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Abstract
Nrf2 (nuclear factor erytheroid-derived-2-like 2) transcriptional programmes are activated by a variety of
cellular stress conditions to maintain cellular homoeostasis. Under non-stress conditions, Nrf2 is under tight
regulation by the ubiquitin proteasome system (UPS). Detailed mechanistic investigations have shown the
Kelch-like ECH-associated protein 1 (Keap1)–cullin3 (Cul3)–ring-box1 (Rbx1) E3-ligase to be the primary Nrf2
regulatory system. Recently, both beta-transducin repeat-containing E3 ubiquitin protein ligase (β-TrCP)
and E3 ubiquitin-protein ligase synoviolin (Hrd1) have been identified as novel E3 ubiquitin ligases that
negatively regulate Nrf2 through Keap1-independent mechanisms. In addition to UPS-mediated regulation
of Nrf2, investigations have revealed a cross-talk between Nrf2 and the autophagic pathway resulting
in activation of Nrf2 in a non-canonical manner. In addition to regulation at the protein level, Nrf2 was
recently shown to be regulated at the transcriptional level by oncogenic K-rat sarcoma (Ras). A consequence
of these differential regulatory mechanisms is the dual role of Nrf2 in cancer: the canonical, protective
role and the non-canonical ‘dark-side’ of Nrf2. Based on the protective role of Nrf2, a vast effort has
been dedicated towards identifying novel chemical inducers of Nrf2 for the purpose of chemoprevention.
On the other hand, upon malignant transformation, some cancer cells have a constitutively high level of
Nrf2 offering a growth advantage, as well as rendering cancer cells resistant to chemotherapeutics. This
discovery has led to a new paradigm in cancer treatment; the initially counterintuitive use of Nrf2 inhibitors as
adjuvants in chemotherapy. Herein, we will discuss the mechanisms of Nrf2 regulation and how this detailed
molecular understanding can be leveraged to develop Nrf2 modulators to prevent diseases, mitigate disease
progression or overcome chemoresistance.

Introduction
Nuclear factor erytheroid-derived-2-like 2 (Nrf2) is a
member of the ‘cap-n-collar’ class of basic leucine zipper
transcription factors. Under basal conditions, Nrf2 is
tightly regulated by several ubiquitin proteasome systems
(UPSs)-mediated mechanisms. Upon activation, the levels
of Nrf2 rise and nuclear Nrf2 heterodimerizes with one
of the small Maf proteins. These Nrf2–Maf heterodimers
recognize antioxidant response elements (AREs), 11- (or
16) bp enhancer sequences in the regulatory region of Nrf2
target genes, thereby allowing the recruitment of key factors
for transcript synthesis [1,2]. Typical ARE-harbouring genes
include redox balancing factors, detoxifying
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enzymes, transporters, stress response proteins and metabolic
enzymes [2–4]. Up-regulation of this series of Nrf2-target
genes helps the cell to combat harmful stressors such as
reactive oxygen species (ROS) and electrophilic xenobiotics,
effectively providing a cellular survival mechanism. This
cytoprotective activity of Nrf2 has been implicated in
disease prevention, including cancer [5–8]. In the case
of cancer, controlled Nrf2 up-regulation has shown to
protect against the initiation of many types of cancer [9,10].
Intriguingly, whereas it has been demonstrated that Nrf2
activation is effective in preventing oxidation-related disease
pathogenesis, its role in disease progression once onset has
occurred remains controversial [6]. In addition, the ‘dark-
side’ of Nrf2 has recently been revealed. In this context,
uncontrolled Nrf2 expression facilitates tumour growth and
causes chemoresistance [11–14]. In the present review, we will
discuss the mechanisms of Nrf2 regulation (both canonical
and non-canonical) and chemical modulation to activate or
inhibit the Nrf2 pathway as a chemopreventive or therapeutic
strategy respectively.
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Figure 1 The canonical Nrf2 regulatory pathway

(A) The domain architecture of Nrf2 and known functions of the individual domains. (B) The canonical,

Keap1–Cul3–Rbx1-mediated Nrf2 regulatory pathway. Upon cellular insult, cysteine residues in Keap1 are modified and

the activity of the E3 ubiquitin ligase is suppressed. Nrf2 levels rise and Nrf2 enters the nucleus, where it dimerizes with

Maf and turns on ARE-containing genes.

Nrf2 regulation at the protein level by the
ubiquitin proteasome system

Keap1–Cul3–Rbx1 E3 ubiquitin ligase (the
canonical mechanism of Nrf2 regulation)
In an unstressed state, the Nrf2 protective response is not
needed. In fact, genetic ablation of Nrf2 is tolerated in
mice, although they are highly sensitive to xenobiotic stress
[15]. Under basal conditions, cells mediate the constant
degradation of Nrf2 through the UPS, keeping Nrf2 protein
levels low and preventing transcription of un-needed genes.
This regulation occurs through Kelch-like ECH-associated
protein 1 (Keap1), an adaptor protein of a cullin3 (Cul3)–ring-
box 1 (Rbx1) containing E3 ubiquitin ligase complex [16,17].
Dimeric Keap1 is responsible for recognition of Nrf2 through
two key motifs in the Neh2 domain of Nrf2 located in its N-
terminus (Figures 1A and 2A). The Kelch domain of each
Keap1 binds to the ‘DLG’ and ‘ETGE’ motifs, recognized as
the low affinity and high-affinity-binding sites respectively

[18,19]. Nrf2 is subsequently polyubiquitylated at seven key
lysine residues within the Neh2 domain, condemning Nrf2
to proteasomal destruction [17] (Figure 1B).

Upon introduction of electrophiles or ROS, the Nrf2-
mediated cytoprotective response is activated. Critical
cysteine residues in Keap1, especially Cys151, act as sensors
of these cellular insults and become covalently-modified
by electrophilic species or ROS [20]. Additional cysteine
residues in Keap1 may also be modified by electrophilic
species [21,22]. Such modifications induce a conformational
change in Keap1, probably by disrupting the low-affinity
interaction between the Kelch domain and the DLG-motif,
which leads to impaired ubiquitylation of Nrf2, blocking
UPS-mediated degradation and thus increasing Nrf2 protein
levels [23]. As newly synthesized Nrf2 accumulates, there
are no longer sufficient Keap1 molecules available for Nrf2
binding. This cytosolic Nrf2 is then free to translocate into the
nucleus and transcriptionally activate its target genes. After
induction, when homoeostasis is restored, Keap1 translocates
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Figure 2 The three E3 ubiquitin ligases for Nrf2

(A) Keap1–Cul3–Rbx1 E3 ubiquitin ligase. (B) β-TrCP–Skp1–Cul1–Rbx1 E3 ubiquitin ligase. (C) The Hrd1 E3 ubiquitin ligase.

into the nucleus in a karyopherin alpha 6 (importin alpha
7) (KPNA6)-dependent manner to facilitate nuclear export
of Nrf2 and rejoins the Keap1-mediated ubiquitylation and
degradation machinery in the cytosol [24,25]. These events
turn off the transcription of the Nrf2 target genes and
restore the low basal level of Nrf2 to maintain cellular redox
homoeostasis (Figure 1B).

GSK-3β/β-TrCP–Skp1–Cul1–Rbx1 E3 ubiquitin
ligase
Although Keap1 has been revealed as the primary redox-
sensitive regulator of Nrf2 through reactive cysteine residues,
a redox-insensitive degron within the Neh6 domain of Nrf2
was reported in 2004 [26] (Figure 1A). Subsequently, it
was found that the Neh6 domain of mouse Nrf2 contains
a group of serine residues that can be phosphorylated by
glycogen synthase kinase 3 (GSK-3), a serine/threonine
kinase. This phosphorylation event in the Neh6 domain
creates a phosphorylated destruction motif (phosphodegron),
which can then be recognized by the β-TrCP–Skp1–Cul1–
Rbx1 E3 ubiquitin ligase complex [27] (Figure 2B). This
E3 ligase complex ubiquitylates Nrf2 and sends it to the
proteasome for destruction. Further characterization of the
Neh6 domain found two distinct motifs recognized by
β-TrCP, DSAPGS and DSGIS, the latter containing a GSK-
3β phosphorylation site [28]. However, the conditions that
favour the GSK-3β/β-TrCP E3 ubiquitin ligase over the
Keap1–Cul3–Rbx1 E3 ligase in controlling Nrf2 remains to
be determined.

Hrd1 E3 ubiquitin ligase
More recently, our laboratories discovered that the Nrf2-
mediated protective response was suppressed during liver
cirrhosis [29]. This was a surprising result because Keap1
should be inactivated by the high levels of ROS in cirrhotic
livers, leading to Nrf2 signalling by the canonical mechanism.
Liver cirrhosis is a pathogenic state typically caused by
chronic alcohol consumption or viral hepatitis infection,
resulting in a profound scarring of the liver. Endoplasmic
reticulum (ER) stress has been implicated during the
pathogenesis of liver cirrhosis. ER stress occurs when

misfolded proteins accumulate and the unfolded protein
response (UPR) is then initiated. Three sensors, inositol-
requiring enzyme 1 (IRE1), protein kinase RNA-like ER
kinase (PERK) and activating transcription factor 6 (ATF6),
located on the ER membrane detect the accumulation of
misfolded proteins and relays signalling cascades, resulting
in induction of heat-shock proteins, autophagy factors,
proteasomal subunits and apoptotic factors and a decrease
in other secretory proteins until homoeostasis is reached
[30]. If the UPR system fails to correct the insult, apoptotic
programmes are activated.

To understand the decrease in Nrf2 in cirrhotic livers, we
investigated the cross-talk between the ER stress pathways
and the Nrf2-mediated antioxidant stress pathway. It was
found that decreased Nrf2 levels correlated with activation
of the IRE1 arm of the UPR. ER stress is known to release
the association between IRE1 and 78 kDa glucose-regulated
protein (GRP78) (a chaperone also known as BiP, part of
the heat-shock protein 70 (HSP70) family), enabling free
IRE1 to homodimerize and actively splice X-box-binding
protein 1 (XBP1) mRNA into a mature mRNA encoding
XBP1s, a transcription factor. Hrd1 is an XBP1s target
gene that is up-regulated upon activation of the IRE1–XBP1
signalling pathway. Based on the fact that the protein level of
Nrf2 was decreased in a Hrd1-dependent manner whenever
the IRE1 arm is activated, we identified Hrd1 as a novel
E3 ubiquitin ligase (Figure 2C) [29]. This discovery has
important implications for the treatment and protection of
cirrhotic livers.

Nrf2 regulation at the protein level by
(E/S)TGE-containing proteins (the
non-canonical mechanism of Nrf2
regulation)
In addition to regulation through the UPS, Nrf2 is
subjected to positive regulation by other proteins through
disruption of the Nrf2–Keap1 interaction. A recent study
identified numerous proteins with motifs identical (or similar)
to the ETGE motif of Nrf2, which can compete with
Nrf2 for Keap1 binding, thus stabilizing Nrf2 [31]. Some
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examples of (E/S)TGE containing proteins include dipeptidyl
peptidase 3 (DPP3) and partner and localizer of BRCA2
(PALB2), but p62 (a protein containing the STGE motif)
is perhaps the most recognized positive regulator of Nrf2.
p62 is a scaffold protein recruited into autophagosomes
to shuttle cargo proteins destined for degradation through
autophagy-lysosome pathway, the cell’s bulk degradation
process. Autophagy dysregulation leads to accumulation of
autophagosomes, where p62 captures Keap1, resulting in
inactivation of Keap1-mediated Nrf2 ubiquitylation and thus
activation of Nrf2 [32]. It is envisioned that activation of
Nrf2 by this p62-dependent, but Keap1 cysteine-independent
mechanism takes a much longer time to attenuate, which
leads to heightened cell survival and potential cellular
transformation (Figure 3C). Indeed, we demonstrated that
the human carcinogen arsenic, widely distributed in the
ground water presenting a global health issue that affects
some 200 million people, activates Nrf2 through this non-
canonical mechanism, resulting in prolonged Nrf2 activation
and possibly explaining the carcinogenic nature of arsenic
[33].

Nrf2 regulation at the transcriptional level
by oncogenes
Nrf2 was previously reported to be up-regulated at the
transcriptional level by oncogenic activation of K-RasG12D,
B-RafV619E and MycERT2 [34]. Our group demonstrated that
activation of Nrf2 by oncogenic K-rat sarcoma (Ras) is
facilitated through a TPA (12-O-Tetradecanoylphorbol-13-
acetate)-responsive element (TRE) in the regulatory region
of NRF2 [35]. This was the first demonstration of Nrf2
modulation at the transcriptional level. These studies also
argued for the potential power of Nrf2 inhibitors, such
as brusatol, in this context to facilitate chemotherapy. The
precise mechanisms by which B-RafV619E and MycERT2 up-
regulate the transcription of Nrf2 are currently unknown.

Chemical modulation targeting Nrf2
activation for disease prevention
The validity of the role of Nrf2 in cancer prevention is
most drastically seen in the Nrf2 knockout (Nrf2− / − )
mouse model. Despite their normal embryonic development
and lifespan, Nrf2− / − mice are highly susceptible to
carcinogenic species and readily develop tumours upon
exposure to chemical carcinogens, compared with their wild-
type littermates [36]. The most likely mechanism contributing
to this Nrf2-mediated protection against cancer development
is the cell’s ability to detoxify carcinogens and to combat
mutagenic ROS via the activation of the battery of Nrf2-
responsive target genes. Whereas Nrf2 is maintained at low
levels in normal cells, mounting evidence demonstrates a
reduced tumour incidence upon co-administration of Nrf2
activators along with a carcinogen [37].

Canonical Keap1-dependent Nrf2 activators
The salubrious benefits of many foods and herbal medicines
have been known for thousands of years. The mechanisms
of many of these beneficial effects often remain without
explanation, but recent research has revealed activation
of Nrf2 by many foods and traditional medicines as an
explanation of benefit [6]. As discussed, Keap1 is the
primary regulator of Nrf2 and is subject to oxidation and
electrophilic modification. Many foods (i.e., broccoli, grapes
and cinnamon) may contain natural electrophiles that react
with Keap1–Cys151 and increase Nrf2 levels via the canonical
mechanism. Suforaphane and cinnamaldeyde, from broccoli
or cinnamon respectively, are the two well-studied canonical
Nrf2 activators [33].

In addition to phytochemicals from foods and tradi-
tional medicines, two Nrf2 inducers; Bardoxolone-methyl
(CDDO-Me) and dimethylfumarate (DMF) have advanced
to clinical trials and the clinic respectively. Bardoxolone, a
natural product derived triterpenoid, was reported to interact
with the BTB domain of Keap1, disrupting the BTB/Cul3
interface, leading to Nrf2 activation [38]. Bardoxolone was
entered into phase II clinical trials for the treatment of
diabetic nephropathy and other complications. In this trial,
an increased glomerular filtration rate in patients with chronic
kidney disease was attributed to long-term bardoxolone
treatment. However, upon matriculation to phase III, it
was retracted due to safety issues [39]. Conversely, another
compound capable of Keap1 adduction, DMF (also known
as BG-12 and Tecfidera) was recently awarded Food and
Drug Administration (FDA) approval for the treatment of
multiple sclerosis (MS). Pre-clinically, DMF was shown to
have significant neuroprotective effects in transgenic murine
models of Huntington’s disease as well as experimental
models of demyelination and neurodegeneration [40,41].

Keap1-independent Nrf2 activators
Recently, Keap1-independent Nrf2 activators have emerged.
For example, nordihydroguaiaretic acid (NDGA) was shown
to increase Nrf2 and hemeoxygenase-1 (HO-1) levels through
inhibition of phosphorylation of the Neh6 motif in Nrf2 by
GSK-3β [42]. Additionally, we demonstrated that 4U8C and
LS-102, an IRE1 inhibitor and a Hrd1 inhibitor respectively,
were able to reactivate the Nrf2 protective response to
improve liver function in the CCl4-induced liver cirrhosis
model [29]. Therefore, it is essential to understand the
physiological or pathological state under which a specific E3
has a dominant role. Only with this knowledge can the correct
E3 ubiquitin ligase be targeted to effectively activate Nrf2 for
disease prevention.

Nrf2 inhibition to overcome
chemoresistance
Nrf2 undeniably plays a prominent role in cancer prevention;
however, reports from our laboratory have revealed the
‘dark-side’ of Nrf2 [11]. Because Nrf2 improves cellular
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Figure 3 The three modes of Nrf2 activation in health and disease

(A) The canonical mechanism of Nrf2 regulation in a normal cell. (B) Misregulated Nrf2 signalling in a cancer cell that leads

to constitutive activation of Nrf2. The molecular events underlying this misregulation are discussed in the text. (C) Prolonged

Nrf2 signalling from compromised autophagy. This is probably a major contributing factor in arsenic-mediated carcinogenesis.

survival under cytotoxic challenges, cells heavily rely on
Nrf2 activation to circumvent cell death. Unfortunately,
upon malignant transformation, certain cancer cells have a
constitutively high level of Nrf2 resulting in uncontrolled
Nrf2 expression. Mounting evidence has indicated that
elevated Nrf2 levels are associated with resistance to
chemotherapeutic agents and a poor prognosis in many cancer
types including non-small cell lung carcinoma, endometrial
carcinoma and ovarian carcinoma [11,43,44]. In addition
to protecting against cell death, many Nrf2 target genes
are responsible for glucose metabolism, purine biogenesis
and fatty acid oxidation, a necessity for rapid growth
and proliferation of cancer cells [45,46]. More intriguingly,
we have demonstrated that prolonged Nrf2 activation
by chronic, low-level arsenic exposure through the non-
canonical p62-dependent mechanism may be the underlying
mechanism of arsenic-mediated carcinogenesis [33]. Figure 3
summarizes the modes of Nrf2 activation based on the
canonical regulatory mechanism (Figure 3A), constitutive
activation seen in cancer cells (Figure 3B) and prolonged
activation due to autophagy dysregulation and accumulation
of autophagosomes (Figure 3C).

Cancer cells can utilize several mechanisms to achieve
prolonged or constitutive Nrf2 activation. Somatic mutations
in KEAP1, NRF2 and CUL3 genes in cancer cells have
been identified that disrupt the interaction between Nrf2
and Keap1, resulting in accumulation of Nrf2 (Figure 3B)
[13,47,48]. It is certain that many somatic mutations in
other genes encoding Nrf2-regulatory proteins will be
identified in addition to these. Another mechanism for Nrf2
overexpression in cancer cells, which is consistent in brain,
lung and prostate cancers, is the epigenetic silencing of
the KEAP1 gene, leading to up-regulation of Nrf2 [49,50].
In these cases, the KEAP1 promoter region was found to
be hypermethylated, preventing the expression of Keap1
mRNA.

In order to combat this oncogenic function of Nrf2,
we have focused on the discovery and development of
inhibitors of the Nrf2 pathway. Our first success in this
vain, brusatol, potently decreases Nrf2 protein levels and
target gene expression at nanomolar concentrations in cancer
cells with constitutively high Nrf2 expression, enhancing the
cytotoxic effect of cisplatin and other chemotherapeutics [12].
As mentioned above, oncogenic K-Ras up-regulates Nrf2
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mRNA levels, which offer a possible explanation for why
oncogenic K-Ras mutations lead to chemoresistant tumours.
This also provides further evidence for the ‘dark-side’ of
Nrf2. Very recently, we demonstrated that co-administration
of brusatol enhanced the efficacy of cisplatin and improved
survival of mice with lung cancer using a K-RasG12D mouse
model [35]. As a result, brusatol has illuminated the value of
Nrf2 inhibitors as adjuvants to chemotherapeutic drugs that
are typical first line regimens for cancers.

Conclusion
In this review, we have discussed the canonical and non-
canonical mechanisms of Nrf2 regulation and how these
relate to the dual role of Nrf2 in cancer. Understanding
these mechanisms has revealed novel means to control Nrf2
expression to maintain cellular redox homoeostasis. It should
also be highlighted that the mechanisms governing some of
these Nrf2 regulatory pathways remain to be understood,
but the knowledge of Nrf2 regulation will add to our
understanding of Nrf2-mediated pathological states and how
to exploit this critical protective pathway to prevent diseases
or to treat diseases directly or in combination with other
drugs. In addition, we have discussed the consequence of
prolonged or chronic up-regulation of Nrf2 and how this
can lead to cellular transformation and chemoresistance.
Understanding this ‘dark-side’ of Nrf2 has fuelled the
counterintuitive drive to develop Nrf2 inhibitors. The leader
of this class, brusatol, has proven to be a powerful tool
in understanding Nrf2 biology and has provided a strong
incentive to develop the next generation of Nrf2 inhibitors.
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