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Abstract

A most important property of biochemical systems is robustness. Static robustness, e.g.,

homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robust-

ness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the exten-

sively studied static robustness, dynamics robustness, i.e., how a system creates an

invariant temporal profile against perturbations, is little explored despite transient dynamics

being crucial for cellular fates and are reported to be robust experimentally. For example,

the duration of a stimulus elicits different phenotypic responses, and signaling networks pro-

cess and encode temporal information. Hence, robustness in time courses will be necessary

for functional biochemical networks. Based on dynamical systems theory, we uncovered a

general mechanism to achieve dynamics robustness. Using a three-stage linear signaling

cascade as an example, we found that the temporal profiles and response duration post-

stimulus is robust to perturbations against certain parameters. Then analyzing the linearized

model, we elucidated the criteria of when signaling cascades will display dynamics robust-

ness. We found that changes in the upstream modules are masked in the cascade, and that

the response duration is mainly controlled by the rate-limiting module and organization of

the cascade’s kinetics. Specifically, we found two necessary conditions for dynamics robust-

ness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase

activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions:

The kinase activity needs to be fast enough such that each module is saturated even with

fast phosphatase activity and upstream changes are attenuated. We discussed the rele-

vance of such robustness to several biological examples and the validity of the above condi-

tions therein. Given the applicability of dynamics robustness to a variety of systems, it will

provide a general basis for how biological systems function dynamically.

Author summary

Cells use signaling pathways to transmit information received on its membrane to DNA,

and many important cellular processes are tied to signaling networks. Past experiments

have shown that cells’ internal signaling networks are sophisticated enough to process and

encode temporal information such as the length of time a ligand is bound to a receptor.

However, little research has been done to verify whether information encoded onto tem-

poral profiles can be made robust. We examined mathematical models of linear signaling
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networks and found that the relaxation of the response to a transient stimuli can be made

robust to certain parameter fluctuations. Robustness is a key concept in biological

systems—it would be disastrous if a cell could not operate if there was a slight change in

its environment or physiology. Our research shows that such dynamics robustness is a

property of linear signaling cascades, and we outline the design principles needed to gen-

erate such robustness. We discovered that two conditions regarding the speed of the inter-

nal chemical reactions and concentration levels are needed to generate dynamics

robustness.

Introduction

Robustness is one of the most important concepts in biological systems. In general, it is the

ability of an organism to maintain a state or behavior against external or internal perturba-

tions, and many frameworks of robustness have emerged [1–7]. Homeostasis, for example, is

the ability of an organism or a cell to maintain a certain state, such as its body temperature or

calcium content, against external environmental changes. In fact, numerous mechanisms have

been uncovered that are adopted to regulate its internal environment against external pertur-

bations. In developmental biology, differentiated cellular states are known to be robust to dis-

turbances, as was pioneered in the study by Waddington, who described the cell

differentiation process as a ball rolling down an epigenetic landscape to settle into a stable val-

ley [8]. This is a metaphorical representation of robustness often used, while in terms of

dynamical systems theory, one mathematical formulation for static robustness can be

described as an orbit being pulled into a stable attractor. The robustness discussed therein is

concerned about the stationary state, and thus is regarded as static robustness.
In biology, however, both the static cellular states and dynamic processes are important to

make certain responses against external changes robust and to ensure proper development.

Waddington coined the term homeorhesis for such dynamics robustness for a transient time

course [9]. Indeed, in the developmental process, temporal ordering of cell differentiations

and their timing are robust. Besides the developmental process, cellular responses against

external stimuli are often robust to perturbations since these time courses are often relevant to

cellular function. Despite the importance, such dynamics robustness, i.e., robustness in the tem-

poral course, is little understood as compared with extensive studies on static robustness. Here

we study dynamics robustness, the insensitivity of transients to initial conditions or parame-

ters. We adopt the term dynamics robustness as opposed to dynamic or dynamical robustness

since those terms have been defined elsewhere in a different context. For example in [10],

dynamic robustness refers to the insensitivity of a steady-state against changes in protein con-

centrations to distinguish from the robustness of a steady-state against gene deletions. We

stress that our focus is on the robustness of the dynamics themselves against parameter

perturbations.

As a specific example for such robustness, we focus on signaling pathways of covalent mod-

ification cycles. Indeed, robustness therein has been extensively investigated as given by a

recent review by Blüthgen and Legewie [11]. Although their review is focused on static robust-

ness in signal transduction pathways, they also note that ideas of robustness with regards to

generating an invariant temporal profile (dynamics robustness) has to be developed. In fact,

there are several experiments suggesting robustness in the transient properties of certain bio-

chemical networks: Different transient profiles of input stimuli can elicit different phenotypic

responses. For example, it was shown that the duration of activation could lead to two different
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responses in PC12 cells; transient activation leads to proliferation, and sustained activation

leads to differentiation. In a similar manner, the duration that a MAPK cascade is stimulated

can lead to different responses in yeast. Moreover, temporal profiles of the p53 pathway, which

is inactivated in almost all human cancer cells, are also reported to be drastically altered by the

types of stresses administered to the cells and cause different responses depending on the

dynamic profiles. Indeed, there are numerous other examples about the importance of tran-

sient dynamics in SSH signaling [12], NF-κB [13], and metabolism [14]. All of these experi-

mental reports suggest the need for studies on dynamics robustness. Beyond such

experimental results, research in the last decade has shown that signaling cascades can theoret-

ically encode information into their dynamic profiles and process such information as well.

For these dynamical processes to function, the time courses need to achieve a certain level of

robustness.

We investigated a class of signaling cascade systems and examined duration robustness as a

quantitative manifestation of dynamics robustness, wherein the duration of a response upon

inputs is robust against perturbations. In a general class of cascading systems, we showed that

duration robustness is an intrinsic property: Downstream modules are shielded from pertur-

bations in the enzymatic activity in the upstream layers. Here, the organization of the fast and

slow kinetics resulting in a rate-limiting module is primarily responsible for such robustness.

In a linear signaling system, by having fast kinase activity, the output time courses were shown

to be robust to perturbations in the phosphatase activity. We uncovered two necessary condi-

tions for dynamics robustness and demonstrated that it can be observed in general linear sig-

naling systems via protein modifications. Furthermore, we verified that dynamics robustness

is a property of the well-known model of a MAPK network described by Huang and Ferrell

[15].

Results

Our results are organized as follows: We study a simple model of a basic linear signaling cas-

cade and see how perturbing the parameters in the model affect the relaxation time courses.

We first focus on perturbing the phosphatase parameters because it has been reported that

phosphatase activity controls the duration more than the kinase activity [16, 17]. We then

show how perturbing the kinase activities affect the results. Next, we analyze the linearized and

normalized model of the aforementioned basic linear cascade to determine what underlying

features of the cascade architecture causes dynamics robustness. From this analysis, we derive

the conditions under which dynamics robustness is expected. Finally, we examine a more

complicated mass-action model of a MAPK cascade to verify whether the results observed in

the simple model are indeed features of a more biologically inspired model. Diagrams of the

models we examined are given in Fig 1.

We measure dynamics robustness using the Euclidean distance between a temporal profile

and the profile after a parameter perturbation. We will describe this measure in more detail

later. As a simpler, more analytically tractable measure for robustness, we also looked at

whether the duration of the response is robust. We note that dynamics robustness implies

duration robustness, but the converse is not necessarily true. As in [16], we define the duration

of the response to be its half-life, which we label as ϑ. We consider the duration to be robust

against a parameter perturbation if the logarithmic gain (see Methods Section) is small. A lin-

ear logarithmic gain (as expected with a relaxation of the form exp(−βt)) would have a magni-

tude of 1, and so we define the threshold of robustness to be 0.3. This choice is somewhat

arbitrary, but our results do not change if a reasonable threshold is selected.

Dynamics robustness of cascading systems
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Dynamics robustness in the Heinrich model

We first examined the Heinrich model of a general, linear signaling cascade (a detailed

description can be found in the Methods Section). The basic idea is that a stimulus, the con-

centration of E0, activates a kinase, i.e., converts M0 to Mp
0 , which goes on to activate a kinase

downstream. This process occurs in three steps, and the concentration of the final activated

kinase, Mp
2 , is considered the output response.

When time t< 0, a constant input Einit
0

is applied to the system until Mp
i at each layer

reaches the steady-state concentration, which we define as ~Mi . At time t = 0, E0 is set equal to

zero and the system begins to relax into a deactivated state. We individually perturbed the total

phosphatase activity at each layer and computed the new temporal profile to see if it remains

robust. The parameters were chosen to reflect the same organization as the biologically rele-

vant MAPK cascade parameters reported in [15] (see Supporting Information); the kinase

activities are relatively fast, and the phosphatase rate constants are organized relatively as fast-

slow-fast in the three stage setup. The specific β values from this parameter set correspond to

the black circles in Fig 2(C), 2(G) and 2(K). For clarity, the Heinrich model parameter defini-

tions are given in Table 1.

In this paper, we focus our discussion on the relaxation process of strongly activated cas-

cades because the dynamics of a weakly activated signaling cascade are fundamentally differ-

ent, and do not involve a significant relaxation time course. To clearly describe the criterion of

activation, we introduce the initial steady-state value gi ¼
~Mi=Mtot

i , which is the ratio of the

phosphorylated substrate to the total substrate in ith module for a given Einit
0

. As we are inter-

ested in the response dynamics of the cascade, the initial activation g2 should be sufficiently

Fig 1. Diagrams of the Heinrich and Huang-Ferrell Model. A linear signaling cascade is a biochemical

network where the product of one reaction acts as an enzyme for a reaction downstream. (A) The Heinrich

model captures the basic essence of such an architecture. For time t < 0, the receptor, E0 receives a stimulus

with strength Einit
0

. E0 then converts M0 toMp
0 .Mp

0 then converts M1 toMp
1 , andMp

1 converts M2 toMp
2 . The

concentration ofMp
2 is considered the output response. After the system reaches a steady-state, at time t = 0,

the stimulus is immediately removed, and the system then settles into a deactivated state. (B) The Huang-

Ferrell is a more complicated model that explicitly includes the phosphatase at each layer and assumes mass-

action kinetics. The second and third layer also assume double-phosphorylation events are needed for

activation.

https://doi.org/10.1371/journal.pcbi.1005434.g001

Dynamics robustness of cascading systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005434 March 13, 2017 4 / 17

https://doi.org/10.1371/journal.pcbi.1005434.g001
https://doi.org/10.1371/journal.pcbi.1005434


Fig 2. Results for the Heinrich Model. (A, E, I) The temporal profiles of the response relaxation for different values of β0, β1, and β2. In (A), we set β1 and

β2 equal to their base values from Table B in S1 Appendix. We then integrated the Heinrich model for the β0 values taken from the set fb
0

0
; b

1

0
; . . . ; b

37

0
; b

38

0
g

¼ f104:0; 103:8; . . . ; 10� 3:4; 10� 3:6g. (B, F, J) The consecutive similarity in the temporal profiles for β0, β1, and β2. We consider the system to display dynamics

robustness against a parameter if this measure is less than 0.3. The gray portion of the lines in (B, F, J) indicate that the system is in a deactivated state (i.e.,

g2 < 0.5) for those values of βi. (C, G, K) The half-life of the response as a function of β0, β1, and β2. The magenta triangle indicates when the βi value

becomes the minimum β value. The black dot represents the base βi value from Table B in S1 Appendix. The grayed out region indicates that the system is in

a deactivated state for those values of βi. The region between the dashed vertical lines indicate that the magnitude logarithmic gain of the duration against βi

is less than 0.3. The dashed green line is g2 as a function of βi. (D, H, L) The logarithmic gain of the duration against β0, β1, and β2.

https://doi.org/10.1371/journal.pcbi.1005434.g002

Table 1. Parameters in the Heinrich model.

Einit
0

Initial input strength at time t < 0

Mi Unphosphorylated substrate in the ith module

Mp
i Phosphorylated substrate in the ith module

Mtot
i Total substrate in the ith module (Mi þM

p
i )

~Mi
Steady-state value ofMp

i under E0 ¼ E
init
0

αi Effective kinase activity in the ith module

βi Effective phosphatase activity in the ith module

gi Initial phosphorylation level of ith module ( ~Mi=M
tot
i )

W Half-life of response

https://doi.org/10.1371/journal.pcbi.1005434.t001
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high. Henceforth, we use the criterion that the cascade is activated if g2 > 0.5 (although the

value 0.5 itself is not essential).

The results for the Heinrich model are plotted in Fig 2. There is an interesting parameter

region where the temporal profiles are close together despite β0 decreasing from 102 to 10−2

(Fig 2(A)). There is a similar parameter region for β2 (Fig 2(I)). In a certain range of β0 and β2,

the temporal profiles do not change based on the phosphatase activity. However, there is no

such parameter region in which the temporal profiles are not changed when β1 is perturbed

(Fig 2(E)). To measure how close the time-course profiles are when changing β0, we used the

L2 norm between consecutive temporal profiles from Fig 2(A). In other words, we computed

1

log
10
ðb

i
0
Þ � log

10
ðb

iþ1

0
Þ
kMp

2ðt; b
i
0
Þ � Mp

2ðt; b
iþ1

0
Þk2

¼
1

log
10
ðb

i
0
Þ � log

10
ðb

iþ1

0
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zb

a

jMp
2ðt; b

i
0
Þ � Mp

2ðt; b
iþ1

0
Þj

2dt

v
u
u
u
u
t ;

where τ = log10(t) and the integral is approximated over the interval [−2, 4 + log10(6)]. If this

measure is less than 0.3, then we consider the temporal profiles to be robust against perturba-

tions. We stress again that 0.3 was chosen arbitrarily, but any reasonable threshold will work.

We performed a similar analysis for β1 and β2 in Fig 2(F) and 2(J). The temporal profiles of the

output, Mp
2 , show dynamics robustness against changes in the phosphatase activity in the first

and third layers, i.e., the time course profiles are robust to perturbations in β0 and β2. (Here we

used the scaled L2 norm of perturbed temporal profiles as measures of robustness, but other

measures may also be feasible. For example, the Kullback-Leibler [18] or other information

oriented measures may be adopted.)

We plotted the half-life duration, ϑ, as a function of βi on a log-log scale in Fig 2(C), 2(G)

and 2(K). We color the inactivated region in gray in Fig 2(C), 2(G) and 2(K) and focus on the

dynamics in the region of strong activation. The regions between the dashed vertical lines in

Fig 2(C) and 2(K)) represent where the magnitude of the logarithmic gain is less than 0.3,

which is distinctly smaller than 1. These flatter slopes indicate that the duration is robust

against changes in β0 and β2. For clarity, we plotted the logarithmic gain in Fig 2(D), 2(H) and

2(L).

In Fig 2(C) and 2(K), the black circle, which represents the βi value from Table B in S1

Appendix and the corresponding ϑ value, is in the region of duration robustness, which means

that with this parameter set reflecting actual kinetics in signaling cascades, the duration is

robust to perturbations in the phosphatase activity in the first and last layer of the cascade (β0

and β2 respectively). However, the second module is sensitive to perturbations in the phospha-

tase activity.

In all three cases, there are common features in the plots of the duration. As mentioned ear-

lier, if the phosphatase activity in any layer is too high, then the system is in an inactivated

state, which is colored in gray in Fig 2(C), 2(G) and 2(K). On the other hand, if the phospha-

tase activity in the ith layer is too low, then the logarithmic gain of the duration against βi is

roughly −1, i.e., the duration of the response is strongly dependent on the rate-limiting module

in the cascade. In Fig 2(C), 2(G) and 2(K) we plotted a magenta triangle at the value where βi

becomes less than all other β values, and the logarithmic gain indeed becomes −1 near this

point. However, the upper bound for the phosphatase concentration that exhibits duration

robustness cannot be described by the rate-limiting effect only.

Dynamics robustness of cascading systems
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Effects of the kinase activity on duration robustness

Although linear signaling cascades can show duration robustness against perturbations in the

phosphatase concentrations, it is still unclear what effects the kinase activity has. Therefore, we

computed the duration versus phosphatase activity (ϑ vs. βi) for different values of αi (Fig 3).

Increasing α0 expands the interval of duration robustness for β0, since the upper limit is

increased while the lower limit remains fixed (Fig 3A). This increase of α0, however, does not

expand the duration for varied β1 (Fig 3B). On the other hand, increasing α1 expands the inter-

val of duration robustness both for β0 and for β1: the slope of ϑ against β1 is flatter, resulting in

the appearance of the region for duration robustness for β1.

Here, the upper limit of duration robustness is roughly given by the largest value of βi,

which we call b
max
i , at which the system is activated. The b

max
i values are marked in Fig 3(A), 3

(B), 3(D) and 3(E). By using the criterion of g2, b
max
i is given by the maximal value of βi that sat-

isfies g2(βi)> 0.5. b
max
i is then used as an indicator for the upper limit of the interval of dura-

tion robustness. To derive an expression for b
max
i , we see that gi, the initial steady-state

phosphorylation level at each stage, can be written as a sequence of iterations:

g0 ¼
1

1þ
b0

a0

;

g1 ¼
1

1þ
b1

a1g0

¼
1

1þ
b1

a1

1þ
b0

a0

� � ;

g2 ¼
1

1þ
b2

a2g1

¼
1

1þ
b2

a2

1þ
b1

a1

1þ
b0

a0

� �� � :

ð1Þ

Fig 3. Effects of the Kinase Activity on Duration Robustness in the Heinrich Model. (A, B) Duration, W,

as a function of β0 and β1 with varied α0. Different lines indicate W for different α0 values as given by the inset

box in (B). Circles and diamonds represent b
max
0

and b
max
1

, respectively. (C) b
max
i as a function of α0. A solid line

and a dashed line are b
max
0

and b
max
1

, respectively. The circles and the diamonds correspond to these symbols

in (A) and (B). (D, E) Duration, W, as a function of β0 and β1 with varied α1. (F) b
max
i as a function of α1. Same

colors, lines and symbols are adopted as (A, B, C).

https://doi.org/10.1371/journal.pcbi.1005434.g003
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If changes in the kinase activity cause changes in b
max
i , then the region of duration robustness

will change as seen in Fig 3. The iterative nature of Eq 1 demonstrates how upstream parame-

ter changes are shielded. It clearly shows that increasing αk will proportionally increase b
max
i

only for i� k. For i> k, increasing αk has a negligible effect on b
max
i , and hence, has a negligible

effect on the interval of duration robustness for βi. This is somewhat counterintuitive because

one usually considers alterations propagating downstream in a linear signaling cascade,

whereas alterations in the kinase activity affects the range of duration robustness only in

upstream modules. This is because the constraint for initial conditions back-propagates. In

general, having fast kinase activity in the downstream modules is ideal if one wishes to gener-

ate a region of duration robustness against the upstream phosphatase activities.

Duration robustness in a linearized model

To better understand how duration robustness is generated and the criteria needed, we ana-

lyzed the linearization of the Heinrich model about the origin, the only equilibrium point once

the stimulus is removed. Duration robustness is also a property of the linear model as can be

seen in Fig 4. The global linearization of the Heinrich model is a significant departure, and the

time-course profiles in Fig 4(A), 4(E) and 4(I) for the linear case are drastically different from

the ones for the nonlinear Heinrich model in Fig 2(A), 2(E) and 2(I). In particular, the con-

served quantities in the nonlinear model are no longer conserved in the linear model. How-

ever, the plots of the duration against the phosphatase activity in Fig 4 are remarkably similar

to those in Fig 2. This strongly suggests that the nonlinear kinetics are not important for dura-

tion robustness, although we will show that the nonlinearity of g2 as a function of βi does play a

crucial role.

If β0 6¼ β1 6¼ β2, the normalized solution (mp
i ¼ Mp

i = ~Mi) is just a linear combination of expo-

nentials:

mp
2ðtÞ ¼ c0ðbi; aiÞe

� b0t þ c1ðbi; aiÞe
� b1t þ c2ðbi; aiÞe

� b2t:

The duration (the time ϑ such that mp
2ðWÞ ¼ 0:5) can be approximated by:

W �

1

b0

log ð2c0ðbi; aiÞÞ if b0 < b1; b2;

1

b1

log ð2c1ðbi; aiÞÞ if b1 < b0; b2;

1

b2

log ð2c2ðbi; aiÞÞ if b2 < b0; b1:

ð2Þ

8
>>>>>>><

>>>>>>>:

The pertinent question is how ϑ is made robust to changes in βi. If βi is the minimum β value,

then the duration according to Eq 2 is roughly inversely proportional to βi, which means that

the logarithmic gain is going to be around −1. In fact, in the limit as βi goes to 0, the logarith-

mic gain converges to −1. In this case, accordingly, there is no duration robustness. Hence, to

have duration robustness against βi, the first constraint is

minfbjg < bi; ð3Þ

which we refer to as the constraint on the rate-limiting process.
The lower limit of the βi interval for duration robustness is determined by this rate-limiting

condition; however, this condition is not sufficient to determine the upper limit of the interval

of βi. As already discussed, the initial phosphorylation level g2 at the output layer has to be suf-

ficiently activated, and as shown in Fig 4, the upper limit is strongly related to this initial

Dynamics robustness of cascading systems
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phosphorylation level g2. Indeed, we can use Eq 2 to understand this behavior analytically.

Suppose that βk is the minimum β value and that i 6¼ k. Then the logarithmic gain is given by:

@ log ðWÞ
@ log ðbiÞ

¼
1

log ð2Þ þ log ðckÞ

@ log ðckÞ

@ log ðbiÞ
: ð4Þ

Therefore, if the logarithmic gain of ck with respect to βi is small, then the cascade will display

duration robustness. As shown in the Supporting Information,
@ log ðckÞ

@ log ðbiÞ
is strongly dependent

on �
@ log ðg2Þ

@ log ðbiÞ
.

If g2 has a sigmoidal nature as seen by the dashed green lines in Fig 4(C), 4(G) and 4(K),

then it has two regions where it is relatively constant with respect to βi and a transition state

between the two relatively constant regions. If this transition occurs before the module

becomes rate limiting, then duration robustness will exist because g2 will have a weak depen-

dence on βi. As mentioned previously in relationship with Eq 1, changes in upstream kinase

activity have a negligible effect on g2, i.e., upstream parameter changes are shielded. Hence, to

increase the transition point and expand the region of duration robustness in the ith module, it

Fig 4. Results for the Linearized Heinrich Model. (A, E, I) The temporal profiles of the response relaxation for different values of β0,

β1, and β2. The same parameters for Fig 2 are used here. (B, F, J) The consecutive similarity in the temporal profiles for β0, β1, and β2. At

no point does the system display dynamics robustness. The gray portion of the lines in (B, F, J) indicate that the system is in a

deactivated state (i.e., g2 < 0.5) for those values of βi. (C, G, K) The half-life of the response as a function of β0, β1, and β2. The magenta

triangle indicates when the βi value becomes the minimum β value. The black dot represents the base βi value from Table B in S1

Appendix. The grayed out region indicates that the system is in a deactivated state for those values of βi. The region between the dashed

vertical lines indicate that the magnitude logarithmic gain of the duration against βi is less than 0.3. The dashed green line is g2 as a

function of βi. (D, H, L) The logarithmic gain of the duration against β0, β1, and β2.

https://doi.org/10.1371/journal.pcbi.1005434.g004
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is necessary that there exists some j� i such that bj � aj. In other words, it is necessary that in

a module downstream, the kinase activity relative to the phosphatase activity needs to be very

fast. We refer to this constraint regarding g2 as the constraint on initial conditions.
The arguments based on Eqs 1 and 2 can be extended to an N-stage cascade, and the condi-

tions needed to generate duration robustness in the ith module can be summarized as

minfbjg < bi;

bN

aN
1þ

bN� 1

aN� 1

� � � 1þ
b0

a0

� �� �� �

< 1;

9k � i such that bk � ak;

ð5Þ

where the first condition represents the constraint on the rate-limiting process, and the latter

two conditions give the constraint on the initial conditions.

The arguments made for the linearization can also be extended to general linear signaling

cascades. The rate-limiting condition can easily be understood using slow manifold theory.

The eigenmodes of a linear signaling cascade are proportional to the phosphatase activity.

Likewise, the phosphorylation levels at each stage do display a switch-like nature. Because the

kinase activity controls the phosphorylation levels, both constraints, i.e., the rate-limiting con-

dition and the constraint on the initial conditions, will also be necessary in any model of a lin-

ear signaling cascade.

While both the original and linearized Heinrich models display duration robustness, the

original Heinrich model displays a stronger type of dynamics robustness in the sense that the

time-course profiles themselves are robust to changes in βi under certain conditions (see Fig 2

(A), 2(E) and 2(I)). This is mainly because in the linear model, the response is unsaturated and

can vary, whereas the response in the nonlinear model is saturated, bounded, and decreasing

for all relevant parameter regimes.

Dynamics robustness in the Huang Ferrell model

To verify the general results on a more biologically inspired system, we next examined the

Huang Ferrell (HF) model of a linear signaling cascade (for a detailed description, see Support-

ing Information). This model is a complete mass action description of a MAPK signaling path-

way, which is a linear cascade with three layers. The middle and last layers represent double

phosphorylation events, which lead to ultrasensitivity. The HF model also explicitly assumes

that a phosphatase at each layer removes the active phosphate groups, and thus, the phospha-

tase activity is directly proportional to the total phosphatase concentration, Ptot
i , in each layer.

The same numerical analysis as for the Heinrich model was performed for the HF model

and the results are displayed in Fig 5. The results in Fig 5 demonstrate that duration robustness

is also a property of the HF model. There are parameter regimes where the duration of the

relaxation is insensitive to perturbations. Like the original Heinrich model, the HF model also

displays dynamics robustness in which the time-course profiles themselves are robust to

changes in the phosphatase concentrations. By comparing the results in Fig 5 with those in

Fig 2, we see that the last layer in the HF model has slightly stronger dynamics robustness than

the Heinrich model. This suggests that higher nonlinearities in signaling cascades may

enhance dynamics robustness.

Discussion

In the present paper, we have demonstrated that dynamics robustness, i.e., the insensitivity of

the time courses against changes in certain parameters, is observed in the relaxation process of

Dynamics robustness of cascading systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005434 March 13, 2017 10 / 17

https://doi.org/10.1371/journal.pcbi.1005434


signaling cascades. By using a general linear cascading system, the time course of the output

layer downstream is shown to be almost insensitive to changes in upstream parameters. As a

consequence of dynamics robustness, the duration in which the activated state lasts is also

robust to parameter changes, a property we termed duration robustness. By analyzing the cas-

cading process, the conditions for duration robustness are given by the constraints on the rate-

limiting process and on the initial conditions. Since multiple layers are needed to generate

duration robustness, this suggests that this property is a byproduct of how temporal informa-

tion is processed downstream.

The robustness of flux at steady state has been extensively studied since the pioneering

study of Kacser-Burns [19], but a theory for dynamics robustness has not been developed. It

will be important to extend the steady-state flux theory to transient dynamics. Here we looked

at whether an entire temporal profile can be made robust to parameter perturbations with an

analysis similar to [19], which strives to identify which parameters control fluxes in a biochem-

ical network.

Fig 5. Results for the HF Model. (A, E, I) The temporal profiles of the response relaxation for different values of Ptot
0

, Ptot
1

, and Ptot
2

. In

Fig 5(A), we set Ptot
1

and Ptot
2

equal to their base values from Table A in S1 Appendix. We then integrated the HF model for each of the

Ptot
0

values taken from the set fPtot;00 ;Ptot;10 ; . . . ;Ptot;26
0 ;Ptot;27

0 g ¼ f100:4; 100:2; . . . ; 10� 4:8; 10� 5:0g. (B, F, J) The consecutive similarity in the

temporal profiles for Ptot
0

, Ptot
1

, and Ptot
2

. In Fig 5(B), we computed the L2 norm in the difference between consecutive temporal profiles.

The gray portion of the lines in (B, F, J) indicate that the system is in a deactivated state (i.e., g2 < 0.5) for those values of Ptoti . (C, G, K)

The half-life of the response as a function of Ptot
0

, Ptot
1

, and Ptot
2

. The magenta triangle indicates when the Ptoti value becomes the

minimum Ptot value. The black dot represents the base Ptoti value from Table A in S1 Appendix. The grayed out region indicates that

the system is in a deactivated state for those values of Ptoti . The region between the dashed vertical lines indicate that the logarithmic

gain magnitude of the duration against Ptoti is less than 0.3. The dashed green line is g2 as a function of βi. (D, H, L) The logarithmic

gain of the duration against Ptot
0

, Ptot
1

, and Ptot
2

.

https://doi.org/10.1371/journal.pcbi.1005434.g005
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Conditions for duration robustness

We have shown that linear signaling cascades of varying complexity display duration robust-

ness against perturbations in the phosphatase activity in the ith stage, and that two main condi-

tions are responsible for this phenomenon:

1) The constraint on the rate-limiting process. The phosphatase activity in the ith stage, βi,

should not be the minimum β value. This unfortunately means that the slowest module in a

linear cascade will not display duration robustness. This constraint determines the lower

limit for the range of duration robustness, i.e., β< βi. If βi is the minimum β value in the

cascade, then the duration time is inversely proportional to βi as described by usual relaxa-

tion processes. In general linear signaling cascades, this means that the phosphatase activity

in module i should not be the slowest. For certain parameter regions, our results are con-

trary to the idea that upstream phosphatase activity controls the duration of the system

more than downstream in a strongly activated cascade [16].

2) The constraint on the initial conditions. To achieve duration robustness, the initial phos-

phorylation level of the output layer also has to be robust. For the Heinrich model, the ini-

tial steady-state phosphorylation level, gi, is given as a sequence of iterations as Eq 1, and if

the kinase activity in some layer is sufficiently high, gi will be robust against changes in the

upstream phosphatase activity. In other words, changes in upstream layers are shielded by

the strong kinase activity. This constraint determines the upper limit for duration

robustness.

Intuitively, if the kinase activity is low, the phosphatase activity should be low enough to

allow the cascade to be active. How large βi can be is largely determined by the kinase activity,

αi. A stronger kinase activity allows the phosphatase to be at a higher level and the system to

remain in an activated state. Although too low kinase activity changes the initial phosphoryla-

tion level, too high kinase activity has little effect, due to the saturation of the phosphorylation.

This determines the upper limit of βi for the region of duration robustness.

In general, linear signaling cascades do display such saturation, as a result of conservation

of the substrate at each layer, and as for the Heinrich model, the initial steady-state phosphory-

lation level in ith layer could be given as

gi ¼
1

1þ fiðgi� 1; ai; biÞ
;

where, fi(gi−1, αi, βi) is a decreasing function of the kinase activity, αi, and an increasing func-

tion of the phosphatase activity, βi. In this case, increasing the kinase activity downstream can

shield upstream changes, and then lead to duration robustness against changes in the phospha-

tase activity in upstream modules. This is interesting as changes appear to be propagated

upstream. This type of downstream-to-upstream perturbation transference was reported in

the steady-state concentration of linear cascades as retroactivity [20], whereas our upstream

propagation in the duration robustness is a different type of retroactivity since it is concerned

with the initial condition for shielding upstream parameter changes.

Biological relevance

Our results showed that within the range of a biologically relevant parameter set of a MAPK

signaling pathway reported in [15], the duration and temporal profile of a strongly activated

response are robust against perturbations in the phosphatase activities in the first and last

modules. Past research has shown that temporal profiles of signaling cascades upon different

Dynamics robustness of cascading systems
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inputs can lead to drastically different behaviors in cells. As mentioned earlier, transient versus

sustained activation leads to different developmental responses [21, 22], and the behavior of

transients in the p53 pathway is important to understanding certain types of cancer [23]. Our

theory of dynamics robustness suggests that the transients involved in such decision processes

can be robust to internal fluctuations in the concentrations of enzymes. We claim that stronger

kinase activities are important for generating robust temporal profiles and that such a relation-

ship will be verified experimentally.

Whereas our results show that the response duration and profile can be robust to some

parameters, sensitivity to other external control parameters is necessary. Pathways need to be

sensitive to certain parameters to function in the signaling process. Compatibility between

robustness and plasticity (or sensitivity) to external changes is a basic characteristic of a biolog-

ical system. In biological clocks, it is represented as reciprocity between robustness of period

and plasticity in phase of oscillation [24], and it will be important to uncover a principle of

how signaling pathways achieve both sensitivity to certain inputs while keeping robustness to

other external changes.

The fast-slow-fast organization of the kinetics in the three-stage cascade adopted in the

present model is not necessary for dynamics robustness since it is observed in two-stage cas-

cades as well. We looked at other parameter setups in linear cascades and their results intui-

tively agreed with the results in this paper; the rate-limiting module tends to control the

duration and the other modules display robustness under the constraints discussed. Whether

the fast-slow-fast organization is a byproduct of another selected property or is selected for a

beneficial trait regarding dynamics robustness is unknown. However, one possible benefit is

the emergence of a plateauing response as observed in Figs 5(A) and 2(A). In this plateauing

behavior, the response remains in a quasi-steady state before decaying exponentially. It is pos-

sible that a three-stage linear cascade may be used to store information in one of these reliably

timed plateaus. Dynamics robustness may explain the reliability of the response, but future

work is needed to explain the mechanism of the plateauing response and its relationship with

dynamics robustness. This type of plateauing response has been discussed before as kinetic

memory in other biochemical systems [25, 26] and such memory is also expected in a linear

cascade with a fast-slow-fast organization.

As a design principle, a signaling cascade with the conditions discussed previously are

ideal for robust transients and this parameter organization is reflected in [15]. Since reliably

timed transients are useful in signal processing, robustness would make such properties evolu-

tionarily feasible. Indeed, a repetitive cascade structure would be easily evolvable by gene

duplication [27, 28], wherein the function of the original cascade is safeguarded by robust

parameters.

The present paper focused on linear signaling cascades because of the recent interest in

their temporal dynamics, but our idea of dynamics robustness can be generalized to any bio-

chemical network. Two common properties of the cascade architectures we examined were

mass conservation and an active molecule working as a kinase downstream. This suggests

that such robustness can be achieved by similar designs such as the two-component

signaling network in bacteria, and may be a universal feature in biological signaling cascades

via protein modifications. There are some biochemical processes which are known to be

reliably timed, such as lysis of bacteria and chromosome segregation during mitosis

[29, 30], and these reliably-timed processes might be considered as a demonstration of

dynamics robustness. Such robustness should be an essential property to many biological

systems, and the expansion of the present formulation will provide a future fruitful area of

research.
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The concept and explicit results of dynamics robustness we have presented here should be

timely and of importance. In many biological phenomena, the time course, such as the

response against external stimuli or the developmental process, is crucially important, and

must be sufficiently robust to perturbations. This point has been noted before, but so far there

is no theory for such dynamics robustness. For example, the scale invariance of time course

has gathered much attention as fold-change detection [31]. Dynamics robustness is concerned

with the insensitivity to external changes rather than the scale invariance of time courses, and

does not require strong constraints as imposed in the fold-change detection. Dynamics robust-

ness can appear in a cascading system in general by shielding upstream parameter changes not

only restricted to linear cascades, but systems with crosstalk as well. Thus it will have broader

impacts and applications.

Future work will be done to incorporate more complicated design elements, such as the

addition of feedback loops. It will be important to examine other cascading networks such as

transcription regulatory cascades. For example, robustness of sensory response is discussed in

transcription networks where feedback loop network motfis work as a rate limiting process

[32]. It will be important to incorporate the feedback motifs with the present shielding mecha-

nism in the cascade to design a network for dynamics robustness applicable to transcription

and other pathways.

We demonstrated dynamics robustness in standard models of signal transduction. As these

models are based on experimental data, and agree rather well with them, our dynamics robust-

ness can be straightforwardly confirmed in cell-signaling experiments. Also considering the

generality of our results, many other experimental topics will benefit from dynamics

robustness.

Models and methods

We looked at different models of varying complexity. Although we use the nomenclature of

kinases and phosphatases to represent the activating enzymes and deactivating enzymes, our

model can be applied generally to any linear signaling cascade. We used mass action kinetics

to simulate the chemical reactions, and all of our equations were solved using MATLAB’s (ver-

sion R2009a) built-in numerical integrator ode15s.

Heinrich model

In the Heinrich model described in [16] and diagrammed in Fig 1, the receptor, E0, converts

M0 to Mp
0 , and Mp

0 converts M1 to Mp
1 , and Mp

1 converts M2 to Mp
2 , which is the output. The sec-

ond order reaction rate at which Mi is activated is �a i, and the first order deactivation rate for

Mp
i is βi. We assume that after an initial, constant stimulus and equilibration of the system, the

receptor is immediately shut off and the system relaxes.

There are a few major simplifying assumptions in this model that make it useful for exam-

ining the qualitative behavior of linear cascades. The assumptions are that the intermediate

complexes formed by each kinase-substrate pair is negligible, that the backward reaction

from the complexes is insignificant, and that the active phosphatase concentration is nearly

constant. This means that the phosphatases and the intermediate complexes can be ignored,

the desphosphorylation rate can be expressed as a first-order reaction rate, and that the

sum of the inactive and active forms of each substrate is constant, i.e., Mi þMp
i ¼ Mtot

i where

Mtot
i represents the total amount of substrate Mi. Although these assumptions ignore some

details, they enable us to analyze the models mathematically while still capturing the overall
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behavior of a signaling cascade. The corresponding set of equations post-stimulus is:

_Mp
0 ¼ � b0Mp

0;

_Mp
1 ¼ �a1Mp

0ðMtot
1
� Mp

1Þ � b1Mp
1;

_Mp
2 ¼ �a2Mp

1ðMtot
2
� Mp

2Þ � b2Mp
2;

Mp
0ð0Þ ¼ ~M0 ¼

�a0Einit
0

Mtot
0

�a0Einit
0
þ b0

;

Mp
i ð0Þ ¼ ~Mi ¼

�a i
~Mi� 1Mtot

i

�a i
~Mi� 1 þ bi

:

ð6Þ

We note that Eq 6 is equivalent to Heinrich’s model, albeit with a slightly different form. An

equivalent normalized model, i.e., where mp
i ð0Þ ¼ 1, has the form:

_mp
0 ¼ � b0mp

0;

_mp
1 ¼ a1g0mp

0 g � 1
1
� mp

1

� �
� b1mp

1;

_mp
2 ¼ a2g1mp

1 g � 1
2
� mp

2

� �
� b2mp

2;

ð7Þ

where a0 ¼ �a0Einit
0

and ai ¼ �a iMtot
i� 1

are the effective kinase activities.

Logarithmic gain

How robust a system is to a perturbation in a parameter is quantitatively measured by logarith-

mic gain. If one plots the dependent variable (say y) against a parameter (say x) on a log-log

scale, then the logarithmic gain at a point is the slope of the tangent at that point. In other

words, the logarithmic gain at a point x0 is
@ log ðyÞ
@ log ðxÞ at x0. If y is inversely proportional to x, then

the logarithmic gain will be −1. This concept has been used in systems biology to measure the

robustness of steady-state concentration levels and transition times [33, 34], but here we use it

to measure how robust the half-life of a linear signaling cascade is against parameter changes,

which, to the best of our knowledge has not been done before.

Supporting information

S1 Appendix. Additional Information. We provide tables of the parameters used in our sim-

ulations and equation derivations.

(PDF)
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