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Aquaculture is a growing industry worldwide and Canadian finfish culture is dominated

by marine salmonid farming. In part due to increasing public and stakeholder concerns

around fish welfare protection, the first-ever Canadian Code of Practice for the Care

and Handling of Farmed Salmonids was recently completed, following the National

Farm Animal Care Council’s (NFACC) rigorous Code development process. During this

process, both the Scientific (responsible for reviewing existing literature and producing

a peer-reviewed report that informs the Code) and Code Development (a diverse

group of stakeholders including aquaculture producers, fish transporters, aquaculture

veterinarians, animal welfare advocates, food retailers, government, and researchers)

Committees identified research gaps in tandem, as they worked through the literature

on salmonid physiology, health, husbandry, and welfare. When those lists are combined

with the results of a public “top-of-mind” survey conducted by NFACC, they reveal several

overlapping areas of scientific, stakeholder, and public concern where scientific evidence

is currently lacking: (1) biodensity; (2) health monitoring and management, with a focus

on sea lice infection prevention and management; (3) feed quality and management,

particularly whether feed restriction or deprivation has consequences for welfare; (4)

enclosure design, especially focused on environmental enrichment provision and lighting

design; and (5) slaughter and euthanasia. For each of these five research areas, we

provide a brief overview of current research on the topic and outline the specific research

gaps present. The final section of this review identifies future research avenues that

will help address these research gaps, including using existing paradigms developed

by terrestrial animal welfare researchers, developing novel methods for assessing fish

welfare, and the validation of new salmonid welfare indices. We conclude that there is no

dearth of relevant research to be done in the realm of farmed salmonid welfare that can

support crucial evidence-based fish welfare policy development.
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INTRODUCTION

The number of fish bred, raised, and slaughtered each year
for food is on the rise as the human population continues
to rapidly increase (1). Due to a decline in capture fisheries
worldwide (2, 3), there has been a subsequent expansion of the
aquaculture industry to match fish production with increasing
consumer demand (4). This trend has led to public interest
and concern around aquaculture practices worldwide (5–9) and
particularly their impact on fish welfare, which is now a high
priority concern for consumers (10, 11) and a policy agenda
item (12, 13). However, compared with farmed terrestrial species,
fish have not been a priority for welfare researchers for nearly
as long (9, 14–16), and thus there exists an urgent need to
further our understanding to protect and improve their welfare
in aquaculture.

Though elsewhere much of the recent industry expansion has
centered around freshwater species, in Canada, the aquaculture
industry is dominated by marine salmonid farming, which is
valued at ∼$1.1 billion per year (17). Accordingly, the first-
ever Canadian Code of Practice for the Care and Handling
of Farmed Salmonids was recently completed [available at
(18)], following the National Farm Animal Care Council’s
(NFACC) rigorous Code development process [see (19) for
details on the development process]. Briefly, the process
began with an online survey (reply window: February 26th-
March 18th, 2019) asking stakeholders (including those in
the farmed finfish industry), key partners, and concerned
citizens for their “top of mind” welfare concerns for farmed
fish in Canada [see (20) for survey results]. Two committees
were then formed: (1) the Scientific Committee, comprised
of experts in fish physiology, behavior, health, and welfare,
who were tasked with reviewing scientific evidence on priority
welfare issues and writing a peer-reviewed report [see (21) for
Scientific Committee report]; and (2) the Code Development
Committee, who used the Scientific Committee’s report to
develop the Code’s specific requirements and recommendations.
Members of the Code Development Committee were a
diverse group of stakeholders including aquaculture producers,
fish transporters, aquaculture veterinarians, animal welfare
advocates, food retailers, government officials, and researchers.
Dr. Victoria Braithwaite served as the National Animal Welfare
Representative on the Code Development Committee and was
an integral contributor to preliminary drafts of the Farmed
Salmonids Code of Practice.

OBJECTIVE AND IDENTIFICATION OF
RESEARCH GAPS

During the NFACC Code development process, both the
Scientific and CodeDevelopment Committees identified research
gaps in tandem, as they worked through the literature on
salmonid physiology, health, husbandry, and welfare. When
those lists are combined with the results of the public “top-
of-mind” survey, they reveal several overlapping areas of
concern where scientific evidence is currently lacking (Table 1),

to the point where making specific and measurable Code
requirements and recommendations was difficult for the Code
Development Committee. Thus, herein, our objective is to
highlight five of these overlapping welfare-relevant research areas
that contain significant knowledge gaps (Table 1): (1) biodensity;
(2) health monitoring and management, with a focus on sea
lice infection prevention and management; (3) feed quality and
management, particularly whether feed restriction or deprivation
has consequences for welfare; (4) enclosure design, especially
focused on environmental enrichment provision and lighting
design; and (5) slaughter and euthanasia.

For each of these five research areas, we provide a brief
overview of current research on the topic and outline the specific
gaps present in the current literature, with the final section
of this paper identifying future research avenues that will help
address these gaps, ideally in advance of future Code revisions.
Specific research gaps we report on within each research
area were identified by the Scientific and Code Development
Committees during numerous meetings over the course of
the 3-year Code development process, using both their own
extensive reviews of the literature and their collective expertise
spanning long research careers in fish physiology and aquaculture
[see the Scientific Committee’s membership, detailed in (21)]
and as aquatic veterinarians and aquaculture professionals
(see the Code Development Committee’s membership in
the Code available at: https://www.nfacc.ca/codes-of-practice/
farmed-salmonids). Similar approaches that incorporatemultiple
perspectives from a variety of stakeholders have been encouraged
in the field of animal welfare [e.g., (18, 23, 24)]. Importantly, we
do not attempt to provide a comprehensive review of current
salmonid welfare research nor a value judgment on what the
most pressing future welfare research priorities are. Rather, we
are reporting on and extending the work of a unique grouping of
aquaculture experts, to highlight future research that is necessary
for the continued development of evidence-based salmonid
welfare policy in Canada, and thus likely elsewhere as well.

DEFINITION OF WELFARE AND HOW IT IS
ASSESSED

There exist numerous definitions of “animal welfare” [c.f. (25–
27)]. NFACC’s current definition includes consideration of
affective states, as well as health and biological functioning,
and exhibition of both normal and important behaviors. This
definitionmirrors the “three circles of welfare” approach outlined
by Fraser (26), which posits that welfare is comprised of three
overlapping concepts (in no particular order): (1) health and
biological functioning, (2) affective states, and (3) natural living.
Similarly, the Five Freedoms concept, as employed by the
OIE (28), includes reference to affective states with words like
“comfortable,” “suffering,” “fear and distress,” and “pain.” Though
these different concepts have each received criticism [c.f. e.g.,
(29–32)], a unifying characteristic among them is that the ability
to experience pain, suffering, or any other objectionable, negative
affective state (i.e., to be capable of sentience) is relevant to
welfare. So, following Duncan (25), we take an affective states
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TABLE 1 | Illustration of Research Gaps arising from the “top-of-mind survey” conducted by NFACC, the list of “outstanding issues not addressed in current literature”

created by the Scientific Committee and circulated internally, and the list of “research needs” published online by the Code Development Committee (22).

“Top of mind” survey Scientific Committee Code Development

Committee

Research gaps

Top five concerns raised:

- Stocking density1

- Health monitoring and

management2

- Humane euthanasia and

slaughter5

- Water quality

- Humane handling

Additional concerns raised:

- Feed quality3

- Enclosure design and

maintenance4

- Behavioral monitoring and

management

- Emergency preparedness

- Transportation

Report chapters with the most

“outstanding issues not

addressed in current literature”

identified by chapter authors:

- Biodensity1 (6 issues)

- Sea Lice: Infestation and

Treatment2 (8 issues)

- Feed Deprivation3 (5 issues)

- Lighting4 (4 issues)

- Stress Indicators (4 issues)

- Water Quality Issues in

Recirculating Aquaculture

Systems (4 issues)

- Ice Slurry Slaughter5

(2 issues)

Preliminary “research needs” list

identified by the entire Code

committee:

- Rearing Units (5 issues;

including topics on biodensity,

environmental enrichment, and

lighting)1,4

- Feeding Management (2

issues)3

- Sea Lice (5 issues)2,4

- Other (5 issues; including

topics on euthanasia

and stress)3,5

Top five overlapping research areas

containing significant knowledge-

gaps:

1. Biodensity

2. Health monitoring and

management (with focus on

sea lice)

3. Feed quality and management

4. Enclosure design (with

focus on environmental

enrichment and lighting)

5. Slaughter and euthanasia

Superscript numbers indicate which issues identified by each group were combined to become the research gaps discussed herein.

approach to welfare herein. There still exists some debate around
whether fish are capable of sentience [cf. e.g., (33–35)]; however,
similar to the Code Development Committee, in this paper we
will be taking a precautionary approach that assumes fish are
sentient and capable of suffering and experiencing other negative
affective states.

The scientific assessment of animal welfare is dependent
on validated and standardized measurable parameters known
as “welfare indicators.” Welfare indicators can be used to
gain insight into an animal’s welfare state and can either be
direct, animal-based indicators (e.g., weight loss, fin damage,
increased gasping at the surface) or indirect, environment-
based indicators, centered on the resources and environment
the animals are subjected to (e.g., water temperature, oxygen
levels) (36–38). Most animal welfare assessment protocols use
a combination of both animal and environmental indicators
[e.g., (22, 39, 40)] and “operational” welfare indicators are those
which are relevant, easy to use, reliable, comparable, suitable for
aquaculture and appropriate for specific systems or routines (38).
Although a number of validated operational welfare indicators
have been developed for salmonids [e.g., (38, 41)], currently
there is an ongoing debate and no consensus on the best set
of indicators to use [e.g., Salmon Welfare Index Model (SWIM
1.0); the FISHWELL handbook] for assessment of salmonid
welfare in aquaculture. The literature reviewed herein uses a
variety of operational welfare indicators that we have reported
where possible.

RESEARCH GAPS

Biodensity
Salmonids have a wide range of social behaviors, depending
on life-stage [c.f. e.g., for Atlantic salmon: (42, 43)] and
species [c.f. e.g., juvenile Arctic charr vs. Atlantic salmon: (42,
44)], so inappropriate biodensities can impact their welfare

in captivity. “Biodensity” (often used interchangeably with
“stocking density”) is defined as the fish biomass per unit volume
of water (usually in units of kg/m3). Though biodensity can
facilitate useful comparisons, it is important to recognize that
fish are rarely distributed consistently throughout a tank or net
pen (21) and can instead cluster together or break into smaller
groups depending on the species and enclosure conditions. As
well, stocking density is constantly changing over time and will
increase as fish grow or may decrease following grading or other
farming procedures. Considering that fish density can influence
water quality depending on flow of water per unit time through
the system and that living in water enables fish to move freely in
three dimensions (45), the concept of minimum space for fish is
thus more complex than for terrestrial animals.

In the context of welfare, biodensity has important
implications for managing water quality in net pens, tanks,
and recirculating aquaculture systems. But changing the spatial
relationship between conspecifics (i.e., altering biodensity
independent of water quality considerations) in and of itself
can have important implications that change depending
on the species and life-stage in question, which makes it
challenging to provide blanket guidelines, much less legislation
on maximum densities (46). For example, stress response
activation increases with increasing biodensity for Atlantic
salmon [e.g., highest at 70 kg/m3; (47), 125 kg/m3; (48)], but
increases with decreasing biodensity for Arctic charr [highest
at 30 kg/m3; (49)]. Aggression follows a similar pattern, with
young rainbow trout being most aggressive at high biodensities
[e.g., 316 fingerlings/m3: (50); > 1000 fingerlings/m3: (51)] and
young-of-the-year Arctic charr showing the most aggression at
low biodensities [44 kg/m3; (44)], with adult Atlantic salmon
exhibiting increased aggression during feeding (43). Moccia
et al. (21) review further examples of how biodensity can
impact the health and social behavior of several different
salmonid species.
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Concerningly, most of the data on optimal biodensities
come from experiments conducted in small rearing tanks
with relatively small fish (typically parr), due to financial and
spatial constraints on research. Thus, findings from experimental
manipulations may not be scalable to large production systems,
which may use different tankmaterials or have different tank wall
surface to water volume ratios. For example, a typical rearing
tank with 1m diameter and 1m depth has a ratio of tank wall
surface area to water volume of 5:1, while a tank with 5m
diameter and 2m depth has a ratio of 0.9:1 (21). This might be
pertinent when assessing welfare indicators such as fin erosion,
a condition in which fins are injured that is hypothesized to be
due to abrasion against tank walls and/or conspecific aggression
that persists likely due to secondary infection (52). Furthermore,
net pens are flexible structures that can change shape in response
to tidal and other hydraulic conditions and/or biofouling, which
may affect how much living space is available at any given time
(53). Finally, a number of biodensity studies are confounded with
water quality, such that the results cannot be strictly attributed
to the changing number of conspecifics but might be instead a
response to deteriorating water quality with increasing density. It
is logistically challenging to control water quality in these types of
studies, but this can limit how well we can draw clear conclusions
on the impact of biodensity independent of other factors.

Beyond the applicability limits of the current research, there
exist several crucial gaps in our understanding of how biodensity
might impact salmonid welfare. First, we were unable to find
studies where salmonid behavioral preferences for different
biodensities were tested. Determining what densities different
species and life-stages might choose for themselves would
be challenging but may provide additional information about
which biodensities could optimize salmonid welfare. Second,
comparative studies, where species-specific responses to identical
experimental parameters are compared, would be of considerable
value, especially when trying to extend existing results from one
species to many. Third, furthering our understanding of natural
salmonid social behavior and how social interactions change
with life-stage is important for making biodensity adjustments
throughout rearing. As mentioned previously, species-level
differences in responses to biodensity can be pronounced, but the
salmonid life cycle is also complex, with variation in responses
even between life-stages. For example, we know that Atlantic
salmon conspecific interactions change a great deal from the
parr to adult stages [e.g., (54–58)]. But how much variation
is there between life-stages for other salmonids? And what is
the relationship between fish size and optimal biodensity? For
details of the salmonid life cycle and the dynamic ecology of
different life-stages, see Aas et al. (59). Fourth, biodensities
are often higher during situations involving acute stress, such
as handling and transport. We do not have a strong grasp
of what species-specific biodensities could protect welfare in
those situations while remaining logistically feasible, nor do
we know what biodensities optimize recovery from those acute
stressors. Finally, there is evidence that non-optimal biodensities
may impact immune parameters and subsequent vulnerability
to pathogens [(60–62): reviewed in (53)], but we need further
research to elucidate how different biodensities might contribute

to pathogen transmission within a given enclosure or system;
something that is likely pathogen- and host species-specific as
well as multi-factorial.

Health Monitoring and Management
Disease is a major cause of diminished health and increased
mortality in salmon aquaculture (63, 64). Regular monitoring
of fish appearance and behavior can help to facilitate early
identification of health problems that affect welfare and may be
associated with bacterial and viral pathogens, parasites, and/or
pollutants [e.g., skin lesions, loss of equilibrium, decreased
activity, change in feed intake; (7)]. However, even with regular
health monitoring in place, sea lice infestations remain one
of the most persistent and highly publicized challenges in
salmonid aquaculture.

Sea lice are parasitic copepods (within the family Caligidae)
of both wild and farmed marine fish, but the rearing densities
and conditions present in salmon aquaculture can exacerbate
infection intensities when compared with natural conditions (65,
66). Multiple species of sea lice have been found to infect farmed
salmon and sea lice biology, infection, and development are
highly dependent on water temperature and salinity [reviewed
in (21)]. For example, Lepeophtheirus salmonis salmonis, Caligus
elongatus, and C. curtis represents the greatest concern in
the North Atlantic (67, 68), and L. salmonis oncorhynchii, C.
clemensii, and L. cuneifer represent the greatest concern in the
Northern Pacific (69, 70). Sea lice feed on the skin, mucus, and
blood of their hosts and cause tissue damage (71, 72). In cases
of severe infestation, sea lice may also cause significant lesions
that lead to increased stress, reduced swimming performance,
anemia, reduced growth, and they may even act as a vector
for other diseases and pathogens [reviewed in (71); reviewed
in (72, 73)]. It is thus essential for aquaculture managers to
implement appropriate management and intervention strategies
that maintain the welfare of farmed fish and attempt to reduce
the impacts of severe sea lice infestations on wild salmonid
populations in the area (74, 75).

The primary management approach in all major salmon-
producing countries is to regularly monitor and report sea lice
densities on salmon in sea pens, with mandatory delousing or
other sanctions implemented before levels reach pre-determined
limits (21). Sea lice thresholds at which intervention is required
(i.e., numbers of sea lice of a particular sex or life stage per fish)
are different between and even within countries (21). Currently,
however, sea lice thresholds are set for conservation purposes
rather than out of concern for captive fish welfare, due to
the alleged role of sea lice in the decline of wild salmonid
populations as a result of louse spillover infections [e.g., (66, 76–
78)]. Although prior work has suggested that sea lice infestations
become lethal around 0.12–0.15 lice per cm2 of fish (37, 79),
the impacts of sea lice are largely dependent on host species
and size [e.g., salmon lice are rejected more rapidly by Coho,
Oncorhynchus kisutch, and pink, O. gorbuscha, salmon than
by Chinook, O. tshawytscha, and chum, O. keta, salmon; (69,
71, 72)]. Although, lethal limits are a late-stage indicator of
welfare impacts; fish may be negatively affected long before
their infection burden induces mortality [e.g., (80)]. There is
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currently very little research on the sub-lethal effects of sea lice
infestations on fish welfare across different salmonid species and
life-stages. Research that addresses this gap would help policy
makers establish firmer, welfare-based sea lice thresholds for
when intervention is required [e.g., (81)].

There also exist a couple of important gaps in our
understanding of how to control sea lice infestations. First, lice-
infected fish are typically treated by applying chemical treatments
in tarpaulin-enclosed net pens (to contain the chemicals), as
a bath in well-boats, or by including them in feed (82).
Currently, in feed treatments are considered advantageous due
to their passive implementation (82), in comparison to bathing
treatments which may cause stress and mechanical harm to fish
through withholding feed and transfer prior to, and crowding
and oxygen deprivation during, bathing (45, 83, 84). However,
incorrect dosages of chemical sea lice treatments have been
shown to cause mortality post-treatment in salmonids, which
typically increases with increasing water temperature [e.g.,
hydrogen peroxide; (84, 85)]. As well, because some treatments
are not completely effective and sea lice are becoming resistant
to them (86–89), fish are often treated repeatedly over a 2–3
week period. We do not have a complete understanding of how
repeated exposure to chemical therapeutants may impact fish
welfare. Second, treatment-resistance has prompted a rapid and
recent shift to non-chemical approaches to control infections
including the use of altered temperature, salinity, and lighting,
physical removal, mechanical barriers, and cleaner fish (21).
However, preliminary studies suggest that some of these methods
may compromise host salmonid welfare. For example, recent
work suggests that temperatures used during thermal delousing
treatments (28–34◦C) may be noxious to fish (90), can initiate
panic reactions [exposure <5min; (90)], and may cause thermal
injury [exposure to 34–38◦C for 72–140 s; (91)] and even death
[exposure to 34–38◦C for >2min; (91)]. Physical de-lousing
systems such as the “Hydrolicer” also require fish to be crowded
prior to treatment (85), which may induce an acute stress
response. In severe cases, some of these methods can lead to
elevated post-treatment mortality in comparison to the use of
chemical methods (85). Thus, extensive research is needed to
determine the potential impacts of these non-chemical sea lice
treatments on fish welfare.

Furthermore, the use of a number of cleaner fish species (e.g.,
lumpfish and wrasse) that eat sea lice directly off host salmonids
are gaining popularity as a biological alternative for infestation
control. In the context of salmonid welfare, one of the most
important considerations is the role that cleaner fish may play in
pathogen transfer to salmonids [e.g., Tenacibaculummaritimum;
(92); and others reviewed in (93)]. The close mixing of cleaner
fish with salmon in net pens creates favorable conditions for the
emergence and transfer of diseases, especially considering cleaner
fish broodstock are often wild-caught and may pose a biosecurity
risk (94, 95). However, the welfare of the cleaner fish themselves
is of considerable concern because the biology, ecology, and
population dynamics of these species are poorly understood.
For example, individuals of some species are territorial (96)
and territorial behavior may expose cleaner fish to attacks from
the larger captive salmon and thus, exposure to injury and

unavoidable chronic stress [e.g., (97–99)]. Reports of poor cleaner
fish survival in commercial salmon sea nets [e.g., (99, 100)], with
some individual farms observing up to 100% mortality or loss
[e.g., (101)], add to this concern. There are also important ethical
questions to consider when using cleaner fish. For example,
cleaner fish are commonly euthanised after each production
cycle when salmonids are slaughtered for harvest (95, 102). This
leads to demand for additional, replacement cleaner fish at the
beginning of the next salmon production cycle [e.g., (94, 95)] and
raises the question: do the ethical implications of this practice
outweigh the efficiency of cleaner fish as a sea lice control
method? So before introducing these species as a legitimate
alternative for sea lice control, we need considerable research
at both the basic (e.g., describing cleaner fish ecology, behavior,
etc.), applied (e.g., investigating welfare of cleaner fish in sea pens,
comparing efficacy of cleaner fish to thermal de-lousing), and
philosophical (e.g., is this practice ethical?) levels.

Feed Quality and Management
The quality of the diet, including feed formulation, affect
salmonid health and welfare. For example, feeds with insufficient
phosphorus cause potentially painful skeletal deformities
[reviewed in (103)]. Popular salmonid feeds usually use fish
meal and oil as their primary protein sources, which are limited
resources whose harvest can have considerable environmental
impact (104). In an effort to improve the sustainability of feeding
farmed salmonids, alternative protein sources such as insect
meals, poultry by-products, plant-based meals (e.g., soybean,
canola, etc.) are being investigated and used (105, 106). However,
emerging research suggests that some of these products may
have welfare-relevant health impacts. For example, feeding
unfermented soybean meal to Atlantic and chinook salmon may
cause an intestinal inflammatory response (enteritis) that renders
fish more susceptible to diseases like furunculosis (107, 108)
but supplementing soybean meal with bacterial meal containing
Methylococcus capsulatus appears to mitigate enteritis in Atlantic
salmon (109). This enteritis also appears to differ in severity
between species; unfermented soybean meal does not induce
enteritis in pink salmon, and is less severe in Atlantic than in
chinook salmon (108). Further research is needed to address
species- and life-stage-level differences in how these alternative
feed formulations may impact salmonid health and welfare.

Similarly, feed restriction (i.e., feeding a reduced ration)
or withdrawal (i.e., not providing any feed) can have welfare
consequences that are not well-understood. Feed is withheld in
a variety of situations during salmon farming; before acutely
stressful procedures like grading, vaccination, etc., it is often
considered prudent to empty the gut through short-term feed
restriction to maintain water quality during holding, lower
hypoxia risk through lowered metabolic rates, and reduce the
risk of needle damage during peritoneal injections (6). Prior to
slaughter, feed may also be withheld for human food safety and
product quality reasons [e.g., (110, 111)]. Further, during rarer
events like superchill (112, 113), harmful algae blooms (114), and
high temperature events (115), feed withdrawal is often required
as it prevents death due to freezing, exposure to algal toxins at
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the water’s surface, or elevated activity in temperatures outside a
species’ optimal range [reviewed in (21)].

Under the assumption that fish have conscious affective states
[as (34, 116), and others claim], the most obvious potential
welfare consequence of feed restriction or withdrawal would be
hunger, an aversive interoceptive state that can include aspects
of pain and frustration and may involve considerable individual
variation [e.g., (117)]. However, it is still unknown whether fish
experience hunger, both because of doubts surrounding whether
they are sentient [cf. e.g., (33, 118, 119)] and because most
species (and all salmonids) are ectotherms. Warm-blooded farm
animals have consistently high energy demands and therefore
require regular meals to avoid hunger and maintain metabolism;
however, the feed requirements of fish are dependent on
temperature, the principal controlling factor of their metabolic
rate (120). Recent research indicates that, when held at optimal
temperatures, Atlantic salmon post-smolts can tolerate up to 4
weeks without food with negligible impacts on welfare (121).
Some species of fish (including salmonids) also exhibit a natural
decrease in appetite to the point of fasting during certain periods
of their life cycle [e.g., (122)], so it is possible that hunger
is either not as strong a motivator for these fish as it is for
mammals, or fish have a physiological mechanism that decreases
the aversiveness of hunger during these periods. Work done on
transgenic salmon has contributed to our understanding of fish
appetite [e.g., (123–125)], but much remains unknown about the
endocrinological and neurological mechanisms controlling it and
the affective component remains elusive.

Furthermore, welfare consequences may vary depending on
the severity and duration of feed restriction or withdrawal, with
very long-term situations potentially forcing fish into a stage
of starvation requiring protein catabolism to mobilize stored
nutrients, wherein vital organ function can be compromised
(126). But even less severe feed restriction can have behavioral
consequences; the sudden onset of restriction can increase
aggression rates and subsequent fin damage severity (127),
with these behavioral changes potentially becoming permanent,
possibly depending on the life-stage at which feed is restricted
[e.g., (128)]. There have been multiple calls for further research
on the effect of feed withdrawal of varying lengths on stress
physiology, behavior, and welfare (6, 110, 129). Currently,
feeding regimes are often based on water temperature and
calculations made using known relationships between body size
and metabolic rate [for fish: on a log-log scale, body mass
and standard metabolic rate are linearly related, with a slope
of 0.8: (130), explained in (21)], with the aim of maintaining
or increasing body mass. However, this method does not
incorporate the numerous other factors that may play a role in
how severe the welfare consequences of varying periods of feed
restriction or withdrawal are such as water quality, species, life-
stage, biodensity, and disease status, among likelymany others. In
contrast, over-feeding (as a possible result of strong dominance
hierarchies, incomplete training of personnel, etc.), though less
studied, may have welfare consequences such as fouling of the
holding tank or net-pen and/or obesity resulting in possible
immunological disorders (131).

Enclosure Design
A variety of rearing unit types and conditions are used in the
farmed salmonid industry, ranging from ponds, sea and lake net
pens, and land-based flow-through and recirculating systems.
Despite this diversity, aquaculture rearing conditions typically
lack complexity, most often being plain, impoverished enclosures
containing only water. Deliberately adding resources to the
environment with the aim of improving fish welfare by meeting
their needs and preferences is often termed “environmental
enrichment” (132, 133). Environmental enrichment can take
many forms, from physical objects added to the rearing unit
that increase structural complexity to sensory, social, nutritional,
or even occupational enrichment (133). Providing fish with
environmental enrichment that increases the complexity of their
rearing units while mimicking their natural environments may
be an effective way to offer choice (134) and decrease stress
responses. Although enrichment strategies are highly dependent
on the natural history of the fish species and their preferences,
there are some principles that have been found to hold true
for several salmonid species used in research and aquaculture.
For example, the use of dark tank backgrounds, tank floor
substrate, and shelters, has the potential to reduce aggression
and consequent fin damage [Rainbow trout: (135–137); Arctic
charr: (138); Coho salmon: (139)] and increase survival [Atlantic
salmon: (140, 141)].

For a comprehensive overview of environmental enrichment
research for cultured salmonid fishes, see Näslund and Johnsson
(133); however to date, environmental enrichment research has
been conducted mainly under laboratory conditions in small
rearing tanks at relatively low biodensities. While several types
of environmental enrichment have been adapted to aquaculture
out of necessity (mainly in terms of reproduction success), almost
nothing is known about the effects of environmental enrichment
on fish welfare at the scale of intensive aquaculture. Furthermore,
we do not know what, if any, forms of environmental enrichment
are preferred by salmonids at different life-stages, nor what
types of enrichment might be important for positive salmonid
welfare. There are also some concerns about the application of
environmental enrichment that require empirical study: some
suggest that enrichment may exacerbate accumulation of food
particles and feces [e.g., (142)] or act as a vector for pathogens
[e.g., (143)] such that the drawbacks may outweigh the benefits.
Accordingly, aquaculture managers are often concerned about
effective and safe application of environmental enrichment,
especially in a large-scale production context. Much more
research is needed to investigate what types of environmental
enrichment might be effective and feasible to deploy on-farm.

Lighting is another important aspect of housing design in the
farmed salmonid industry. Light has three components: color,
intensity, and duration (daylength or photoperiod); all of which
can potentially influence animal welfare and can be manipulated
by increasing or decreasing the number of lights on the farm,
or by changing their strength or type (21). Currently, the
manipulation of both photoperiod and light intensity represents
key management tools used in salmonid aquaculture. For
example, various artificial lighting regimes (e.g., extended or
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reduced day length or continuous, 24-h lighting) are used to
induce smoltification, advance or delay the timing of spawning,
manipulate sexual maturation, promote fish growth, and prevent
suffocation in the early swim-up stages of the salmonid life
cycle (21). Concerningly, there are a number of welfare-relevant
health and production issues associated with continuous lighting,
including disrupted neurological development, reduced bone
strength, poor smolt quality, failed smolting, and failed spawning
(144–147). Similarly, sudden changes in light intensity or regime
cause fear responses, increased oxygen consumption, injuries, or
even suffocation in fish (148–150). So although artificial lighting
is readily used and manipulated across the salmonid aquaculture
industry, research is needed to investigate these welfare concerns.
Furthermore, considering that light intensity influences the
spatial distribution of fish within a tank, light intensity may be
too low at depth in larger, deeper tanks, which could potentially
inhibit feeding, growth, and smoltification (151). We need more
information about how light distribution differs with depth in
a variety of salmonid housing enclosures and how this impacts
fish welfare.

Slaughter and Euthanasia
Generally, when farmed salmonids reach a certain size, they are
slaughtered for human consumption, but it is sometimes also
necessary to euthanize fish to prevent them from experiencing
excessive pain or suffering (e.g., ill, injured, or diseased fish
that do not have a reasonable prospect of improvement or do
not respond to treatment). A “humane death” is one that is
quick, causes minimal stress and pain, and results in a rapid
loss of consciousness followed by death without the ability
to regain consciousness (152–154). Under the assumption that
fish have conscious affective states, humane approaches to the
slaughter and euthanasia of farmed salmonids are expected by
both society and the aquaculture industry. Importantly, humane
slaughter and euthanasia of fish can only be fully achieved by
minimizing stress and injury during, as well as, before the killing
procedure itself. Considering procedures such as crowding,
loading, and transporting fish from their pens to the place where
they will be slaughtered or euthanised (e.g., by use of braille
nets, pipes, and/or well boats) has the potential to induce stress
and injury in fish [e.g., (155–158)], they must be minimized
as much as possible in terms of intensity and duration [e.g.,
(22, 39, 40, 153)].

Aquaculture slaughter and euthanasia techniques are diverse,
and fish species vary in their response to different methods [e.g.,
sensitivity to oxygen deprivation; (159)]. Unfortunately, some
of the current methods are unacceptable under the definition
of a “humane death” and have instead been developed with a
focus on product quality and ensuring personnel safety (45).
For example, immersion in CO2 saturated water is sometimes
used to kill farmed salmonids; however, it is losing popularity
because it has been shown to cause narcosis and loss of brain
function [e.g., (160)] over several minutes, during which time the
fish exhibit pronounced distress and escape behaviors (161, 162).
Thus, considering the negative welfare consequences of these
methods, they are being phased out and are only permitted for

emergency situations [e.g., CO2 may still be used for emergency
depopulation events; (22)].

Of the methods presently available, when applied correctly,
percussive and electrical stunning appear to be among the
more humane methods for salmonid slaughter (163, 164), with
electric stunning becoming the preferred method in Canada (21).
Considering fish can only be stunned by the use of electricity [i.e.,
not killed; (162, 165)], electrical stunning must be followed by a
kill method that prevents recovery of consciousness in order for
it to meet requirements for humane slaughter [e.g., (22, 39, 153,
154)]. However, selection of the most appropriate (i.e., humane)
method of slaughter in any situation will depend on the fish
species, size, life-stage, number of individuals involved, available
means of restraint, and personnel skill level [e.g., (22, 39, 153,
154)]. To date, electrical and percussive stunning methods have
been tested on a limited number of fish species at harvestable size,
mainly in laboratory conditions [e.g., Atlantic salmon, Common
carp, Rainbow trout, Gilthead sea bream, European sea bass;
reviewed in (166)], leaving gaps in our understanding of the
potential of welfare impacts of these methods in additional fish
species, at different life-stages, and in commercial settings. This
is concerning because, for example, when the electrical current
or voltage is too low, or the application duration too short,
electrical stunning can be ineffective at stunning fish and thus,
has the potential to cause pain [(154, 166); for a review in
fish pain see (167)]. As well, additional considerations need to
be taken into account for in-water vs. dry/semi-dry electrical
stunning procedures such as the conductivity of the water [e.g.,
stunning a fish in sea water requires more power than fresh
water; (154, 168)] and the orientation of the fish [e.g., incorrect
orientation of the fish increases the risk of ineffective stunning;
(154, 166)], respectively.

Despite existing research on humane salmonid slaughter
and euthanasia, a number of research gaps remain that are
hindering our understanding of how these different methods
might impact salmonid welfare. First, comparisons between
fish and mammalian brains are difficult [due to eversion
during embryonic development; see (169)]. Thus, what we
know about relationships between mammalian brain regions
and their functions cannot be directly applied to fish. It is
therefore imperative that we continue to research teleost brain
region function in commercially relevant lineages. Second,
electroencephalography (EEG) has been used to assess brain
electrical activity in fish in a number of laboratory experiments
and has been shown to be one of the most reliable methods
of assessing consciousness [e.g., (162, 165, 170–173)]. However,
in a commercial fish farm setting, registration of EEGs is
impossible to perform, instead forcing farmers to rely exclusively
on behavioral indicators to evaluate the degree of consciousness
in fish [e.g., coordinated swimming and escape behaviors, ability
tomaintain equilibrium, “eye roll” reflex, and ventilatory reflexes;
(170)]. The use of behavioral indicators alone are problematic:
for example, some commercially used slaughter methods may
only induce sedation and/or paralysis in fish without loss of
consciousness [e.g., ineffective electrical stunning, ice slurry
slaughter; (163, 166, 170, 174, 175)]. Thus, in order to fully
validate the use of behavioral indicators of unconsciousness in
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the absence of EEGs on farms, more research is needed to
investigate additional commercially-relevant fish species and a
variety of types of slaughter. Third, we do not fully understand
what the actual cause of death is during some of the currently
used slaughter and euthanasia techniques. For example, the
cause of death during ice slurry slaughter, a method of trout
(O. mykiss) slaughter used in Canada, is unknown but likely
to be asphyxiation from either a lack of gill irrigation or
hypoxia [(176); reviewed in (21)]. The chilled water reduces
the fishes’ activity level but may not render the fish insensible
to pain and may thus cause a prolonged period of distress
before death (163, 176). Understanding the cause of death
can thus be important for assessing welfare impacts, since it
can play a role in how long a slaughter method takes to
cause death and how potentially painful it may be, especially
if another method that causes insensibility (e.g., anesthesia)
is not used immediately prior. Thus, methodological studies
of how to measure fish brain activity and investigation into
the improvement or possible further development of humane
slaughter and euthanasia methods would be of use for both
fundamental and applied work. Finally and importantly, though
electrical and percussive stunningmethods are the recommended
methods of slaughter at present, this does not preclude the
discovery of more humane methods in the future.

FUTURE DIRECTIONS

Herein, several gaps in the field of salmonid welfare have been
identified, with pertinent questions to guide future research
summarized in Table 2. However, further, more in-depth work
is required to review the full extent of relevant salmonid welfare
research and a complete suite of research gaps, beyond those
most relevant to policy development in Canada that we have
presented in this review. We strongly suggest that researchers
consider performing a scoping review (177) of the literature
to provide a complete picture of the state of research and
identify a full suite of research deficits. Some valuable reports
like this already exist, such as the gap analysis study conducted
by the Standing Committee on Agricultural Research [SCAR:
(178)], and narrative reviews on various relevant topics by
Ashley (6), Overton et al. (85), Macaulay et al. (179), Hvas
et al. (180), among others. However, since the aquaculture
industry includes a variety of expert stakeholders hailing from
different backgrounds, we also recommend borrowing methods
from the social sciences [e.g., a systematic review of text
and opinion (181), survey-based research (182): Chapter 9],
and/or participatory methods [discussed in (24)] to help reveal
important anecdotal or experiential understanding fromworking
aquaculture professionals that could inform novel research
questions or policy developments [as suggested in relation to the
issue of surplus dairy calves, by (24)].

With regards to the research questions summarized in
Table 2, there are many promising methods that may assist
in addressing them, particularly non-lethal physiological
indicators of salmonid health such as the quantification of
water-borne cortisol [e.g., (183)], fin erosion scoring schemes

[e.g., (184)], bioelectrical impedance analysis (185), and
hematological indicators of health [reviewed in (186)] and stress
[reviewed in (187)]. However, many of these research questions
remain unanswered, possibly for several reasons: some of the
aforementioned indicators and methods have yet to be fully
validated [e.g., (188, 189)], some research questions are yet
unanswerable because we lack the necessary tools, and/or we, as
fish biologists, have not yet pursued interdisciplinary research to
its fullest extent.

The field of animal welfare has been largely focused on
terrestrial species but offers many experimental paradigms that
can be used to investigate the welfare of aquatic species as
well. For example, preference tests commonly used by poultry
and cattle welfare researchers [e.g., (190)] have been used
to investigate what types of environmental enrichment are
most preferred by laboratory zebrafish [e.g., (191)]. These
simple preference tests can be extended into investigations
of motivation, in which a cost is titrated against access to
a resource to determine how valuable it is to an animal
[e.g., (192)]. For example, using motivation tests, welfare
researchers discovered that farmed mink will pay a high
“price” for access to pools for swimming and experience a
stress response indistinguishable from that elicited by food
deprivation when they are prevented from accessing their
favorite resource (193). Further, validated tests of judgment
bias, a concept borrowed from human psychology in which
one’s underlying mood state affects whether neutral stimuli are
perceived as potentially rewarding (optimistic) or threatening
[pessimistic; e.g., (194)], are gaining popularity for assessing
non-human animal mood states [e.g., (195)]. For example,
a judgment bias task was recently validated for laboratory
mice, wherein mice housed with preferred and welfare-
improving environmental enrichment and tumor-bearing nude
mice showed optimistic and pessimistic responses, respectively
(196). Judgment bias tasks have been attempted for zebrafish
[e.g., (197)], but a validated method for salmonids has yet
to emerge.

Going forward, a focus on methods development (both
building on existing tools and experimental paradigms and
creating new ones) would help facilitate the necessary research
on salmonid welfare. Of particular interest might be the
development of validated judgment bias tasks, ways to assess fish
motivation for resources, and other behavioral measures of fish
distress, fearfulness, etc. for use on-farm, as well as other non-
invasive techniques for investigating fish physiological responses.
Considerable work describing salmonid natural ecology exists
[e.g., (59, 198, 199), among many others]; however, deepening
our understanding of their natural behavior across life-stages
(especially during enigmatic at-sea life-stages), would help us
further develop and validate behavioral indices of welfare. We
may also need to explore how other sensory modalities are
affected in production, both as potential welfare implications
but also to discover new indices—for example, what sounds can
salmon in net pens and land-based enclosures detect and/or
produce, and are they relevant to welfare state? How do different
enclosure designs affect how salmon use their lateral line, and
are there properties of the lateral line that are affected by overall
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TABLE 2 | Examples of outstanding research questions that exist in each Research Gap identified herein, as informed by the Scientific Committee, Code Development

Committee, and the authors’ perspective as fish welfare researchers.

Biodensity � What biodensities are preferred by different salmonid species and life-stages?

� How does social behavior change throughout the entire salmonid life cycle? Are these patterns species-specific?

� What is the relationship between fish body size and optimal biodensity?

� Do patterns and relationships identified in the current biodensity literature scale up to large production systems?

� How does biodensity affect salmonid recovery from acute stress?

� For different welfare-relevant pathogens, how does biodensity contribute to pathogen transmission?

Health monitoring and

management

� What are the sub-lethal effects of sea lice infestations on salmonid welfare, and at what threshold number of lice per fish do they occur

at welfare-compromising levels?

� What are the welfare impacts of repeated exposure to chemical therapeutants for managing sea lice infections?

� How do alternative sea lice treatment methods (e.g., thermal and physical de-lousing, etc.) impact salmonid welfare?

� How does the introduction of cleaner fish species to a given enclosure impact the welfare of captive salmonids?

� What are the potential areas of concern for cleaner fish welfare?

Feed quality and

management

� Do fish experience hunger as an aversive affective state?

� If hunger is aversive to fish, how motivating is it?

� How might the aversiveness of hunger interact with different social dynamics (e.g., dominance hierarchies) to impact welfare?

� What protein alternative is best for the welfare of different salmonid species?

� What period of feed restriction or withdrawal is appropriate (i.e., does not compromise welfare), and how does it change with different

environmental conditions?

Enclosure design � What types of if environmental enrichments do farmed salmonids prefer at different life-stages?

� What types of environmental enrichment positively impact fish welfare at different life-stages?

� What types of environmental enrichment are feasible to deploy on-farm?

� What effect does the spectral composition of light have on fish welfare at different life-stages?

� What effect do differing photoperiods have on fish welfare?

� How is light intensity distributed in differing tank depths and how might this affect fish welfare?

Slaughter and euthanasia � What brain region(s) is/are responsible for consciousness in fish?

� How do we measure brain function in fish?

� At what point does unconsciousness occur during differing slaughter and euthanasia methods?

� What is the cause of death in slaughter and euthanasia methods (e.g., ice slurry slaughter and electrical or percussive stunning)?

� Are there more humane methods of slaughter and euthanasia than presently available?

welfare? Longer-term, a non-invasive way to measure brain
activity in tanks, and further work on fish brain neuroanatomy
and function [e.g., (200, 201)], would help us understand and
potentially validate new welfare indicators. Overall, developing
a suite of validated, non-lethal welfare indicators that facilitate
rapid and reliable assessment of welfare on-farm would be
of considerable value. Such a panel of indicators could help
us understand welfare at the fish level on-farm, since there
is likely to be high individual variation in welfare and stress
coping ability within a given group of farmed salmonids
[e.g., (202)].

There is obviously no dearth of relevant research to be
done in the realm of farmed salmonid welfare. In particular,
it is essential to address these and other research gaps to
ensure that policy guidelines do not rest solely on assumptions
about whether these gaps represent welfare issues or not.
Evidence-based policies safeguard welfare in meaningful ways
while preventing pointless and potentially damaging impacts
on valuable industries. Together with the work done by both
the NFACC Scientific and Code Development Committees, we
hope that this review serves to guide future studies toward the
most pressing and policy-relevant research questions, ideally
in advance of future NFACC Code of Practice revisions. But
regardless of timelines, it is important that we support and
conduct basic and applied research that can address some of
the gaps in our understanding of how to safeguard farmed fish

welfare, especially considering increasing expressions of concern
for fish well-being from farmers and the general public and the
continuing expansion of the salmonid aquaculture industry.
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