatic artery and intravenously. The CAR T-cells were
confirmed in the blood, and trafficking to the tumor tissue
was confirmed by tumor biopsy. The results showed antitumor
effects of the anti-TAG-72 CAR T-cells. However, the metastatic
deposits were resistant to these cells and escaped the immune
attack (Hege et al., 2017). Doublecortin-like kinase 1 (DCLK1),
involved in the epithelial-mesenchymal transition (TME) and
tumor progression, is a novel target for CRC immunotherapy and
anti-DCLK1 CAR T-cells resulted in cytotoxicity and secretion of
IFN-γ after incubation with CRC cells in two. Higher secretion
levels were observed in three-dimensional cultures (Sureban et al.,
2019).

5.2.9 Pancreatic Cancer
Pancreatic cancer (PaC) incidence has increased over the past few
years, comprising 2% of all diagnosed malignancies and 5% of
cancer-related deaths. Early diagnosis of PaC is challenging, and
symptoms are not detectable at the early stages of the disease up
to the advanced and metastatic settings. Most patients relapse,
and the 5-year survival rate is 2% (Zhao and Liu, 2020). CXCR2-
expressing CAR T-cells migrate more efficiently toward
interleukin-8 (IL-8) and IL-8 containing TME, leading to a
higher antitumor activity against αvβ6-expressing PaC
xenografts (Whilding et al., 2019). B7-H3, also known as the
CD276 antigen, was targeted by CAR T-cells in pancreatic
adenocarcinoma in vitro and a metastatic xenograft mouse
model, which proved efficacy (Du et al., 2019). Anti-CD133
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CAR T-cells showed inhibitory activity against potential
metastatic cells in HCC, colorectal carcinoma, and pancreatic
carcinoma in phase I clinical trial (Wang et al., 2018). Other
known antigens are being investigated for PaC CAR T-cell
therapy, such as MUC-1 (Qu et al., 2004), fibroblast activation
protein (FAP) (Tran et al., 2013), PSCA (Wu et al., 2020), CEA
(Gansauge et al., 1996), mesothelin (Argani et al., 2001), CD24
(Jacob et al., 2004), and HER-2 (Komoto et al., 2009).

5.2.10 Brain Cancer
The burden of the brain and central nervous system cancers is
high. However, they occur rarely and comprise approximately
1.5% of all diagnosed cancers, 80% of all adult primary brain
cancers are gliomas, and the relative 5-year survival rate is 22% in
brain cancer (Sandler et al., 2021). Various targets of CAR T-cells
in brain cancer have been studied, including EGFRvIII, which has
several limitations, including adverse events such as dyspnea and
hypoxia in patients. Another potential end is that the heterogenic
expression of this target in glioma tumors might lead to the
accumulation of resistant variants able to escape CAR T-cell
therapy (Goff et al., 2019; Rutkowska et al., 2019). In a human
pilot study where IL-13Rα2 was used as a target for CAR-T cells
in treating glioblastoma via multiple intracranial infusions, the
treatment was well-tolerated and antitumor activity was observed
in patients (Brown et al., 2015). A study on HER2 as a target
showed that the third generation HER2-specific CAR-T cells with
enhanced activity combined with PD-1 blockade successfully
eliminated glioblastoma cells (Shen et al., 2019). Additionally,
HER2-specific CAR T-cells were infused in 17 patients. The
infusion was well-tolerated, no dose-limiting toxicities were
observed, and CAR T-cell persistence was detected for up to
12 months after infusion. No disease progression was observed
during 24–29 months of follow-up (Ahmed et al., 2017). B7-H3
was targeted against glioblastoma in mouse models, and anti-B7-
H3 Car T-cells led to significant tumor regression and extended
survival (Tang et al., 2019). B7-H3 mRNA exists in all normal
tissues, but the microRNAs inhibit its translation; however,
conditions such as inflammation might elicit B7-H3 expression
in these tissues, making them a target of anti-B7-H3 CAR T-Cells
(Xu et al., 2009). The inducer of extracellular matrix
metalloproteinase, known as CD147, is responsible for the
degradation of the extracellular matrix, allowing for tumor
growth, invasion, and metastasis (Xiong et al., 2014). CD147
expression in glioma is significantly higher than that in normal
tissues, and its expression is correlated with patient prognosis
(Yang et al., 2013; Li et al., 2017a). A phase 1 clinical trial was
performed to evaluate the anti-CD147 effect in recurrent
glioblastoma patients; however, low levels of this antigen in
several normal tissues despite high levels in malignant tissues
sparked concern (Riethdorf et al., 2006; Liao et al., 2011; Tseng
et al., 2020). GD2 is also expressed in glioblastoma patient
samples and cell lines (Golinelli et al., 2018). Anti-GD2 CAR
T-cells exhibited cytotoxic activity against neuroblastoma cell
lines in vitro and subcutaneously grafted cell lines in mouse
models and successfully eliminated orthotopic patient-derived
diffuse midline glioma xenograft models (Prapa et al., 2015;
Mount et al., 2018). Chlorotoxin (CLTX) is found in the death

stalker scorpion venom [(DeBin et al., 1993). CLTX was found to
selectively bind to primary tumor cells, while it is hardly detectable
in different types of normal brain tissues (Lyons et al., 2002). CLTX
directed-CAR T-cells were generated to target glioblastoma, which
exhibited antitumor activity in orthotopic xenograft mouse
models (Wang D. et al., 2020). NKG2D receptors are expressed
in glioblastoma stem-like cells (Flüh et al., 2018; Yang D. et al.,
2019). Chemotherapy or radiotherapy upregulates the expression
of the NKG2D ligand in glioblastoma cells; therefore, the
combination of radiotherapy and anti-NKG2D CAR T-cells led
to the prolonged survival of immunocompetent mice grafted with
intracranial glioma cells (Weiss et al., 2018). In human
differentiated glioblastoma cells and cancer initiation cells, and
subcutaneous tumor models showed cellular eradication after CAR
T-cell therapy; however, NKG2D-ligands on normal tissues are
expressed under distress, which may result in human toxicity
(Yang D. et al., 2019). In preclinical studies, various targets,
such as carbonic anhydrase (CAIX), CD70, chondroitin sulfate
proteoglycan 4 (CSPG4), erythropoietin-producing hepatocellular
carcinoma A2 (EphA2), and trophoblast cell surface antigen 2
(TROP2) (Maggs et al., 2021).

5.2.11 Malignant Pleural Mesothelioma
Malignant pleural mesothelioma (MPM) is an incurable, rare,
and aggressive type of cancer that initiates at the serosal surfaces,
including pleura, pericardium, peritoneum, and the vaginalis (in
males), as a result of asbestos exposure, with an approximate
survival of 8–14 months (Andujar et al., 2016; Carbone et al.,
2019; Klampatsa and Albelda, 2020). In the United States, the
incidence rate reached 3,200 diagnosed cases/year (Jane Henley
et al., 2013), while in Europe, the cases are constant and are
expected to have an increased trend between 2020 and 2025
(Carbone et al., 2019). MPM has three main histological
mesothelioma subtypes: sarcomatoid, biphasic, and epithelioid
(Yang et al., 2008). The disease is characterized by a significant
therapeutic resistance and poor prognosis (Klampatsa and
Albelda, 2020). Preclinical studies using mRNA
electroporation exhibited potent anti-tumor effects (Zhao
et al., 2010). In light of this, an initial study focusing
(NCT01355695) on toxicity assessment was conducted using
T-cells with transient expression of second-generation murine
anti-mesothelin CAR containing CD3ζ and 41BB signaling
domains (Maus et al., 2013; Beatty et al., 2014); in phase I
safety trial none of the patients exhibited “on-target, off-
tumor” toxicity post-infusion, and there was no evidence of
clinical responses (Beatty et al., 2014; Klampatsa et al., 2017).
However, an immediate anaphylactic reaction was observed in
one of the patients post a delayed infusion of mesothelin CAR
T cell, which was linked to the immunogenicity of the murine SS1
scFV used in the construction of CAR (Maus et al., 2013). After
the safety confirmation of the transient CAR mesothelin
expression, a second phase I clinical trial (NCT02159716) was
conducted on 15 patients with mesothelioma, ovarian, and
pancreatic cancer; the used CARs were expressing the same
second-generation murine-based anti-mesothelin constructed
using a lentiviral transduction vector (Haas et al., 2019). In
this trial, two doses of T-cells were administered, and some
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cohorts used a lymphodepleting agent (cyclophosphamide).
Although cyclophosphamide improved CART-meso expansion
but did not enhance persistence beyond 28 days, the best
overall response reported was stable disease in 11/15 patients
(Haas et al., 2019). A third clinical trial (NCT03054298) was
conducted using an active, fully human anti-mesothelin CAR
and cyclophosphamide, administered via intravenous and
intrapleural routes, respectively, to enhance the overall
persistence and efficacy of CAR T-cells. In addition, researchers
at Memorial Sloan Kettering Cancer Center are conducting a
mesothelin-targeting CAR T cell trial to treat malignant pleural
disease, including MPM (NCT02414269) based on preclinical
studies of an orthotopic MPM mouse model. The study
demonstrated that intrapleural administration of mesothelin
CAR T-cell therapy was potent and had long-lasting antitumor
efficacy (Adusumilli et al., 2014). The phase I/II clinical trial used
CAR with human-derived anti-mesothelin scFV and CD3Z/CD28
signaling domain transduced by a retroviral vector; the CARs were
administered via the intrapleural route in patients with primary
and secondary pleural malignancies, with MPM patients being the
main target population. A subset of the MPM patients had a
subsequent administration of PD-1 checkpoint inhibitor
(Pembrolizumab) to assess its efficacy in maintaining the
prolonged activity of CAR T-cell therapy. Of the 27 patients
who received cyclophosphamide, CAR T-cell therapy, and three
doses of Pembrolizumab, 63% achieved either partial or complete

response. Also, the CAR T-cells persisted and lasted for up to
42 weeks in the pleural fluid (Adusumilli et al., 2019).

5.3 HIV Infection
The human immunodeficiency virus (HIV) infects crucial cells in
the human immune system, such as DCs, macrophages, and T
helper cells (CD4+ T cells) (Cunningham et al., 2010). The
deterioration of CD4+ T cells below critical levels renders the
body susceptible to opportunistic infections (OIs) and the
advancement of acquired immunodeficiency syndrome (AIDS)
(Okoye and Picker, 2013). HIV-specific CD8+ cytotoxic T
lymphocytes (CTLs) play an essential role in recognizing viral
antigens presented by HLA class I and killing the infected cells,
resulting in limited viral replication in vivo; however, CTLs fail to
provide sustainable HIV replication control without the use of a
combination antiretroviral therapy (cART) (Jones and Walker,
2016). The CTL responses still fail to clear the virus from the
body, even when using cART to delay disease progression and
increase life expectancy. HIV remains an incurable disease, and
one of the main reasons behind the failure of the immune system
to clear out HIV infection is the reduction or absence of HIV viral
antigen expression on infected yet latent CD4+ T cells that act as
viral reservoirs (Churchill et al., 2016). Viral reservoirs have been
targeted by one strategy known as “kick and kill” or “shock and
kill.” This approach suggests the induction of the virus from the
latent cells to promote HIV eradication via cell death or by
immune surveillance, which clears the viral reservoir (Kim Y.
et al., 2018). However, this approach has been investigated in
clinical trials using latency reversal agents (LRAs), and the results
are not promising (Rasmussen et al., 2014; Spivak et al., 2014;
Søgaard et al., 2015). CAR T-cells are a promising approach for
targeting and killing HIV-expressing cells (Kuhlmann et al.,
2018) for multiple reasons: 1) long-term immune surveillance
provided by CAR T-cells: the effector function of peripheral-
derived CAR T-cells has been reported to be maintained for
6 months (Kalos et al., 2011; Kochenderfer et al., 2012; Maude
et al., 2014). Moreover, hematopoietic stem cell (HSPC)-derived
CAR T-cells persist longer and provide constant production of
CAR T-cells as observed in HIV/AIDS animal models (Zhen
et al., 2017). Additionally, HSC-based CAR T-cells were found in
several lymphoid tissues in the gut, bone marrow, and several
lymph nodes, all of which represent the main replication sites in
non-human primate (NHP), infected models, with simian-
human immunodeficiency virus (SHIV) (Zhen et al., 2017).
Moreover, the long-lived immunological memory provided by
CAR T-cells can be reprogrammed and differentiated into central
memory or effector T cells (Kawalekar et al., 2016). 2) The
trafficking capability of CAR T-cells to various types of tissues,
including the central nervous system, is considered a potential
harbor for latent HIV (Marban et al., 2016). Penetration of the
blood-brain barrier has been a difficult task for drugs; however,
evidence of anti-CD19 CAR T-cell trafficking to brain tissues and
cancer cell elimination supports the concept that CAR-T cells
may effectively target HIV reservoirs in the brain tissues (Grupp
et al., 2013; Maude et al., 2014). Homing receptors can be added
to CAR T-cells to increase their presence in the B cell follicle,
which is another important HIV reservoir difficult for CTLs to

FIGURE 4 | HIV reservoir eradication. The “kick and kill” strategy is used
to eliminate latently infected cells (reservoir); the “kick” part of this strategy
depends on latency reversal agents (LRAs), which induce the virus via
transcriptional reactivation of the incorporated provirus within the
infected cell. The infected CD4+ T-cell then starts producing and assembling
the virus. Upon leaving the cell membrane, the engineered CD8+ CAR T-cell
will detect the expressed viral antigens; then, the “kill” action occurs via the
secretion of perforin and granzymes, sending the cell into apoptosis.
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target (Haran et al., 2018). 3) The ability of CAR T-cells to target
antigen in an MHC-independent manner helps in targeting HIV-
infected cells and avoids viral downregulation of MHC-1 that
leads to immune escape (Collins et al., 1998; Goulder andWalker,
1999; Wonderlich et al., 2011). The HIV CAR T-cell therapy
targeted the primary HIV cellular receptor CD4, infused with
CD3ζ signaling domain (CD4ζ) (Mitsuyasu et al., 2000; Walker
et al., 2000; Deeks et al., 2002). The reason behind choosing CD4
as the reactive antigen in anti-HIV CAR T-cell design is its
extensive targeting of all HIV isolates. Additionally, the binding
sites of CD4 on the envelope protein are well preserved (Wang
et al., 2019). The first generation CD4-based CAR-T cells have
been tested in several clinical trials on HIV patients (Mitsuyasu
et al., 2000; Walker et al., 2000; Deeks et al., 2002). The results
showed a lack of durable control over viral replication; however,
no treatment-associated toxicities were observed, and the
persistence of modified cells continued for more than 10 years
(Mitsuyasu et al., 2000). The first generation of CAR T-cells had

certain impediments, such as limited in vivo expansion,
susceptibility to apoptosis, and cytotoxicity (Heuser et al.,
2003; Zhao et al., 2009). CAR T-cells were optimized into the
second generation by adding costimulatory domains 4-1BB,
resulting in 50-fold more compelling in vitro suppression of
HIV replication than the previous generation (Leibman et al.,
2017). In vivo studies showed that second generation CAR T-cells
had superior expansion in response to the antigen, provided
protection to CD4+ T-cells against HIV infection, and CD4
reduction was decreased compared to the CARs without
costimulatory molecules (Leibman et al., 2017). The
costimulatory domain 4-1BB is superior in reducing viral
rebound than the CD28 domain after antiretroviral therapy
(ART) and 4-1BB-induced T-cell perseverance in the absence
of the antigen (Zhang et al., 2007; Leibman et al., 2017).
Developing third generation CARs with multiple costimulatory
molecules enhanced effector function, survival, and proliferation.
It also enhanced tumor targeting and killing (Savoldo et al., 2011).

FIGURE 5 | The number of clinical trials. Several clinical trials have been investigating various malignancies as recorded by ClinicalTrials.gov. Based on the data up
to January 2022, the number of these clinical trials is rising. The figure shows the number of CAR T-cell therapy clinical trials for hematological malignancies, solid tumors,
and HIV infection (total = 789). (A) Hodgkin’s lymphoma = 15 studies. (B) Acute myeloid leukemia = 35 studies. (C) Chronic lymphocytic leukemia = 74 studies. (D)
Multiple myeloma = 114 studies. (E)Non-Hodgkin’s lymphoma = 153 studies. (F) Acute lymphoblastic leukemia = 157 studies. (G)Human Immunodeficiency Virus
= 6 studies. (H) Prostate Cancer = 10 studies. (I) Brain Cancer = 12 studies. (J) Renal Cancer = 12 studies. (K) Colorectal Cancer = 15 studies. (L)Ovarian Cancer = 16
studies. (M) Lung Cancer = 22 studies. (N) Gastric Cancer = 19 studies. (O) Breast Cancer = 19 studies. (P) Pancreatic Cancer = 28 studies. (Q) Liver Cancer = 29
studies. (R) Malignant pleural mesothelioma = 4 studies.
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TABLE 1 | CAR T-cell clinical trials with recorded results from ClinicalTrials.gov.

Condition Enrollment Status Antigen Phase Results NCT

B- cell lymphoma 43 Active, not
recruiting

Anti-CD19 CAR T-cells Phase I/
phase II

Complete remission (CR) of an
assortment of the B-cell
malignancies with durability for up to
≥3 years post 51% of anti-CD-19
CAR T-cell treatment with remission
of 9 years and going. The adverse
events were infrequent

(NCT00924326)

Metastatic melanoma and renal
cancer

24 Terminated Anti-VEGFR2- CAR T-cells Phase I/
phase II

Adverse events registered Grade 3
of 4 toxicity with a presentation of
hypoxia, nausea, vomiting,
hyperbilirubinemia, elevation in
aspartate transaminase, and alanine
transaminase. The study was
terminated due to the absence of
observed impartial responses

(NCT01218867)

Metastatic cervical, pancreatic,
lung, ovarian, and mesothelioma
cancers

15 Terminated Anti-mesothelin CAR T-cell Phase I/
phase II

Adverse events were evident in this
study, including anemia,
constipation, thrombocytopenia,
lymphocytopenia, and hypoxia. The
study was terminated due to low
and inadequate accrual

(NCT01583686)

Malignant gliomas 18 Completed Anti-EGFRvIII CAR T-cells Phase I/
phase II

The pilot clinical trial failed and led to
severe adverse events such as
hypoxia, dyspnea, and multi-organ
failure. In addition, the CAR T-cell
intervention had no significant
impact on the glioblastoma and
resulted in its progression

(NCT01454596)

Refractory B-cell malignancies in
children and young adults

53 Completed Anti-CD19 CAR T-cells Phase I The feasibility and safety of this
treatment were evident. The anti-
leukemic activity was remarked in
chemoresistance patients. High
responses rate was observed post-
infusion in patients. Central nervous
system (CNS) trafficking and
clearance were detected in two
cases. Minimum cytokine release
syndrome was CAR T-cells
expansion correlated. Toxicities
were reversible

(NCT01593696)

Relapsed or refractory CD19
positive chronic lymphocytic
leukemia (CLL) and small
lymphocytic lymphoma (SLL)

42 Completed Anti-CD19 CAR T-cells Phase II Anti-leukemic activity and long
persistence of tranced cells were
seen in patients. Upon further
investigation, findings suggest that
patients who achieved complete
response showed an increased
mass of the Anti-CD19 CAR T-cells
mitochondria, which contributed to
cells expansion and persistence

(NCT01747486)

Adult B-cell Acute Lymphoblastic
Leukemia (B-ALL)

82 Terminated JCAR015 Anti-CD19 CAR
T-cells

Phase II The clinical trial failed to achieve
significant results as five patients
suffered from cerebral edema as an
adverse event, resulting in death,
and the study was terminated for
safety reasons

(NCT02535364)

B-cell Malignancies (B-Cell
Lymphoma, Non-Hodgkin’s
Lymphoma)

27 Active, not
recruiting

Anti-CD19 CAR T-cells. (Hu19-
CD828Z)

Phase I Patients had shown CR. This study
suggested that enhancing the CAR
T-cells design resulted in less
neurotoxicity and CRS associated
with low or mild cytokine production
levels

(NCT02659943)

(Continued on following page)
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TABLE 1 | (Continued) CAR T-cell clinical trials with recorded results from ClinicalTrials.gov.

Condition Enrollment Status Antigen Phase Results NCT

Multiple myeloma 6 Terminated Anti-CD19 CAR T-cells. Post
autologous stem cell
transplantation (ASCT)

Phase II No mortalities were reported. The
serious adverse events were 1/6
patients suffered from CRS and
upper respiratory tract infection
(URI). The study was terminated due
to administrative reasons

(NCT02794246)

B-cell Acute lymphoblastic
leukemia in adults

1 Terminated Anti-CD19 CAR T cells Phase II The patient died. The severe adverse
events mentioned were paresthesia,
encephalopathy, and gastric
necrosis. The results were not
discussed further, and the study was
terminated due to admirative reasons

(NCT02935543)

Glioblastoma and gliosarcoma 3 Terminated Anti- EGFRvIII CAR T-cells Phase I The mortalities were 3/3. The
adverse events were confusion and
generalized muscle weakness in 1/
3. The study was terminated
because the funding was not
sufficient

(NCT02664363)

Multiple myeloma 12 Terminated AUTO2 (APRIL CAR T-cells) Phase I/
phase II

The study mortalities were 6. Some
patients have severe adverse
events, including Acute myocardial
infarction (AMI), pyrexia, lung
infection, decreased neutrophil
count, hypocalcaemia, metaplastic
breast carcinoma, headache, and
dyspnea. The study was terminated
as the preliminary efficacy post-
treatment was insufficient to
guarantee further development

(NCT03287804)

B Cell Acute Lymphoblastic
Leukemia (ALL)

23 Completed AUTO3 (CD19/22 CAR T-cells) Phase I/
phase II

The mortality rate was 61.6%
among patients who received high
infusion doses; serious adverse
events were anemia, febrile
neutropenia, thrombocytopenia,
pyrexia, cellulitis, encephalopathy,
and seizure

(NCT03289455)

Relapsed/refractory B-cell
malignancies

26 Active, not
recruiting

Anti-CD20/19-CAR T-cells Phase I The results of this study suggest
that the favorable infusion dosage is
2.5 × 106 cells/kg providing low
toxicity and high efficacy in city
profile and sustained efficacy at a
dose of 2.5×106 cells per kg for
relapsed, refractory B cell non-
Hodgkin’s lymphoma (NHL) and
chronic lymphocytic leukemia (CLL)
patients

(NCT03019055)

Relapsed/Refractory Multiple
Myeloma

17 Active, not
recruiting

KITE-585 CAR T-cells Phase I The overall mortality rate was
62.5%, and the adverse events
were chest pain and hypoxia

(NCT03318861),

Advanced Lung Cancer 1 Terminated Anti-PD-L1 CAR T-cells Phase I The patient developed severe CRS,
which caused interstitial pneumonia
disease. The study was terminated
due to serious adverse events

(NCT03330834),

Acute Myeloid Leukemia (AML)
Multiple Myeloma (MM)

8 Terminated Anti-CD44v6 CAR T-cells Phase I/
phase II

The patients had adverse events of
pyrexia, anemia, neutropenia. The
study was terminated due to low
patient recruitment and a lower-
than-expected proportion of
myeloma and leukemia expressing
CD44v6. The study failed to be
completed in a clinically relevant
time frame

(NCT04097301)

(Continued on following page)
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Using the third generation CARs with CD3z-CD28-4-1BB as
multiple domains, targeting the envelope glycoprotein GP120
(gp120) and anti-gp120 CAR T-cells in HIV infection showed
increased effectiveness in lysing Env-expressing cells in vitro
compared to CD4ζ CAR T-cells (Liu et al., 2016). Targeting
HIV reservoirs by immune surveillance is difficult because of the
ability of the virus to persist in various reservoirs and the lack of
viral antigen expression in infected cells. The “kick and kill”
strategy cause the transcription reactivation of the latently
persistent provirus leading to viral antigen expression, making
it detectable by the immune surveillance in ART-treated patients.
The ‘kick” strategy can be achieved by potent latency reversal
agents (LRAs). Clinical studies in animals showed that LRA was
well tolerated in vivo and induced HIV expression (Marsden
et al., 2017). Although LRAs induce the virus killing by the
immune system, it is insufficient, and reservoir eradication is
inefficient (Thorlund et al., 2017). The CAR T-cells can exhibit
the “kill” response in this strategy along with LRAs; this
combination is necessary for effective reservoir eradication
(Bashiri et al., 2018) (Figure 4). The kill action in the human
system shows that CTLs, either CD8+ or CD4+, induce apoptosis
by cytolytic perforin and granzyme (Yasukawa et al., 2000).

CAR T-cell therapy has been considered a potential treatment
against other infectious diseases such as those caused by
opportunistic fungi, hepatitis B virus (HBV), hepatitis C virus
(HCV), and cytomegalovirus (CMV), and the data gathered from

pre-clinical trials have shown promising results (Seif et al., 2019).
The number of clinical trials of CAR-T cell therapies is increasing,
and their observations are constantly changing, as it is a very
attractive field of research with remarkable potential (Figure 5).
However, according to ClinicalTrials.gov, only 21 studies had
results in January 2022 (Table 1).

It is worth of mentioning that CAR T-cells potentials were
recently applied against cardiac fibrosis (heart tissue stiffening
and scarring). Rurik et al. were capable of designing an
immunotherapy strategy to generate transient CAR T-cells
able to identify fibrotic cells in the heart through injecting
CD5-targeted lipid nanoparticles encompassing the needed
mRNA to reprogram T lymphocytes, therapeutic CAR T-cells
were successfully generated inside the body (In vivo). The heart
disease in mouse model was analyzed and revealed that this
approach has indeed succeeded in fibrosis reduction and cardiac
function restoration (Rurik et al., 2022).

6 FDA APPROVED CAR T-CELLS
THERAPIES

6.1 Axicabtagene Ciloleucel (YESCARTA™)
The first Food and Drug Administration (FDA) approved CAR
T-cell therapy, axicabtagene ciloleucel (YESCARTA™) from Kite
Pharma approved in 2017, comprises autologous genetically

TABLE 1 | (Continued) CAR T-cell clinical trials with recorded results from ClinicalTrials.gov.

Condition Enrollment Status Antigen Phase Results NCT

CD19+ Diffuse Large
B-cell Lymphomas Follicular
Lymphomas Mantle Cell
Lymphomas

12 Completed Anti-CD19 CAR T-cells Phase I/
phase II

Serious adverse events included
optic disorder, fever,
hyperbilirubinemia, CRS, sepsis,
hypercalcemia, delirium, acidosis,
hypoxia, pleural effusion, non-
cardiac related chest pain, and rash

(NCT02650999)

DLBCL Neurotoxicity Syndromes 25 Terminated Evaluation of the Safety and
Efficacy of Defibrotide in the
Prevention of Chimeric Antigen
Receptor-T-cell-associated
Neurotoxicity

Phase II Patients had febrile neutropenia,
atrial fibrillation, myocardial
infarction, asthenia, pyrexia, CRS,
decreased appetite, neurotoxicity,
tumor lysis syndrome, transient
ischaemic attack, confusion state,
pleural effusion, pulmonary
embolism, and hypotension. The
study was terminated because
unplanned interim assessment on
the first 20 efficacy evaluable
patients was unlikely to meet the
primary endpoint

(NCT03954106)

Relapsed or Refractory
Neuroblastoma

17 Completed Anti-GD2 CAR T-cells, (1RG –

CART)
Phase I Hypotension, capillary leak

syndrome, neurological symptom,
headache, hyponatremia, pyrexia,
tachycardia, febrile neutropenia,
and coagulopathy. Only 12 patients
were subjected to therapy as two
were withdrawn due to progressive
disease, one died, and one
withdrew the consent for the trial

(NCT02761915)

Myeloma-Multiple Myeloma,
Plasma-Cell

13 Completed Anti-SLAMF7 CAR T-cell Phase I Serious adverse events included
CRS sinus tachycardia and fever

(NCT03958656)
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modified T cells designed to produce CAR protein targeting
CD19 expressing normal and malignant cells (Papadouli et al.,
2020). It is used to treat adult large B-cell Lymphoma after two or
more lines of systemic therapy, including DLBCL, high-grade
B-cell lymphoma, primary mediastinal large B-cell lymphoma,
and DLBCL arising from follicular lymphoma. The approval of
this drug was based on a single-arm multicenter clinical trial
(ZUMA-1; NCT02348216) conducted on 108 patients diagnosed
with aggressive B-cell non-Hodgkin’s lymphoma. The selection
criteria were occurrence of refractory disease post a recent
therapy or relapse post autologous hematopoietic stem cell
transplantation within a year. The patients underwent
lymphodepletion before receiving a single infusion of
axicabtagene ciloleucel. The efficacy was evaluated in 101
patients as follows: ORR 72%, with a complete remission rate
(CR) of 51%, the duration of response (DOR) was longer in
patients with CR than in patients with partial remission (PR). The
median DOR was not reached after 7.9-months (median follow-
up). The estimated DOR was 2.1 months. Most common grade 3
(with incident ≥10%) adverse events occurred including fever,
febrile neutropenia, encephalopathy, CRS, hypoxia, and
hypotension; 25% exhibited severe adverse events, including
neurotoxicity, CRS, serious infections, and prolonged
cytopenia. In some patients, CRS and neurotoxicity were fatal.
The FDA approved axicabtagene ciloleucel with
recommendations of mitigation strategy and risk evaluation.
The recommended dosage was 2 × 106 viable CAR-positive
T cells/kg of body weight, following lymphodepletion
chemotherapy by (Flu/Cy) (Neelapu et al., 2017a). In March
2021 (Yescarta, axi-cel), the FDA approved another directed
CD19 T-cell therapy to treat adult r/r follicular lymphoma
after two lines of therapy. The approval was based on
collected data from a single-arm, open-label phase II clinical
trial (ZUMA-5; NCT03105336). The clinical trial had 81
participants. The results were: ORR 91%, with CM of 60%, the
median DOR was not reached within a year of CM rate of 76.2%,
patients who underwent leukapheresis (n = 123) experienced a
ORR of 89% with CM rate 62%. CRS (grade ≥ 3, 10%) occurred in
88%, and neurotoxicity occurred in 51% of all patients with non-
Hodgkin’s lymphoma (Colombo et al., 2021).

6.2 Tisagenlecleucel (KYMRIAH™)
The second FDA approved CAR T-cell therapy, tisagenlecleucel
(KYMRIAH™) from Novartis pharmaceuticals approved in
2018, is a genetically modified autologous T-cell
immunotherapy (CD19 directed) for adult patients with r/r
large B-cell lymphoma post two or more lines of systemic
therapy, including high-grade B-cell lymphoma DLBCL, and
DLBCL arising from follicular lymphoma. The approval was
based on phase II of a single-arm, open-label, multicenter
clinical trial (JULIET; NCT02445248) conducted on adults
with r/r DLBCL and DLBCL arising from follicular lymphoma
(Schuster et al., 2019). The criteria included a condition that the
subject must at least undergo two prior therapy lines with
rituximab and anthracycline or have relapsed after autologous
hematopoietic stem cell transplant. Patients had a single
tisagenlecleucel infusion after the completion of

lymphodepleting chemotherapy. The clinical trial had 68
eligible patients out of 115, and the outcomes were 50% ORR
with a 32% CR rate. With a median follow-up time of 9.4 months,
patients with the best overall response CR had longer DOR than
that of patients with PR. Patients with CR estimated median DOR
of (10.0 months) was not reached, while the estimated median
DOR among PR patients was 3.4 months. The most common
adverse events in 20% of the patients included CRS, pyrexia,
nausea, infections-pathogens unspecified, fatigue, diarrhea,
headache, edema, and hypotension. The recommended dose of
tisagenlecleucel for adults with r/r DLBCL was 0.6–6.0 × 108

CAR-positive viable T-cells (Schuster et al., 2019).

6.3 Brexucabtagene Autoleucel
(TECARTUS™)
Accelerated approval of brexucabtagene autoleucel (TECARTUS™)
was granted by FDA in July 2020; this immunotherapy comprises
autologous genetically modified T cells (CD19-directed) for the
treatment of adult patients with r/r mantel cell lymphoma (MCL)
(Wang M. et al., 2020). The clinical trial behind the approval was a
multicenter, single-arm, and open-label (ZUMA-2; NCT02601313)
trial. Seventy-four patients diagnosed with MCL were subjected to
this study. These patients previously received anthracycline or
bendamustine-containing chemotherapy, anti-CD20 antibody, and
Bruton tyrosine kinase inhibitor. After completing lymphodepleting
chemotherapy, patients received a single infusion of brexucabtagene
autoleucel. Sixty out of 74 patients evaluated for efficacy in a
minimum duration of 6months follow-up showed 87% ORR,
with a CR rate of 62%. The estimated DOR was not reached
(0–29.2 months) after a median DOR of follow-up (8.6 months).
Among all 74 patients who underwent leukapheresis, the ORR was
80%, and CR was 55%. The most common adverse reactions with
grade 3 or higher (≥10%) included hypoxia, encephalopathy,
leukopenia, anemia, neutropenia, thrombocytopenia, hypotension,
hypophosphatemia, hypertension, hyponatremia, pyrexia, infection-
pathogen unspecified, lymphopenia, hypocalcemia, and pneumonia.
Due to the fatal or life-threatening neurotoxicity and CRS, the FDA
approval came with risk evaluation and mitigation strategies. The
recommended dose of brexucabtagene autoleucel was a single IV
infusion of (2 × 106 – 2 × 108)CAR-positive viable T-cells/kg body
weight post lymphodepleting chemotherapy of (Flu/Cy) (Wang M.
et al., 2020).

In 2021 brexucabtagene autoleucel was approved to treat adult
patients with r/r B-cell precursor ALL based on the data gathered
from a phase II clinical trial (ZUMA-3; NCT02614066) (Shah
et al., 2021). The study had 125 participants diagnosed with r/r
B-cell precursor ALL. Patients received a single infusion of
brexucabtagene autoleucel post completion of lymphodepleting
chemotherapy. The outcomes included CR within 3 months post-
infusion. Fifty-four patients were evaluable for efficacy, 28
achieved CR within 3 months with a median follow-up of
7.1 months, the CR median duration was not reached, and the
CR duration for more than half of the patients was estimated to
exceed 12 months. In 92% of patients, CRS occurred (≥grade 3,
26%); neurotoxicity occurred in 87% (≥Grade 3, 35%); most
common adverse events were hypotension, CRS, encephalopathy,
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fever, chills, headache, rash, edema, nausea, tachycardia, febrile
neutropenia, musculoskeletal pain, hypoxia, diarrhea, tremor,
constipation, infection with an unspecified pathogen, vomiting
and decreased appetite. The recommended dose was a single IV
infusion of brexucabtagene autoleucel (1 × 106–1 × 108) of CAR-
positive viable T-cells/kg body weight preceded by (Flu/Cy)
lymphodepleting chemotherapy (Shah et al., 2021).

6.4 Lisocabtagene Maraleucel
(BREYANZI™)
In February 2021, lisocabtagene maraleucel (BREYANZI™)
from Juno Therapeutics was approved by FDA for the
treatment of adult patients with r/r large B-cell lymphoma
after two or more lines of systemic therapy, including high-
grade B-cell lymphoma, DLBCL, primary mediastinal large
B-cell lymphoma, DLBCL arising from indolent lymphoma,
and follicular lymphoma grade 3B (Abramson et al., 2020).
Lisocabtagene maraleucel is a CD19- directed CAR T-cell
immunotherapy comprised of autologous genetically
modified T cells that produce CAR protein able to identify
and eradicate CD19-expressing normal and malignant cells. The
immunotherapy efficiency was evaluated in a single-arm, open-
label, multicenter trial (TRANSCEND, NCT02631044); 192
patients underwent lymphodepleting chemotherapy before
infusion. The outcomes included 73% ORR, with a CR rate
of 54%, and the median time of first response was 1 month; 104/
192 patients had CR, which lasted at least 6 months (65%), and
some patients (62%) had a remission that lasted at least
9 months. The DOR was 16.7 months in patients who
achieved CR; and the patients with PR had 1.4 DOR.
Adverse events included CRS in 46% of the patients (grade 3
or higher, 4%); neurotoxicity occurred in 35% (grade 3 or
higher, 12%). Three patients encountered fatal neurotoxicity.
Other grade 3 or higher adverse events were prolonged
cytopenia (31%) and infections (19%). Due to the fatal and
life-threatening neurotoxicity and CRS, the FDA approval came
with recommendations of risk evaluation and mitigation
strategies. The recommended regimen was a single dose of
50–110 × 106 CAR-positive viable T-cells with a ratio of 1:1
of CD4 and CD8 components, intravenous (IV) infusion
following (Flu/Cy) lymphodepletion (Abramson et al., 2020).

6.5 Idecabtagene Vicleucel (ABECMA™)
On March 2021, idecabtagene vicleucel (ABECMA™) from Bristol
Myers Squibb was approved as the first cell-based immunotherapy for
adult patients with r/r multiple myeloma after four or more preceded
lines of therapy, including an anti-CD38 monoclonal antibody, an
immunomodulator, and a proteasome inhibitor (Munshi et al., 2021).
It is an autologous genetically modified B-cell maturation antigen
(BCMA)-directed CAR T-cell therapy. In a multicenter study
(NCT03361748), a total of 127 patients with r/r multiple myeloma
were included to evaluate the safety and efficacy of the idecabtagene
vicleucel; all patients received three (88% had received four or more)
lines of antimyeloma therapies. In addition, 100 had received
idecabtagene vicleucel with a dosage range of 300–460 × 106 of
CAR-positive T-cells. The results showed a 72%ORR and aCR rate of

28%. Approximately 65% of patients had CR for at least 12months.
The most common adverse events included CRS, neurotoxicity,
macrophage activation syndrome, prolonged cytopenia. Moreover,
infection, fatigue, hypogammaglobulinemia, andmusculoskeletal pain
were designated as common side effects. Idecabtagene vicleucel was
approved with recommendations of risk evaluation and mitigation
strategies. The healthcare facility that houses this therapy must be
specially certified to recognize and manage neurotoxicity and CRS.
FDA called for a post-marketing observational study conducted by the
manufacturer involving the patients treated with idecabtagene
vicleucel (Munshi et al., 2021).

6.6 Ciltacabtagene Autoleucel
(CARVYKTI ™)
The most recently FDA approved CAR T-cell therapy, in February
2022, is ciltacabtagene autoleucel (CARVYKTI™) from Janssen
Biotech, Inc. This drug was approved for the treatment of r/r
multiple myeloma post four or more prior lines of therapy
including an anti-CD38 monoclonal antibody, an
immunomodulatory agent (IMiD), and a proteosome inhibitor (PI).
It is a genetically modified autologous CAR T-cell therapy directed by
B-cell maturation antigen (BCMA). In a multicenter study
CARTITUDE-1 (NCT03548207) ciltacabtagene autoleucel safety and
efficacy of were evaluated in 97 patients with r/rmultiplemyelomawho
presented disease progression post their last chemotherapy regimen;
82% of the patients had received four or more prior lines of
antimyeloma therapy. The dosage of ciltacabtagene autoleucel given
to patients was falling within the range of 0.5–1.0 × 106 viable CAR-
positive T-cells/kg body weight. According to the International
Myeloma Working Group Uniform Response Criteria for Multiple
Myeloma, the efficacy was evaluated by an Independent Review
committee based on the overall ORR and DOR response. The ORR
97.9%, and a median DOR of 21.8 and 12months median duration of
follow up.Most commonly observed adverse reactions of ciltacabtagene
autoleucel were CRS, fatigue, hypogammaglobulinemia, pyrexia,
musculoskeletal pain, nausea, infection, diarrhea, coagulopathy,
encephalopathy, headache, vomiting, and constipation. Moreover,
recommended dosage of (CARVYKTI™) ranges from 0.5–1.0 × 106

to a maximum dose of 1 × 108 viable CAR-positive T-cells/kg of body
weight per single infusion. The approval of (CARVYKTI™) is restricted
by a risk evaluation and mitigation strategy necessitating healthcare
facilities that houses this therapy and their associated clinicians to be
specially certified to recognize andmanageneurotoxicity andCRS. FDA
called for a post-marketing observational study conducted by the
manufacturer involving the patients treated with ciltacabtagene
autoleucel (Berdeja et al., 2021).

7 LIMITATIONS AND SOLUTIONS FOR CAR
T-CELLS

The CAR T-cell technology has immense potential. Current
clinically approved CAR T-cell therapies are KYMRIAH™ for
ALL and DLBCL; YESCARTA™ for DLBCL and follicular
lymphoma; TECARTUS™ for mantle cell lymphoma;
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BREYANZI® for DLBCL and follicular lymphoma; and
ABECMA® for MM. Unfortunately, all these approved CAR-T
cell products exert serious but clinically manageable adverse
effects such as cytokine release syndrome and neurotoxicity
(Zhao Z. et al., 2018; Zheng et al., 2018). Notably, the delay in
approving CAR T-cell therapies targeting other diseases has the
following structural limitations.

7.1 Tumor Antigen Escape
Single antigen-targeting CAR-T cells might face tumor resistance
after the initial high response rate. The decline in response and
increase in resistance is due to partial or complete loss of target
antigen expression. Tumor cells escape killing by encouraging
mutations in the antigen-coding gene, leading to the
downregulation of expression of alternative antigens that lack
the antigen epitopes targeted by CAR T-cells (Majzner and
Mackall, 2018; Sterner and Sterner, 2021). One strategy to
overcome this hurdle is to design T cells equipped with two or
more CARs to target multiple TAAs, suggesting that the escape
mechanism would require mutation of several genes instead of
one by engineering CARs with multi-specific targets such as
bicistronic CAR T-cells, tandem CAR T-cells, co-administered
CAR T-cells, or co-transduction CAR T-cells. However, finding
more than one TAA in one tumor targeted by CAR T-cells may
prove challenging in some malignancies, with respect to safety
and effectiveness (Hegde et al., 2013; Jackson and Brentjens,
2015). In addition, the use of lymphodepleting agents before the
adoptive T-cell transfer can enhance epitope spreading, leading to
more specific antigen recognition (Cui et al., 2009). Additionally,
combining CAR T-cell therapy with checkpoint inhibitors
(Gargett et al., 2016; Li et al., 2017b; Heczey et al., 2017;
Adusumilli et al., 2021), radiation (Weiss et al., 2018), vaccines
(Slaney et al., 2017; Tanaka et al., 2017), other immune agonists
(Khalil et al., 2016; Majzner et al., 2017) might also contribute to
epitope spreading and immune escape restriction (Majzner and
Mackall, 2018).

7.2 On-Target Off-Tumor
One of the most observed toxicities in CAR T-cell therapy is the
“on-target-off-tumor,” where the normal tissues express the same
targeted antigen on the malignant tissues at variable levels,
leading to a direct attack from CAR T-cells against the normal
tissues and eventually resulting in toxic effects that can be
detrimental (Sun et al., 2018). To overcome this roadblock,
using affinity-tune CARs to recognize tumor cells that have
increased density of surface antigens and preventing the
involvement with normal tissues that express low-density
surface antigens has been suggested (Zhao et al., 2009). This
strategy can be executed by altering the binding region of scFV via
mutagenesis or via the recombination of both heavy and light
chains (Carter et al., 1992; Drent et al., 2017). Another potential
avenue for solid tumors is to target tumor-restricted post-
translational modifications, such as overexpression of
truncated O-glycans such as Tn (GalNAca1-O-Ser/Thr) and
sialyl-Tn (STn) (NeuAca2–6-GalNAca1-O-Ser/Thr) (Steentoft
et al., 2018). Another suggested approach is CAR T-cell local
administration to the disease site, which might contribute to the

limitation of “on-target-off-tumor” toxicity as the on-target
activity is focused on the malignant tissue, and the normal
tissue interaction is disregarded (Sterner and Sterner, 2021).
Inducible CAR-T cell products based on engineered synthetic
Notch receptors are also being explored to mitigate the on-target
off-tumor associated toxicities (Roybal et al., 2016).

7.3 Trafficking and Tumor Infiltration
One of the significant inadequacies in using CAR T-cell therapy
in solid tumors is the ability of these cells to traffic and infiltrate
the tumor because both immunosuppressive TME and physical
barriers of tumor such as stroma restrain mobility and diffusion
of CAR T-cells. The proposed approach uses the local
administration as the delivery route, which disregards the need
for the cells to traffic to the disease site (Sterner and Sterner,
2021). Another strategy developed to overcome the trafficking
issue is the addition of chemokine receptor expression on CAR
T-cells that match and respond to chemokines expressed by
targeted tumors (Whilding et al., 2019). The physical barrier
of the stroma mainly comprises an extracellular matrix with a
primary component of heparin sulfate proteoglycan (HSPG).
Upon its degradation, CAR T-cells can reach the tumor
(Zhang B.-L. et al., 2016). Engineered CAR T-cells with
heparinase expression have been shown to degrade HSPG,
leading to enhanced tumor infiltration and elimination
(Caruana et al., 2015). Likewise, fibroblast activation protein
(FAP) was also targeted by CAR T-cells in animal models,
which increased cytotoxic function by reducing the number of
tumor fibroblasts (Wang et al., 2014).

7.4 Immunosuppressive Microenvironment
In the TME, several tumor-infiltrating cells contribute to
immunosuppression, including MDSCs, regulatory T cells
(Tregs), and tumor-associated macrophages (TAMs) (Quail
and Joyce, 2013). These infiltrates and tumor cells contribute
to the production of tumor-supporting growth factors,
chemokines, and cytokines, and the antitumor immunity
declines because of immune checkpoint proteins such as
CTLA-4 or PD-1. Weak CAR T-cell responses could be
regarded as a poor T-cell expansion and limited persistence
period, indicating that the development of T-cell exhaustion is
prompted by co-inhibitory pathways (Yin et al., 2018).
Consequently, the combination of CAR-T cells with
immunotherapy and checkpoint blockade is thought to be the
next cutting-edge immunotherapy approach because it provides
two major elements to secure strong immune responses: CAR
T-cells provide tumor penetration and PD-1/PDL1 blockade to
guarantee sustained and persistent T-cell function (June et al.,
2018; Grosser et al., 2019). Recently, CAR-T cells have been
engineered to be robustly resistant to TME immunosuppressive
factors such as TFG-β-mediated inhibitory signals (Kloss et al.,
2018). Furthermore, CAR T-cell engineering includes the
addition of immunostimulatory signals such as stimulatory
cytokines capable of increasing survival, proliferation, and
antitumor activity while re-equalizing TME (Chmielewski
et al., 2014). Various studies have been investigating numerous
cytokines to create “armored CARs.” The studies that focused on
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proinflammatory cytokines apart from concentrating on
inhibitory signals have depended on IL-12 secretion (Koneru
et al., 2015), expression of IL-15 (Krenciute et al., 2017), and the
redirection of immunosuppressive cytokine signaling (e.g., IL-4)
towards proinflammatory cytokines (Mohammed et al., 2017).

7.5 CAR T-Cell-Associated Toxicities
T-cell therapy has been one of the most groundbreaking tools in
cancer treatment; however, toxicities and associated fatalities
have limited this approach’s applications. To date, the
characterization of the toxicities associated with CAR T-cell
therapy has been broadly studied in patients receiving FDA-
approved CAR T-cell therapy such as anti-CD19 CARs (Sterner
and Sterner, 2021). Several factors determine the occurrence and
intensity of (CRS), hemophagocytic lymphohistiocytosis (HLH),
macrophage activation syndrome-like activation (MAS-L) (HLH/
MASL), and immune effector cell-associated neurotoxicity
syndrome (ICANS), including tumor type, specific target, and
CAR design (Roex et al., 2020).

The most frequent acute toxicity associated with CAR T-cell
therapy is the CRS; the cytokines involved are produced either by
the infused CAR T-cells or by the CAR T-cell-responding
immune cells such as macrophages. These cytokines include
TNF-α, several interleukins such as IL-6, IL-2, -IL-2α, IL-8,
IL-10, and IFN-γ, which were elevated in the patient’s serum.
Also, patients with severe CRS experience high-grade pyrexia,
which can develop into an uncontrolled systemic inflammatory
response with circulatory shock requiring vasopressors, vascular
leakage, disseminated vascular clots, tachycardia, hypotension,
hypoxia, and multi-organ system dysfunction. The severity of the
CRS was correlated with the type of cytokines detected in the
serum (Brudno and Kochenderfer, 2016; Shimabukuro-
Vornhagen et al., 2018). Organ dysfunction can be reversed in
most patients once CRS signs are recognized and managed early
(Morris et al., 2021). Management of CRS using supportive care
includes antipyretics, blood components transfusion, intravenous
fluids, vasopressors, monoclonal antibodies (tocilizumab) used
against the IL-6 receptor, and steroids in high-grade CRS. Both
tocilizumab and steroids can control CRS inmost cases. However,
resistant CRS can also develop where the symptoms persist
regardless of supportive treatments in a minority of patients,
putting them at a high mortality risk (Yang X. et al., 2019).

ICANS is another common toxicity occurring after CAR T-cell
infusion and is associated with treatment-related morbidity.
However, the exact mechanism underlying the manifestation
of neurologic toxicity remains indistinct. CAR T-cell facilitated
inflammation-causing endothelial activation and disruption of
the blood-brain barrier may play a central role (Holtzman et al.,
2021). ICANS manifestation begins with toxic encephalopathy,
aphasia, dysphasia, impaired motor function, and drowsiness. In
severe cases, more severe symptoms occur, such as seizures,
motor weakness, cerebral edema, and coma, most patients
experiencing ICANS had earlier CRS that had subsided.
Therefore, CRS could be considered an early sign of ICANS.
Concurrence between ICANS and CRS occurs less frequently.
ICANS is also reversible in patients who do not develop
permanent neurological deficits (Morris et al., 2021).

Management of ICANS aims to reduce the inflammatory
response, which could be achieved by using Siltuximab (IL-6
antagonist), which prevents continuous IL-6 translocation across
the blood-brain barrier (Gust et al., 2017). A high dose of
corticosteroids shows sound central nervous system (CNS)
penetration (Neelapu et al., 2017b). The use of levetiracetam
or other antiepileptic agents can also be considered an option for
treating severe neurological dysfunction as prophylaxis for
seizures (Pehlivan et al., 2018). Additional studies are required
to understand the mechanism underlying ICANS manifestation,
associated risk factors, and optimal management required for
CAR-T cell infusion.

HLH is a rare condition characterized by fever, hyperferritinema,
splenomegaly, hypertriglyceridemia, coagulopathy, and cytopenia
due to improper immune activation and cytokine release (Risma and
Jordan, 2012a). In patients with low-grade CRS, HLH can occur;
however, severe CRS might evolve into HLH. Thus, clinicians must
pay attention to this condition to prevent fatal outcomes HLH/MAS
post CAR T-cell therapy in association with CAR T-cell induced
toxicities (CARTOX) score, which includes serum ferritin levels
>10.000 ng/ml and one of the following: oliguria grade ≥3 or
elevated serum creatinine grade ≥3, pulmonary edema, elevation
in serum bilirubin, aspartate aminotransferase or alanine
aminotransferase grade ≥3, and incidence of hemophagocytosis
bone marrow (Mei et al., 2018). Management of HLH/MAS as
mentioned in CRS and ICANS with anti-IL-6 agents and
corticosteroids can be used. However, if the condition persists
for almost 48 h, other interventions, such as intrathecal cytarabine
and etoposide, especially in neurotoxicity-associated HLH
(Neelapu et al., 2017b).

Several recommendations have been proposed to attenuate the
toxicities resulting from CAR T-cells: 1) to ensure that the
therapeutic efficacy is valid and no toxic overshooting of
cytokines is occurring by monitoring the CAR T-cell activation
threshold post-infusion. Activation of CAR T-cells is influenced by
several factors, including tumor antigen expression levels on
malignant cells, the affinity of the antigen-binding domain to
target epitope, tumor burden, costimulatory elements of CARs
(van der Stegen et al., 2015; Milone and Bhoj, 2018); 2) to
achieve low affinity of the antigen-binding domain to ensure
selectivity for tumors with high expression levels of targeted
antigen; 3) hinge-region and transmembrane region modifications
and optimization to control cytokine secretion levels and keep them
within the therapeutic window as seen in anti-CD19 CAR T-cells
where no CRS or ICANS were observed (Ying et al., 2019); 4)
costimulatory domain can be customized based on tumor burden,
tumor antigen binding domain engagement, antigen density, and
toxicity concerns. Evidence suggests that 4-1BB costimulatory
domains show lower toxicity risk, lower T-cell expansion levels,
higher T-cell endurance. In contrast, CD28 costimulatory domains
are associated with CAR T-cell onset rapid activation and
consequent exhaustion. These properties make 4-1BB domains
more preferable in cases of high disease burden or/and high
tumor antigen density, and in cases of low surface antigen
density or/and low-affinity antigen-binding domain CARs with
CD28 costimulatory domains are more preferable (Salter et al.,
2018); 5) CARs immunogenicity can be decreased by modifying
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hinge region and/or transmembrane domain, which also contributes
to CAR T-cell persistence improvement (Jonnalagadda et al., 2015;
Sommermeyer et al., 2017); 6) neutralization of GM-CSF to
overcome CRS and neurotoxicity, tyrosine hydroxylase inhibition
by metyrosine or deletion of this enzyme in a myeloid cell-specific
manner resulted in catecholamine and cytokine levels reduction
(Staedtke et al., 2018), use of IL-1 antagonists to reduce
neuroinflammation (Giavridis et al., 2018); 7) use of “off-switch”
or suicide gene strategies to encourage selective elimination of CAR
T-cells at the commencement of adverse events under a secondary
agent control. However, the slow onset of antibody-mediated
depletion limits the efficacy of this approach, especially in
patients who require immediate reversal during acute and
severe cytokine toxicities; therefore, faster switches such as
inducible cas9 were developed and proved to deplete 90% of
CAR T-cells within 30min (Di Stasi et al., 2011; Jones et al.,
2014). Engineering CAR T-cells with CD20 full-length expression
or CD 20 mimotopes, which deplete CAR T-cells post rituximab
treatment (Philip et al., 2014), use of switch off CARs (SWIFF-
CARs) (Juillerat et al., 2019). The most significant limitation in
utilizing the suicide gene strategy is the sudden cessation of therapy
in rapidly progressing diseases, making this strategy a last resort.
However, recently, the use of TKIs, which inhibit proximal TCR
signaling kinases and suppress T cell activation (dasatinib), provide
temporary inhibition of CAR T-cells. CAR T-cell activity would
resume after toxicity has subsided (Sterner and Sterner, 2021).
Additional studies are required to overcome all toxicities without
affecting the activity and persistence of CAR-T cells.

7.6 Autologous Vs. Allogeneic
Although most of the clinical studies testing CAR T-cells depended
on autologous T-cells, these therapies presented several limitations.
The patient’s cell generation is a cost-time-consuming process that
holds a risk of manufacturing failure (Zhao J. et al., 2018).
Additionally, it might result in a delayed availability of treatment,
which could be problematic for patients with aggressive and highly
proliferative diseases (Depil et al., 2020). The patients usually receive
lymphodepleting chemotherapy, which might affect the quality and
quantity of the starting autologous T cells (Ceppi et al., 2018); in
contrast, allogeneic CAR-cells (derived from healthy donors) offer
fully functional cells in high amounts allowing multiple generations
of “off-the-shelf” CAR T cells products (Zhao J. et al., 2018; Depil
et al., 2020). The heterogenic nature of tumor cell antigen expression
and the immune evasion mechanisms developed by tumor cells
require CAR T-cells with multiple antigen specificities (Walsh et al.,
2019). This issue could be overcome by allogeneic T-cells capable of
generating several CAR T-cells products with various antigen
specifiers (multivalent), unlike autologous T-cells that are known
to be capable of generating (monovalent) CAR T-cells (Martínez
Bedoya et al., 2021). Allogeneic CAR T-cells can be obtained from
several sources such as mononuclear cells from the peripheral blood
of healthy donors that are capable of providing high numbers of
fitter cells than the ones derived from the patients’ blood as they have
been subjected to radio- or chemotherapy (Depil et al., 2020).
Umbilical cord blood is another source. Furthermore, adult
somatic induced pluripotent stem cells (iPSC) can be produced
by introducing specific transcription factors (Papapetrou, 2016)

(Figure 2). Despite the advantages of allogeneic CAR T-cells,
some limitations prevent their use in the CAR T-cells field. The
first limitation is the graft-versus-host disease (GVHD) and the allo-
rejection produced by the host immune cells, which would hinder
the cells’ anti-tumor activity (Martínez Bedoya et al., 2021). Changes
within the design of the allogeneic CAR T-cells could overcome the
GVHD; these changes include the employment of genetic
engineering tools such as Zinc finger nucleases (ZFN),
transcription activator-like effector nucleases (TALEN), and
CRISPR/Cas9, which can be utilized in knocking-out T-cell
receptor (TCR) and in attenuating the GVHD. Strategies to
mitigate allorejection are being evaluated; chemo-resistant CAR
T-cells are also being repeatedly tested through several rounds of
administration to allow more profound or prolonged lymphopenia
(Poirot et al., 2015; Valton et al., 2015). Overcoming the limitations
of both autologous and allogeneic CAR T-cells is a great challenge
but not impossible in such a fast-growing field.

8 CONCLUSION

The employment of adaptive immunity in treating chronic and
malignant diseases has been the focus of many studies over the
past few decades. The CAR T-cell revolution has changed the
landscape of conventional therapies used in cancer and has
provided new opportunities to test these technologies against
other diseases. However, CAR T-cell therapy has few limitations,
slowing its widespread clinical application as a routine treatment. To
overcome these limitations, various in vivo and in vitro studies have
suggested innovative strategies to enhance the efficacy of CARs
against blood cancers and solid tumors. Several factors have been
designated as necessary in CAR T-cell design, including tumor
antigen expression levels on malignant cells, the affinity of the
antigen-binding domain to the target epitope, tumor burden, and
costimulatory elements of CARs. However, there is still a need to
elucidate and resolve the issues associated with this intriguing
technology. Therefore, further development of eccentric strategies
to reduce CAR T-cell therapy limitations while maintaining
antitumor efficacy, cellular persistence, and expansion will be
necessary to magnify the clinical applications of this therapy.
Notably, “off-the-shelf” CAR-T cell products with CRISPR-Cas9
genome-edited changes to manage toxicities and persistence will
hold much promise. Additionally, the utilization of synthetic biology
and cell engineering technologies might break the barriers impeding
allogeneic CAR T-cells from being used as universal CAR T-cells,
which could be pivotal in enhancing therapeutic outcomes and
overall patient survival.
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