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Abstract: Many chemical processes rely extensively on organic solvents posing safety and environmen-
tal concerns. For a successful transfer of some of those chemical processes and reactions to aqueous me-
dia, agents acting as solubilizers, or phase-modifiers, are of central importance. In the present work, the
structure of aqueous solutions of several ionic liquid systems capable of forming multiple solubilizing
environments were modeled by molecular dynamics simulations. The effect of small aliphatic chains
on solutions of hydrophobic 1-alkyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide ionic
liquids (with alkyl = propyl [C3C1im][NTf2], butyl [C4C1im][NTf2] and isobutyl [iC4C1im][NTf2]) are
covered first. Next, we focus on the interactions of sulphonate- and carboxylate-based anions with
different hydrogenated and perfluorinated alkyl side chains in solutions of [C2C1im][CnF2n+1SO3],
[C2C1im][CnH2n+1SO3], [C2C1im][CF3CO2] and [C2C1im][CH3CO2] (n = 1, 4, 8). The last system
considered is an ionic liquid completely miscible with water that combines the cation N-methyl-N,N,N-
tris(2-hydroxyethyl)ammonium [N1 2OH 2OH 2OH]+, with high hydrogen-bonding capability, and the
hydrophobic anion [NTf2]–. The interplay between short- and long-range interactions, clustering of
alkyl and perfluoroalkyl tails, and hydrogen bonding enables a wealth of possibilities in tailoring an
ionic liquid solution according to the needs.
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1. Introduction

Ionic liquids (ILs) are salt-like ionic materials with unusually low melting point
temperatures (100 ◦C being the usually accepted threshold) [1]. It is recognized that
this situation is due to (a) low molecular symmetry of the constituting ions, (b) charge
delocalization within the ions via resonance or other effects, and (c) the presence of nonpolar
moieties such as aliphatic side chains [2]. ILs are being used in a wide range of technological
applications, from media in chemical synthesis to components of fuel cells [3–10]. Fine
tuning of their chemical properties has been determinant to their success and computational
chemistry has played an important part in that process [11–13].

Presently, ionic liquids are regarded as nano-segregated fluids and materials. Although
they are incapable of forming long-range ordered structures at moderate temperatures (in
some cases, even crystallization at lower temperatures is difficult and those ILs tend to un-
dergo glass transitions), they tend to form intermediate-range structures (aggregates) [14].
Such structures are derived, on one hand, by local electroneutrality conditions (a polar
3D network of alternating cations and anions) and, on the other hand, by the segregation
between polar and nonpolar regions [15]. A significant contributing factor to the segrega-
tion phenomena experienced in many ILs is the presence of alkyl side chains that act as
low-charge-density molecular residues [16].

IL–solute interactions have been rationalized considering three specific areas of the
IL: the nonpolar regions interact preferentially with nonpolar solutes, such as alkanes via
London dispersion forces; the polar network (especially the anions) interacts with water via
hydrogen bonding [17]; and, finally, the interface between the polar and nonpolar regions
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interacts with small dipolar solutes, such as acetone or halogenated hydrocarbons [2]. A
summary of different types of IL–solute interactions and their impact in terms of mutual
solubility of the corresponding systems is given in the following paragraphs.

The mutual solubilities of ILs and aromatic molecules—benzene [18], hexafluoroben-
zene derivatives [18–20], pyridine, and nicotine [21]—are correlated to the dipolar and
quadrupolar moments of those molecules, leading to charge-induced structuration of the IL
ions around them [18,19]. For instance, the diverse dipole and quadrupole moments of ben-
zene and its 12 fluorinated derivatives have been conclusively correlated to their solubility
in the ionic liquid 1-ethyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide [20],
[C2C1im][NTf2]. In the particular case of pyridine, there is complete miscibility in all
proportions with some ionic liquids, making it generally more soluble than benzene. This
is due to both the presence of a heteroatom in the aromatic ring, which confers a sizable
electric dipole moment, and a smaller nonpolar-to-polar domain ratio [21].

In diluted or water-rich solutions, it has been found that water molecules have the
two-fold ability of solvating both the anion via hydrogen bonding but also aromatic rings
present in some cations. An increase in the length of the alkyl chain of the latter leads
to reduced water solubility [22,23]. Moreover, the nature of the head group of the IL
also affects the solubility: aromatic cations exhibit higher solubilities than their aliphatic
counterparts, e.g., imidazolium- and pyridinium-based ILs have larger water solubilities
than their pyrrolidinium- and piperidinium-based counterparts [24]. With regard to the
anion, fluorination generally restricts the IL–water solubility windows: solubility in 1-
ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [C2C1im][FAP], is
more limited [25] than in [C2C1im][PF6]. This can be offset by H-bond-type interactions
with other interactive center within the anions—e.g., the sulphur atom in the sulfonate
and the carbon atom of the acetate ions—that promote the formation of small water/anion
alternated clusters [26]. The cation–anion interaction is also a determinant in the behavior of
ILs in water. In the case of amino-acid anions, the amino group has a weak interaction with
the cation, while the carboxylate group is an excellent hydrogen bond acceptor leading to
the breakage of the polar network into smaller fragments/aggregates upon dissolution [27].
Another example is the cholinium cation, where the charge is located on the nitrogen
atom and four adjoining methyl/methylene groups. The addition of more OH groups
to the cation, and subsequent increase in H-bonding interacting sites, leads to stronger
interactions with water, the disruption of the polar network, and much larger miscibility
windows with the formation of smaller solvated ionic clusters [28].

The addition of alcohol to IL solutions also highlights the dual role of the alkyl chain
of the alcohol molecules, interacting with the polar and nonpolar regions of the IL [29,30].
The water solubility along an IL series is, as expected, lower for ILs with longer alkyl side
chains in the cation. However, in IL–octanol solutions, this trend is reversed—there are
still interactions between the OH group of the alcohol and the polar part of the ions, but
the rest of the octyl chain has to be accommodated in the nonpolar domains of the IL [29].

For smaller alcohol alkyl chains, there is a tendency for self-clustering, with percolation
of the simulation box by these aggregates with their accommodation throughout the IL due
to the influence of the OH groups, an effect that is lost in longer alcohols [30]. Introducing
atoms with lone pairs of electrons capable of accepting a proton and establishing a hydrogen
bond with amino-based alcohols adds further possible combinations in which interaction
is possible with the IL [31]. As for ethers, it is one of the few systems with ILs that exhibits
phase diagrams characterized by the existence of a lower critical solution temperature—a
phenomenon that is related to the breaking-up of the hydrogen-bonded network that can
be formed between the functionalized cation of the ionic liquid and the oxygen atom of the
ether molecule [32].

As previously discussed, nonpolar solutes such as alkanes have a higher affinity for
the nonpolar regions of the IL. In bromo- and chloro-monosubstituted alkanes, ILs show
higher solubility towards shorter alkyl-side chains and bromide-based solutes, as opposed
to the chloride-based, but there is still a measure of interaction between the halogens and
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the hydrogen atoms of the imidazolium ring and the substituted carbon of the haloalkane
and the oxygen atoms of the anions with shorter chains [33]. Xenon can be viewed from a
similar lens, modeled with similar potential parameters to the n-alkanes, xenon will start to
move away from the vicinity of the imidazolium with the progressive increase in the alkyl
side chain in the IL [34]. The solubilities of n-butane and 2-methylpropane [35] confirm
all the previously described issues—the more flexible and less bulky n-butane is well
accommodated in the nonpolar domains of ILs (especially those with linear side chains),
whereas the bulkier isobutane solute is not accommodated so efficiently in such ILs.

Hydrotropes are a class of compounds that can enhance the solubility of hydrophobic
substances in aqueous media. The unique solvation properties of ILs can be used to that
effect, with the solubilization of solutes that are sparingly soluble in pure water due to
the formation of solute–IL and water–IL aggregates [36]. Using molecular simulation,
coaggregates between the hydrophobic solute and the IL ions in aqueous solution have
been validated. In the case of IL aqueous solutions containing vanillin, the hydrotrope
effect was achieved, with interactions between specific vanillin–cation, cation–anion, and
anion–water identified. For ibuprofen, the interactions with ILs, although present, are
mostly restricted to a network formed by the cations and ibuprofen at the surface of the
later subphase [37].

SILs (solvated ionic liquids) are a subclass of ILs, consisting of a metal cation bound to
a stoichiometric quantity of coordinating ligands via strong Lewis acid–base interactions
that yield stable complex cations and counter ions in the bulk liquid. Strong complexation
between Li+ and glyme molecules produces stable [Li(glyme)] cations (i.e., a good SIL).
Conversely, a “poor” SIL is characterized by stronger interactions between Li+ and the an-
ion, which promotes the presence of uncoordinated glyme in solution [38]. Thus, different
counter ions yield different types of SIL: in [Li(G4)][NO3], strong Li–anion interactions
leads to Li-rich and Li-depleted regions in the bulk; conversely, in [Li(G4)][NTf2], strong
Li–glyme interactions generate stable complex cations, with well solvated and uniformly
distributed Li cations in the bulk [39]; in [Li(G4)][NTf2], Li–anion connections are weaker
than in [Li(G4)][NO3], with the anion generally exhibiting two monodentate coordinations
to Li+ [40].

LCILs (liquid crystal ionic liquids) are another IL subclass that exhibits liquid crys-
talline meso-phases at moderate temperatures. The unique solvent properties of LCILs,
namely their ordered structures, can influence the stereochemical outcome of a Diels–
Alder (DA) reaction between cyclopentadiene and methyl acrylate. This is due to the
different hydrogen bonding interactions between the LCIL reaction media and the exo- or
endo-transition states in solvents with layered (smectic, SmA) ordering—it restricts the
accessibility of hydrogen bond donors of the IL cation to both DA products—as compared
to the isotropic phase. Overall, the effective polarity of the solvent lowers and there is
preferential hydrogen bonding to the exo-product in the polar region of the segregated
bilayer of the SmA phase of the LCILs [41].

Finally, the bulk properties of ILs can be manipulated by using mixtures of different
ILs at differing proportions and this can lead to the tailoring of the phase: smaller aggre-
gates in the matrix achieving both nonpolar domains and a bicontinuous network [42],
changing the affinity towards water [43], introducing small clusters while still maintaining
percolation [44], and even bridging between different aggregates [45].

The different systems modeled and simulated in the present work will address, in
more detail, some of the issues discussed in the previous paragraphs. The focus will be on
aqueous solutions of diverse ionic liquids (Chart 1), namely those containing (a) different
cations with small alkyl sidechains (including branched ones); (b) different anions based
on sulfonate or carboxylate moieties attached to hydrogenated or fluorinated alkyl chains;
and (c) cations with high hydrogen-bonding capabilities.
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Chart 1. Molecular structure and acronyms of the ions composing the ionic liquids studied in this work.

2. Results and Discussion
2.1. Aqueous Solutions of [C3C1im][NTf2], [C4C1im][NTf2], and [iC4C1im][NTf2]

The three IL systems studied in this section are known to be hydrophobic: none of
them are completely miscible with water at room temperature. This means that we will
address structural issues related to the addition of modest amounts of water to the pure ILs
(below the corresponding saturation limits). To facilitate comparisons between systems, a
common value of ionic liquid mole fraction, XIL = 0.70 (wtIL = 98%), for the IL-rich aqueous
IL solutions was established (please refer to Table 1 for weight and mole fractions of all
systems studied). In other words, this mole fraction corresponds to ILs that contain small
amounts of water and the amount of water is at the saturation limit. The solubility of the
ILs in pure water is very low and the corresponding water-rich IL aqueous solutions were
not considered. All systems have a common anion combined with three cations with rather
small alkyl side chains. The objective of this section is to determine how small changes in
those side chains (increase in just one –CH2– group; linear versus branched chains) affects
the uptake of water in the IL aqueous solutions and possible structural differences.

Figure 1 shows the structure factor functions, S(q), for [C3C1im][NTf2], [C4C1im][NTf2],
and [iC4C1im][NTf2] as pure substances and as aqueous solutions with a water mole frac-
tion, XIL = 0.70. All S(q) functions are quite similar, with two prominent peaks at around
9 and 14 nm−1, corresponding to charge ordering peaks (COPs) and contact peaks (CPs)
of the different liquids. The COP reflects the existence of characteristic distances between
ions within the polar network of the IL; the CP reflects characteristic contact distances
between atoms of different ions and molecules. The COPs are distinctive features of ionic
liquids that are generally absent in the S(q) functions of (neutral) molecular fluids. Because
there are almost no changes in the peak positions of the S(q) functions between the pure
ILs and their aqueous solution counterparts, one can conclude that the water molecules
present in solution do not interfere with the overall structure of the ILs and can occupy
spaces in the vicinity of the cations and anions without disrupting their charge ordering.
In other words, water–ion interactions are insufficient to split the cohesion of the cation–
anion polar network at low water fractions [46,47]. The COP peak for [C3C1im][NTf2]
has a q value 8.9 nm−1, slightly larger than the other two ILs that have an additional
CH2 unit at the alkyl chain. Such q value corresponds to characteristic distances in the
polar network of d = 2π/q = 0.704 nm, the distance between the centers of charge of two
anions or cations separated by a common counter-ion. The slightly lower q values for
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[C3C1im][NTf2] and [iC4C1im][NTf2] (corresponding to smaller d values) reflect a less
efficient packing of the charged parts of the ions within the polar network caused by the
slightly bulkier alkyl side chains in the cations. Hence, [C3C1im][NTf2] is expected to have
a more compact polar network, with both [C4C1im][NTf2] and [iC4C1im][NTf2], being
comparatively more stretched.

Table 1. Details of the molecular dynamics simulations performed for the water–ionic liquid mixtures and the corresponding
sections where the systems are discussed. The final box length at 300 or 320 K is represented by lbox (in nm); the number of
IL pairs and water molecules are, respectively, nIL and nwater; the IL weight fraction is represented by wtIL; and the IL mole
fraction is denoted as XIL.

Section Ionic Liquid nIL nwater wtIL XIL lbox Section Ionic Liquid nIL nwater wtIL XIL lbox

Section 2.1

[C3C1im][NTf2] 320 – 1.00 1.00 5.19

Section 2.2

[C2C1im][C4H9SO3] 600 – 1.00 1.00 6.07
[C4C1im][NTf2] 300 – 1.00 1.00 5.28 [C2C1im][C4H9SO3] 420 620 0.90 0.40 5.57
[iC4C1im][NTf2] 300 – 1.00 1.00 5.20 [C2C1im][C4H9SO3] 190 2600 0.50 0.07 5.26
[C3C1im][NTf2] 300 130 0.98 0.70 5.16 [C2C1im][C4H9SO3] 105 3300 0.30 0.03 5.14
[C4C1im][NTf2] 300 130 0.98 0.70 5.25 [C2C1im][CF3CO2] 1000 – 1.00 1.00 6.55
[iC4C1im][NTf2] 300 130 0.98 0.70 5.25 [C2C1im][CF3CO2] 450 620 0.90 0.42 5.27

Section 2.2

[C2C1im][CF3SO3] 1000 – 1.00 1.00 6.69 [C2C1im][CF3CO2] 210 2600 0.50 0.07 5.13
[C2C1im][CF3SO3] 390 620 0.90 0.39 5.16 [C2C1im][CF3CO2] 115 3300 0.30 0.03 5.05
[C2C1im][CF3SO3] 180 2600 0.50 0.06 5.08 [C2C1im][CH3CO2] 1000 – 1.00 1.00 6.39
[C2C1im][CF3SO3] 100 3300 0.30 0.03 5.57 [C2C1im][CH3CO2] 600 620 0.90 0.49 5.56
[C2C1im][C4F9SO3] 350 – 1.00 1.00 5.30 [C2C1im][CH3CO2] 280 2600 0.50 0.10 5.25
[C2C1im][C4F9SO3] 250 620 0.90 0.29 5.00 [C2C1im][CH3CO2] 150 3300 0.30 0.04 5.11
[C2C1im][C4F9SO3] 115 2600 0.50 0.05 5.01

Section 2.3

[N1 2OH 2OH 2OH][NTf2] 350 – 1.00 1.00 5.44
[C2C1im][C4F9SO3] 62 3300 0.30 0.02 4.98 [N1 2OH 2OH 2OH][NTf2] 340 146 0.98 0.70 5.40
[C2C1im][C8F17SO3] 250 – 1.00 1.00 5.32 [N1 2OH 2OH 2OH][NTf2] 320 320 0.96 0.50 5.40
[C2C1im][C8F17SO3] 180 620 0.90 0.23 5.00 [N1 2OH 2OH 2OH][NTf2] 320 480 0.94 0.40 5.44
[C2C1im][C8F17SO3] 78 2600 0.50 0.05 4.97 [N1 2OH 2OH 2OH][NTf2] 280 1120 0.86 0.20 5.46
[C2C1im][C8F17SO3] 43 3300 0.30 0.01 4.97 [N1 2OH 2OH 2OH][NTf2] 220 1980 0.73 0.10 5.44
[C2C1im][CH3SO3] 1000 – 1.00 1.00 6.62 [N1 2OH 2OH 2OH][NTf2] 160 3040 0.56 0.05 5.50
[C2C1im][CH3SO3] 490 620 0.90 0.44 5.42 [N1 2OH 2OH 2OH][NTf2] 115 3718 0.43 0.03 5.51
[C2C1im][CH3SO3] 230 2600 0.50 0.08 5.22 [N1 2OH 2OH 2OH][NTf2] 48 4752 0.20 0.01 5.45
[C2C1im][CH3SO3] 125 3300 0.30 0.04 5.11 [N1 2OH 2OH 2OH][NTf2] 20 4980 0.09 0.004 5.20
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Figure 1. Structure factor functions, S(q), calculated at 320 K for pure [C3C1im][NTf2],
[C4C1im][NTf2], and [iC4C1im][NTf2] ILs and its aqueous solutions with XIL = 0.70 (wtIL = 98%).

There is a small shoulder at approximately 4 nm−1 for [C4C1im][NTf2], both in the
pure IL and in the aqueous solution. This corresponds to the emergence of a PNPP (polar–
nonpolar peak) that reflects characteristic distances between strands of the polar network
separated by the (nonpolar) alkyl moieties of the cations. The shoulder is more subdued
for [iC4C1im][NTf2] and suppressed for [C3C1im][NTf2]. PNPPs are known to occur only
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after a given threshold value for the length of the alkyl side chains present in the ions.
Kurnia et al. [24] have previously reported that the spacing between polar strands mediated
by alkyl side chains is slightly larger for [C4C1im][NTf2] than for its branched counterpart,
[iC4C1im][NTf2].

Figure 2 shows different spatial distribution functions (SDFs) around the cation for
aqueous solutions of [C3C1im][NTf2], [C4C1im][NTf2], and [iC4C1im][NTf2]. The [NTf2]−

anion can surround the charged moiety of the cation (the imidazolium ring), positioning
the CF3 groups above and below the plane of the ring and the SO2 groups mainly near
the acidic hydrogen at C2 (the green contours in the SDFs represent the position of the
nitrogen atom of the anion, as a proxy for the position of the sulfonate groups). On one
hand, such positioning reflects the basicity of the SO2 groups (and their affinity for the
more acidic hydrogens of the cation) and, on the other hand, the possibility of fluorine–
aromatic (F-π) interactions. This situation hinders the approximation of water molecules at
those positions (C2 position, above and below the aromatic plane). This means that water
molecules will be found mainly near the other less acidic hydrogens (C4 and C5 positions),
with little disturbance on the size of the polar network, and as shown also in Figure 2.
Interestingly, the water molecules slightly prefer the C4 position in [C3C1im][NTf2] and
[iC4C1im][NTf2] and the C5 position in [C4C1im][NTf2]. The existence of a more structured
nonpolar domain due to the existence of longer (C4) chains (as hinted at by the PNP
shoulder) probably declutters the vicinity of the C5 and can help explain such effect.
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The SDFs around the anions are presented in Figure 3 and show that apparently both
the water molecules and the C2 hydrogen of the cation tend to interact with the anion
at the same position (the charged part of the anion containing the nitrogen atom and the
sulfonate groups). This apparent inconsistency (the SDFs of Figure 2 have shown that the
water molecules and the anions interact with the cation at different positions) points to
the fact that SDFs are sometimes quite challenging to interpret. The difficulty comes from
the fact that the contours are the result of averages performed over selected pairs of atoms
or molecular sites that can adopt different relative positions within the ions or molecules
being considered. In the case of the imidazolium anion, things are particularly complex
because the interactions are mainly performed via the most electronegative atoms (the four
oxygen atoms of the sulfonate groups). Looking closely at those two SO2 groups, one can
notice that there is an O atom in each group assuming an axial orientation with respect to
the S-N-S plane, while the other O atom takes an equatorial orientation. Moreover, the O-O
distance between the axial pair is smaller than the equatorial pair. This axial/equatorial
orientation of O atoms is present in both cisoid and transoid conformers and influences the
organization of other molecules and ions around the [NTf2]− anion. What the SDFs in
Figure 3 indicate is simply that the anion interacts with water and the C2 hydrogen of the
cation preferentially, with one of the axial O atoms in the SO2 groups. The flexibility of the
molecule and the existence of multiple O atoms results on the apparently superimposed
average contours presented in the SDFs.
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Figure 4 shows the size distributions for nonpolar, cation-water and anion-water
aggregates contained in the aqueous solutions of [C3C1im][NTf2], [C4C1im][NTf2], and
[iC4C1im][NTf2] (300 IL pairs in each system). The water-water aggregates are presented
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in Figure S1 of the Supplementary Materials. The nonpolar aggregates are small in all
cases (and smallest for [C3C1im][NTf2], with 21% of isolated alkyl side chains). The
addition of small amounts of water induces some nonpolar aggregation on [C4C1im][NTf2]
and [iC4C1im][NTf2] (and more segregation from the polar network). In both cases, the
nonpolar aggregates are comparatively larger, with just 10% of isolated alkyl side chains
and maximum aggregate sizes of 202 for [C4C1im][NTf2] and 234 for [iC4C1im][NTf2],
in agreement with the existence of incipient PNPP shoulders (Figure 1). The preferential
solvation of the cation can be observed comparing cation–water aggregates (center of mass
of the imidazolium ring–oxygen atom of water) and anion–water aggregates (nitrogen atom
of the anion–oxygen atom of water): cation–water aggregates have size distributions shifted
to larger values than anion–water aggregates. Conversely, 26% of cations show absence of
water in their vicinity, whereas the number rises to 35% for the anions. Moreover, the size
distribution of cation–water aggregates indicates that [C3C1im][NTf2] is more soluble than
the other two ILs (larger aggregates with a maximum at rather large values (Figure 4b).
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Figure 4. Discrete probability distribution of aggregates in aqueous mixtures XIL = 0.70 (wtIL = 98%) of [C3C1im][NTf2],
[C4C1im][NTf2], and [iC4C1im][NTf2]: (a) tail–tail; (b) cation–water and (c) anion–water aggregates.

The alkyl side chains of pure [C4C1im][NTf2] and [iC4C1im][NTf2] display similar
average numbers of contact neighbors (Figure 5a). The inclusion of water slightly increases
such average numbers. Pison et al. [35] have reported that linear chains show a better
packing when compared to the branched chains, which leads to a higher number of
average neighbors, especially in the presence of water. On the other hand, in the case of
[C3C1im][NTf2], water addition decreases the number of contact neighbors. This suggests
that since the chain is short and not far removed from the polar network, the addition
of water molecules in the same region further separates the alkyl side chains, allowing
higher mobility of the nonpolar tails. This should be taken into consideration in ionic
liquid/water extraction processes in which the nonpolar nanophase plays a role [48]. The
average number of contact neighbors within the polar network (contacts between the
charged part of an ion and the charged part of its counterion) is presented in Figure 5b.
Pure [C4C1im][NTf2] and [iC4C1im][NTf2] again show similar values; however, when
water is added, the average number of contact neighbors decreases, an expected outcome
since some water molecules are now present, adjacent to the anions and cations. Figure 6
shows the average number of contact neighbors in anion–water aggregates as a function of
the corresponding values for cation–water aggregates. The graph shows that there are, on
average, more water molecules surrounding cations than anions (70% more) and that ions
in [C3C1im][NTf2] are more “hydrated” than in [C4C1im][NTf2] or [iC4C1im][NTf2].
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Figure 5. Average number of contact neighbors (Ni) for pure ILs and aqueous mixtures XIL = 0.70
(wtIL = 98%) of [C3C1im][NTf2], [C4C1im][NTf2], and [iC4C1im][NTf2] as a function of the number
of carbons in alkyl chain: (a) tail–tail and (b) cation–anion aggregates.

Molecules 2021, 26, x FOR PEER REVIEW 9 of 24 
 

 

  
Figure 5. Average number of contact neighbors (Ni) for pure ILs and aqueous mixtures XIL = 0.70 
(wtIL = 98%) of C3C1im[NTf2], C4C1im[NTf2], and iC4C1im[NTf2] as a function of the number of 
carbons in alkyl chain: (a) tail–tail and (b) cation–anion aggregates. 

 

Figure 6. Average number of water neighbors around the cation (Ni cation_water) vs. the anion (Ni 
anion_water) for aqueous mixtures XIL = 0.70 (wtIL = 98%) of C3C1im[NTf2], C4C1im[NTf2], and 
iC4C1im[NTf2]. 

2.2. Aqueous Solutions of [C2C1im][CnF2n+1SO3], [C2C1im][CnH2n+1SO3], [C2C1im][CF3CO2], and 
[C2C1im][CH3CO2] 

In this set of systems, we will focus on the interactions between anions with different 
hydrogenated and fluorinated alkyl side chains combined with carboxylate or sulfonate 
headgroups. The aqueous solutions will cover a more extensive range of water composi-
tion when compared to the previous group of systems. Due to this fact, concentrations 
will be given in IL weight fraction, wtIL. Figure 7a shows the structure factor functions, 
S(q), calculated at 300 K for several pure ILs containing the C2C1im+ cation; the respective 
aqueous solutions with 90% and 30% wtIL are presented in Figure 7b,c (roughly speaking, 
for these ILs wtIL = 90% represents XIL in 0.23–0.49 range, while wtIL = 30% denotes XIL in 
0.01–0.04 range). For the pure ILs, the deconvolution of the two peaks at around 10 and 
14 nm−1 have been previously assigned [49] to the charge ordering peak (COP) and the 
contact peak (CP), respectively. As mentioned above, the latter is related to characteristic 
distances between contacting atoms from different ions, whereas the former is an intrinsic 
feature of ILs that is related to characteristic distances within the polar network. The pure 
ILs, C2C1im[C4F9SO3] and C2C1im[C8F17SO3], also exhibit conspicuous low-q peaks 
around 3 nm−1—known as pre-peaks or polar nonpolar peaks (PNPPs)—a consequence of 
the nano-segregation between the polar and nonpolar domains within the IL [50]. At low 

1

1.4

1.8

2.2

2.5 3 3.5 4 4.5

Ni

n

non-polar

[C3C1im] + H2O

[C3C1im]

[C4C1im] + H2O
[iC4C1im] + H2O

[iC4C1im]

[C4C1im]

(a)

4.2

4.35

4.5

4.65

4.8

2.5 3 3.5 4 4.5

Ni

n

polar
[C3C1im]

[C3C1im] + H2O

[iC4C1im]
[C4C1im]

[iC4C1im] + H2O

[C4C1im] + H2O

(b)

0.77

0.79

0.81

0.83

1.32 1.34 1.36 1.38

N
i

an
io

n_
w

at
er

 

Ni cation_water

[C3C1im] + H2O

[C4C1im] + H2O

[iC4C1im] + H2O

Figure 6. Average number of water neighbors around the cation (Ni cation_water) vs. the anion (Ni

anion_water) for aqueous mixtures XIL = 0.70 (wtIL = 98%) of [C3C1im][NTf2], [C4C1im][NTf2], and
[iC4C1im][NTf2].

2.2. Aqueous Solutions of [C2C1im][CnF2n+1SO3], [C2C1im][CnH2n+1SO3], [C2C1im][CF3CO2],
and [C2C1im][CH3CO2]

In this set of systems, we will focus on the interactions between anions with different
hydrogenated and fluorinated alkyl side chains combined with carboxylate or sulfonate
headgroups. The aqueous solutions will cover a more extensive range of water composition
when compared to the previous group of systems. Due to this fact, concentrations will
be given in IL weight fraction, wtIL. Figure 7a shows the structure factor functions, S(q),
calculated at 300 K for several pure ILs containing the [C2C1im]+ cation; the respective
aqueous solutions with 90% and 30% wtIL are presented in Figure 7b,c (roughly speaking,
for these ILs wtIL = 90% represents XIL in 0.23–0.49 range, while wtIL = 30% denotes XIL in
0.01–0.04 range). For the pure ILs, the deconvolution of the two peaks at around 10 and
14 nm−1 have been previously assigned [49] to the charge ordering peak (COP) and the
contact peak (CP), respectively. As mentioned above, the latter is related to characteristic
distances between contacting atoms from different ions, whereas the former is an intrinsic
feature of ILs that is related to characteristic distances within the polar network. The pure
ILs, [C2C1im][C4F9SO3] and [C2C1im][C8F17SO3], also exhibit conspicuous low-q peaks
around 3 nm−1—known as pre-peaks or polar nonpolar peaks (PNPPs)—a consequence
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of the nano-segregation between the polar and nonpolar domains within the IL [50]. At
low water concentration (wtIL= 0.9; XIL = 0.23–0.49), the PNPP, COP, and CP positions are
similar to the ones found for the pure ILs, indicating that the water molecules can occupy
positions adjacent to the polar network of the ILs without promoting the disruption of
too many cation–anion interactions. However, the intensity of the PNPPs in imidazolium-
based ILs with longer alkyl chains increases significantly in relation to the COPs and CPs
(Figure 7b), a possible indication of a stronger segregation between polar and nonpolar
domains (the former containing the most water molecules, the latter very few of them).
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Figure 7. Structure factors calculated at 300 K for (a) pure ILs, (b) aqueous solutions with wtIL = 90% (XIL = 0.23–0.49), and
(c) wtIL = 30% (XIL = 0.01–0.04).

At higher water concentrations, wtIL= 0.3 (XIL = 0.01–0.04, Figure 7c), it is observed
that the COPs shift to lower q values, a clear indication that the polar region of the IL suffers
a broadening/swelling in order to accommodate the water molecules, which naturally
prefer a polar environment and avoid the nonpolar segments of the IL. Looking at the
inset in Figure 7c, where the intensity of PNPP in ILs with longer chain lengths is more
evident, it is clear that, even though the percentage of the IL is low, the pre-peak is still
present. As previously reported by Bastos et al. [26], simulated boxes of diluted solutions
are not solely described by isolated solvated ions. In fact, higher chain lengths enable the
formation of large-size “micelle-like” aggregates in water and even smaller ILs display a
certain amount of clustering. In fact, with the exception of [CH3CO2]− and [CH3SO3]−, all
other ILs present some degree of nonpolar segregation at wtIL = 30% (XIL = 0.01–0.04).

In Figure 8, the evolution of the structure factor with increasing addition of water
can be observed in higher detail for some ILs with fluorinated anions and their hydro-
genated analogues. The shift of the COP peak to lower q values upon addition of water
in [C2C1im][CF3SO3] and [C2C1im][CH3SO3] (Figure 8a) points to the broadening of the
polar part in both systems. However, this swelling is larger in [C2C1im][CF3SO3] than in
[C2C1im][CH3SO3] and indicates a larger displacement of the fluorinated anion relative to
the imidazolium cation due to the increasing number of interactions with water molecules.
Figure 8b compares the structure factors for [C2C1im][C4F9SO3] and [C2C1im][C4H9SO3].
The PNPP at low-q values is the most conspicuous feature of the [C2C1im][C4F9SO3] sys-
tems and denotes a clear polar–nonpolar segregation in the system with fluorinated alkyl
side chains [49]. Such PNPP is absent in [C2C1im][C4H9SO3] because the threshold for
such segregation is higher in hydrogenated chains (C6 chains) than in the fluorinated ones
(C4 chains) [49]. Moreover, the PNPP already seen in the pure fluorinated IL persists even
at low concentrations of IL. Water swells the polar network of the IL (and eventually leads
to its disruption), but the existence of segregated fluorinated domains persists even at
higher water concentrations [51].
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wtIL = 90% (XIL = 0.23–0.49).

In Figure 9, we show the extent of cation–anion aggregation within the polar net-
works of the ILs for the different concentrations of IL in aqueous solution (water–water
aggregates are depicted in Figures S2–S5 of the Supplementary Materials). In all cases,
there is a progressive disruption of the polar network as more water is present in the
solutions. For the pure ILs and IL-rich solutions (wtIL = 0.9; XIL = 0.23–0.49), all ions are
part of a single continuous network that permeates the entire simulation box: there is
only one aggregate containing all ions of the simulation box (P(na) = 1 for na/n = 1). For
wtIL = 0.5 solutions (XIL = 0.05–0.10), the probability of finding aggregates comprising all
ions, P(na), drops to 32% for [C2C1im][CH3SO3], 62% for [C2C1im][C4H9SO3], and 43%
for [C2C1im][CH3CO2]). For the remaining ionic liquids, the P(na) values are all under
10% and there is a shift towards finding very large aggregates that percolate the entire
simulation box but that do not contain all ions present in the simulation (large na values
with na < n). The most conspicuous case is the [C2C1im][C8F17SO3], where the distribution
represents a definite shift toward larger aggregates that do not comprise all ions (although
full percolation still exists most of the time, a few ion pairs detach from time to time from
the (still) continuous polar network to form small satellite clusters). This is probably due to
the presence of a large hydrophobic fluorinated side chain that pushes more water towards
the polar network and disrupts cation–anion interactions more effectively. Finally, for
wtIL = 0.3 solutions (XIL = 0.01–0.04), the P(na) distributions continue to shift towards large
aggregates that do not encompass all ion pairs with lower na values. A closer look at
the [C2C1im][CnF2n+1SO3] IL family (n = 1, 4 and 8) shows that, at these concentrations,
ILs with longer fluorinated chains exhibit larger polar aggregates. In other words, for
[C2C1im][C8F17SO3] disruption starts sooner than for [C2C1im][C4F9SO3] (cf. wtIL = 0.5
lines in Figure 9c,e, please refer to the discussion in the previous paragraph), but it proceeds
at a slower pace (cf. wtIL = 0.3 lines in Figure 9c,e). Probably there is a rearrangement
of the hydrophobic fluorinated chains to minimize the surface area exposed to water,
resulting in large, fluorinated clusters (as indicated by the large PNPPs) that promote a
partial preservation of their polar network. The comparison between [C2C1im][CF3SO3],
[C2C1im][CH3SO3], [C2C1im][CF3CO2], and [C2C1im][CH3CO2] shows that the distribu-
tions for carboxylate ILs lead to slightly smaller polar network aggregates. This result is
somehow expected since acetate is the stronger H-bond acceptor and forms more H-bonds
than sulfonate [52]. Finally, if one compares systems with fluorinated chains with their
hydrogenated counterparts, one sees a similar trend: the more hydrophobic fluorinated
chains lead to smaller polar network aggregation numbers.
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Figure 9. Discrete probability distribution of the cation–anion polar network for (a) [C2C1im][CF3SO3], (b) [C2C1im][CH3SO3],
(c) [C2C1im][C4F9SO3], (d) [C2C1im][C4H9SO3], (e) [C2C1im][C8F17SO3], (f) [C2C1im][CF3CO2] and (g) [C2C1im][CH3CO2].
Data calculated at 300 K for aqueous solutions with wtIL = 30% (XIL = 0.01–0.04), wtIL = 50% (XIL = 0.05–0.10), and wtIL = 90%
(XIL = 0.23–0.49). The x-axes represent the ratio between the number of ionic species in an aggregate and the total number
of those species in the simulation box. A (na/n) value of 1 means that all ions in the simulation box belong to the same
aggregate. Note that the pure and 90% wtIL are represented by vertical lines at na/n = 1.

Figure 10 shows the nonpolar aggregation size distributions for the same IL systems
(aqueous solutions with wtIL = 0.9, 0.5, and 0.3). When comparing hydrogenated IL
systems with their fluorinated counterparts (Figure 10a,b), it is evident that the nonpolar
aggregates are larger in the fluorinated ILs. Moreover, the aggregate analysis points to
a distribution of aggregates for [C2C1im][C4F9SO3] for wtIL = 0.3 (XIL = 0.02, Figure 10b)
that still does not percolate the simulation box, with the largest aggregate containing 63%
of the total chains. In contrast, the aggregation behavior of [C2C1im][C8F17SO3], with
longer fluoroalkyl chains, indicates that the critical aggregation concentration was already
reached before wtIL = 0.3 (XIL = 0.01, Figure 10c). Here, the formation of a single aggregate
is the result of induced-dipole/induced-dipole dispersion interactions between fluoroalkyl
chains and the hydrophobic effect, rather than percolation through the simulation box.

The average water neighbors around the cation vs. the anion for the [C2C1im]
[CnF2n+1SO3], [C2C1im][CnH2n+1SO3], [C2C1im][CF3CO2], and [C2C1im][CH3CO2] ILs at
wtIL= 0.9 and 0.3 are depicted in Figure 11. In all cases, more water molecules surround the
cation than the charged moiety of the anion. This can be explained by the different size and
degree of charge delocalization of each type of ion. Moreover, there is a strong correlation
between the two quantities, implying that water molecules move into positions adjacent
to the polar network and can interact with both ions. At higher water concentrations, the
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number of water molecules per ion is obviously higher. The data shows that carboxylate
anions are more solvated than their sulphonate counterparts (cf. [C2C1im][CF3SO3] versus
[C2C1im][CF3CO2] and [C2C1im][CH3SO3] versus [C2C1im][CH3CO2] in both Figure 11a,b).
This is due to the more hydrophilic character of the carboxylate moiety [53]: the oxygen
atoms of carboxylate are modeled using partial charges of −0.80 a.c.u., whereas those of
sulfonate are modeled using partial charges of −0.63 a.c.u.
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Figure 10. Discrete probability distribution of nonpolar aggregates for (a) [C2C1im][C4H9SO3], (b) [C2C1im][C4F9SO3], and
(c) [C2C1im][C8F17SO3]. Data for aqueous solutions with wtIL = 30 % (XIL = 0.01–0.04), wtIL = 50 % (XIL = 0.05–0.10), and
wtIL = 90 % (XIL = 0.23–0.49).
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Figure 11. Average number of water neighbors around the cation vs. the anion for the [C2C1im][CnF2n+1SO3], [C2C1im]
[CnH2n+1SO3], [C2C1im][CF3CO2], and [C2C1im][CH3CO2] at (a) wtIL = 90 (XIL = 0.23–0.49) and (b) wtIL = 30% (XIL = 0.01–0.04).

The length and nature (hydrogenated versus fluorinated) of the alkyl side chains play
a similar role in the water solvation process: at modest water concentrations (wtIL = 0.9;
XIL = 0.23–0.49), the existence of longer and more fluorinated chains leads to more inter-
actions between water molecules and the polar network (as we have discussed before,
[C2C1im][C8F17SO3] is the first to lose the integrity and continuity of its polar network
and start the formation of large polar network clusters); at higher water concentrations
(wtIL= 0.3; XIL = 0.01–0.04), the existence of nonpolar aggregates (more pronounced in
longer and fluorinated chains) leads to relatively low numbers of water–ion interactions
(disruption in [C2C1im][C8F17SO3] starts earlier but proceeds at a slower pace).

The spatial distribution functions, SDFs, for selected atoms around the [C2C1im]+

cation for IL aqueous solutions with wtIL = 0.9 and 0.3 in the [C2C1im][CnF2n+1SO3],
[C2C1im][CnH2n+1SO3], [C2C1im][CF3CO2], and [C2C1im][CH3CO2] systems are presented
in Figure 12. Results for wtIL = 0.5 (XIL = 0.05–0.10) are presented in Figures S6–S9 of the
Supplementary Materials. The patterns of interaction of the sulfonate ions and water
molecules around the imidazolium cations are strikingly similar for each concentration. It
must be stressed that the isodensity surface plots do not show how high the density is inside
each contour; they only provide a spatial overview of the locations of the most probable
interactions. At wtIL = 0.9 (XIL = 0.23–0.49), both the fluorinated and hydrogenated R-SO3

−
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anions are in clear competition with water molecules for the acidic hydrogens at the C2
and C4 positions of [C2C1im]+. The anions are gradually displaced from these preferred
coordination sites as the amount of water increases, in line with the observed shifts of
the COPs to lower q values in the S(q) functions. At wtIL = 0.3 (XIL = 0.01–0.04), the SDFs
show that water molecules can occupy a ring region around the methyl group of the cation,
spanning both acidic hydrogens at C2 and C4. Interestingly, there is less competition for the
C5 H atom, probably due to partial steric hindrance caused by the ethyl chain of the cation.
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Regarding the carbonate-based anions, the SDFs show some differences in spatial
organization around the cations relative to the sulfonate-based ions, namely at different
compositions. Similar to their sulfonate-based counterparts, fluorinated and hydrogenated
R-CO2

− anions are also in competition with water for the hydrogen atoms at the C2 and
C4 positions of the cation; however, the anion–cation SDFs change dramatically upon
addition of water. At wtIL = 0.9 (XIL = 0.49), the C-C axis of the [CF3CO2]− ion is parallelly
oriented with the plane of the imidazolium ring and the cations are intercalated by the
CF3 group of anions. With the increase in water concentration to wtIL = 0.3 (XIL = 0.03),
the [CF3CO2]− ions are displaced from the vicinity of the acidic hydrogens and adopt
a perpendicular position with respect to the plane of the imidazolium cation, with the
CF3 group pointing towards the ring. These findings are corroborated by the depiction of
additional cation–anion SDFs corresponding to distribution functions between the cation
center-of-charge and the carbon and fluorine atoms of the anion (grey and green contours
in Figure 12, respectively). On the other hand, water molecules form strong H-bonds with
the [CH3CO2]− ion, displacing it not only from the vicinity of the acidic hydrogens of
the cation but also from the cation’s coordination sphere. At wtIL = 0.3 (XIL = 0.04), SDFs
indicate that the [CH3CO2]− ion is involved in their own solvation sphere (as pointed out
by average water neighbors in Figure 11b) and can be found anywhere around the polar
moiety of the cation. The CH2 group in the alkyl chain is not affected by the addition of
water, in agreement with previous NMR results [54].

The SDFs for the H atom at C2 of the cation and the oxygen atom of water around dif-
ferent anions for IL aqueous solutions with wtIL = 0.9 and 0.3 in the [C2C1im][CnF2n+1SO3],
[C2C1im][CnH2n+1SO3], [C2C1im][CF3CO2], and [C2C1im][CH3CO2] systems are presented
in Figure 13. Results for wtIL = 0.5 (XIL = 0.05–0.10) are presented in Figures S10–S13 in
Supplementary Materials. It is very clear that water molecules and the most acidic proton of
the [C2C1im]+ ion compete heavily for the regions around the oxygen atoms of the anions.
The three-fold and two-fold symmetries of the sulfonate and carboxylate headgroups are
also quite well captured in the SDFs. Obviously, the increase in water content produces
SDFs with water present in larger areas around the anions. However, the SDFs also show
that the cations are never fully displaced, corroborating the persistence of the COPs in the
simulated S(q) functions. For the carboxylate anions, the behavior is also similar when
the water content is low. However, for wtIL = 0.3 (XIL = 0.04), the [CH3CO2]− ion is fully
surrounded by water, whereas the [CF3CO2]− ion is oriented with its CF3 group pointing
to the cation and its carboxylate moiety being surrounded by water.

2.3. Aqueous Solutions of [N1 2OH 2OH 2OH][NTf2]

The last system to be considered is an ionic liquid that combines a cation that can
interact strongly with water, [N1 2OH 2OH 2OH]+, with a hydrophobic anion, [NTf2]–. In this
case, the ionic liquid is completely miscible with water, and we have conducted simulations
at concentrations ranging from the pure IL to pure water.
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Figure 13. Selected spatial distribution functions around the [CnF2n+1SO3]−, [CnH2n+1SO3]−,
[CF3CO2]−, and [CH3CO2]− anions in aqueous mixtures of [C2C1im][CnF2n+1SO3],
[C2C1im][CnH2n+1SO3], [C2C1im][CF3CO2], and [C2C1im][CH3CO2] at 300 K. The blue color
represents H atom of cations attached to the carbon between nitrogen atoms of the imidazolium ring
and light blue depicts water O atom. The isosurface value is 70% of the maximum number density.
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Figure 14 shows calculated structure factor functions of aqueous solutions of [N1 2OH

2OH 2OH][NTf2] and Figure 15 depicts selected SDFs around the nitrogen atom of the cation.
At XIL = 0.70, the SDFs show that the anions are distributed around the cation, and the
structure factor function indicates a small increase in characteristic distances within the
polar network (the COP q value decreases) in comparison to the pure IL. Moreover, an
incipient preferential orientation of the fluorine atoms of the anion towards the cation
methyl group can be noticed. At this concentration, an analysis of the size of water aggre-
gates (Figure S14 in Supplementary Materials) indicated that water molecules are present
in solution mostly as monomers (60%) or dimers (27%). The characteristic nanostructure
organization of [N1 2OH 2OH 2OH][NTf2], with cations and anions forming a continuous
network of charge-alternating ions, are not disrupted by the presence of water molecules
until XIL = 0.03 [28] (the COP is still obvious at that concentration, Figure 14).

Ludwig et al. [55,56] have extensively reported on the cooperative behavior of hydrogen
bonding in ionic liquids. The conventional rules of charge attraction/repulsion are not
completely observed in ILs, leading to the formation of H-bonded cationic clusters that
are governed by the charge delocalization of the cation. As the mole fraction of water
increases, the original cation OH-OH hydrogen bond network is replaced by water–cation
H-bond interactions [28,30]. The [NTf2]− anions are gradually displaced to the vicinity of
the CH3 group of the cation, but they remain in electrostatic close contact since the charge in
cholinium cations is mainly localized on the N atom and its four adjoining CH3/CH2 groups.
This rearrangement of the anions around the cations also supports the small decrease in q
values of the COPs in the calculated structure factor functions presented in Figure 14.

The SDFs between the nitrogen atom of the anion and selected atoms of the cation
and the oxygen atom of water are presented in Figure 16. The cations are distributed above
and below the S-N-S plane of the anion. Other anions interact via their –CF3 groups along
the plane. The simulation results also indicate that the water molecules interact with the
anion mainly through the oxygen atoms of the sulfonate groups that are in axial positions
relative to the S-N-S plane (for both possible conformers of the anion). As XIL decreases,
the cations are gradually displaced to the vicinity equatorial region of the S-N-S plane [28].
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The average number of contact water molecules for the [N1 2OH 2OH 2OH] and [NTf2]
ions is shown in Figure 17. As expected, the values are slightly larger for the cation. This
result, combined with the subtle changes in SDFs and structure factors, indicate that the
hydrophobic nature of the anion combined with the electrostatic interactions with the
cation are strong enough to keep both ions within the same solvation cage.
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3. Computational Details

Molecular dynamics (MD) simulations of the pure ionic liquids and their aqueous
mixtures were carried out using the DLPOLY and GROMACS packages [57–62]. Initial
configurations were built with Packmol software [63]. Water molecules and all Ils were mod-
elled using, respectively, the SPC model [64] and the previously described CL&P all atom
force field [11,12], which is based on the OPLS-AA framework [65] and has been thoroughly
developed specifically to encompass several IL families. The MD simulations for each ionic
liquid and respective aqueous mixtures started from low-density initial configurations.

The number of ion pairs and box length for all Ils and their aqueous mixtures are
presented in Table 1, as well as the weight and mole fractions of the Ils. The IL volume
fraction closely follows the mass fraction; therefore, we opted to not add this data. It is
important to stress that all the IL–water compositions selected for this study are homoge-
neous mixtures at 300 or 320 K. The boxes were equilibrated under isothermal–isobaric
ensemble conditions for 1 ns at 300 or 320 K and 1 atm using the Nosé–Hoover thermostat
and isotropic barostat with time constants of 0.5 and 2 ps, respectively. Simulation runs
of at least 4 ns were used to produce equilibrated systems at the studied temperature.
Electrostatic interactions were treated using the Ewald summation method considering six
reciprocal-space vectors, and repulsive–dispersive interactions were explicitly calculated
below a cut-off distance of 1.6 nm (long-range corrections were applied assuming the
system has a uniform density beyond that cut-off radius). Further information can be
found elsewhere [66].

4. Conclusions

In Figure 18, representative examples of the most significative aggregates found in some
of the studied systems are shown. In systems with imidazolium cations and small fluori-
nated anions, such as [C3C1im][NTf2], [C4C1im][NTf2], [iC4C1im][NTf2], [C2C1im][CF3SO3],
and [C2C1im][CF3CO2], the F-π interactions between the anion and the imidazolium ring
hold both cation and anion within the same solvation sphere. The most unusual behavior
was observed for the strong hydrogen-bond acceptor [CF3CO2]− anion: at high water
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concentration, the anion is displaced from the vicinity of the acidic hydrogens and adopts a
perpendicular position with respect to the plane of the imidazolium cation, with the CF3
group pointing towards the ring. Moreover, the aggregate distributions between water and
polar moieties in these systems with low water content indicated that water molecules inter-
act strongly with the cations. With respect to the formation of nonpolar aggregates, the most
interesting behavior was observed for the perfluoroalkyl chains of the [C2C1im][C8F17SO3]
ionic liquid, which forms a single aggregate at XIL = 0.01.
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The hydrophilicity of the [N1 2OH 2OH 2OH]+ can promote the solubilization of highly
hydrophobic anions such as [NTf2]− in all proportions with water. The strong cation–anion
coulombic attraction combined with the hydrophobic effect of the anion holds the two ions
within the same solvation shell. Moreover, water can intermediate the cluster formation by
bridging two or three cations or connecting two cations where two OH groups of the same
cation contribute to the cluster formation.

The water–water aggregates shown in Figures S1–S5 and S14 (Supplementary Material)
portray an interesting trend. In the IL-rich mixtures, i.e., at low water concentrations
(XIL > 0.5), the water molecules are dispersed as monomers or forming small, chainlike
aggregates H-bonded to the polar moieties of the ionic liquids. As the water amount
increases, the monomeric water and its small aggregates coalesce into a continuous phase.
On the other hand, the nature of the ionic liquid subphase (or pseudophase) will be dictated
by its hydrogen bonding ability. The coulombic network of hydrophilic ILs with strong
coordinating anions such as Cl− or [CH3CO2]− can be disrupted by water [48], while
hydrophobic ILs develop biphasic systems.

Unfortunately, synthetic chemists depend greatly on organic solvents because many
substances involved in chemical reactions are insoluble in water. Therefore, agents that
act as solubilizers are needed to achieve a successful transfer of such chemical reactions to
aqueous media. One can envisage the application of these functionalized ILs as additives
that increase the solubility of reactants in water, capable of forming aggregates with
different hydrophobic domains, in a similar mechanism performed by micelles [67–69].

Supplementary Materials: The following are available online, Figures S1–S5 and S14: Discrete
distribution of aggregate sizes of aqueous solutions of studied systems, Figures S6–S13: Selected
spatial distribution functions.
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