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Abstract
The Proportional-Integral-Derivative (PID) controller is a key component in most engineering applications. The main dis-
advantage of PID is the selection of the best values for its parameters using traditional methods that do not achieve the best
response. In this work, the recently released empirical identification algorithm that is the Arithmetic Optimization Algorithm
(AOA) was used to determine the best values of the PID parameters. AOA was selected due to its effective exploration ability.
Unfortunately, AOA cannot achieve the best parameter values due to its poor exploitation of search space. Hence, the perfor-
mance of the AOA exploit is improved by combining it with the Harris Hawk Optimization (HHO) algorithm which has an
efficient exploit mechanism. In addition, avoidance of trapping in the local lower bounds of AOA–HHO is enhanced by the
inclusion of perturbation and mutation factors. The proposed AOA–HHO algorithm is tested when choosing the best values
for PID parameters to control two engineering applications namely DC motor regulation and three fluid level sequential tank
systems. AOA–HHO has superiority over AOA and comparative algorithms.
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1 Introduction

PID controller is used inmanufacturing industries for process
control due to their effectiveness, robustness and durability
[1]. PID controller has common control parameters such as
system stability, the time it takes for the process to settle
(settling time), and bypass and error between the desired
response and the actual response [1]. Due to the sharing of
processes in factories, parameter setting is an important task,
and proper configuration allows to obtain efficient transient
performance in terms of minimum settling time, steady-state
error, maximum bypass and rise time as possible. The three
parameters of PID controller are proportional gain (Kp), inte-
gral gain (Ki) and derivative gain (Kd).

The main advantages of PID controller are concluded as
in the following [1]:
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1. The P controller is used for stabilizing the gain and pro-
ducing a constant steady-state error

2. The I controller is used to eliminates or decreases the
steady-state error

3. The D controller is used to decrease the rate of change
of error, overshoot and settling time.

PID controller is used to regulate many industrial process
such as pressure, temperature, flow rate, feed rate, weight,
speed and position [1]. There are three categories for tuning
the parameters of the PID controller, which are analytical
methods, rule-based methods, and numerical methods [2].
The most common method is Ziegler−Nichol (ZN) [3] to
be the classic method for adjusting parameters of the PID
controller and has been classified as analytical method. ZN
does not offer the best performance.

Heuristic optimization algorithms can be used to tune
PID’s parameters that have been classified as numerical
methods and have been popular in the literature. Stochas-
tic optimization methods such as heuristic algorithms [4]
was suitable for tuning PID parameters because it treats the
problem as a black box and adjusts the parameters and fit-
ness tracking (fitness function) to achieve the optimumvalue.
A meta-heuristic algorithm is a search-based algorithm that
speeds up the exploration of problem’s search space depend-
ing on a random motion to detect an acceptable solution in
an acceptable time [4]. The meta-heuristic algorithmmimics
the search methods from physics, humans, or nature. Sine—
Cosine Optimization algorithm (SCA) [5] that drills into
the search space by drawing search agents toward the best-
established region based on cosine and sine factors. Besides,
the Particle Swarm Optimization algorithm (PSO) [6] simu-
lates the search strategy of birds flowing from nature. Also,
there are a lot of released algorithms such as Ions Motion
Optimization (IMO) [7], Lightning Attachment Procedure
Optimization [8], Moth-Flame Optimization (MFO) [9], and
other hundreds of algorithms are developed.

Meta-heuristic algorithms have successfully improved
many engineering problems in fields as diverse as bioinfor-
matics [10–17], Motor design [18, 19], Solar Energy [20],
Robot design [21], Passive suspension system optimization
[22] and many others. Many options are available to design
the controllers with a lot of meta-heuristics algorithms in
the literature. Such as particle swarm optimization algorithm
was used for finding the optimum design of PID controller
in the AVR systems [23] [24].

As shown in Fig. 1, meta-heuristic algorithm adjust the
three parameters of the PID controller to improve the process
response performance where e(t) and u(t) are the input and
output signals of the PID controller, respectively. e(t) is the
error signal which is the difference between the set point
signal (h(t)) and the output response of the process to be
controlled (y(t)). u(t) represents the controlled signal that

Fig. 1 Adjust PID parameters through meta-heuristic algorithm

Fig. 2 The flowchart of tuning the PID’s parameters using meta-
heuristic algorithms

output from the PID controller and applied on the process to
be controlled.

The objective function used to improve process perfor-
mance is the minimum integral to absolute error (IAE). It
is the sum of the differences between the desired response
(h(t)) and the actual response (y(t)) which is represented as
in Eq. (1) [1].

I AE =
∫ ∞

0
|y(t) − h(t)|dt (1)

The procedure of estimating the values of PID’s param-
eters (Kp, Ki and Kd) as shown in Fig. 2. The solutions are
updated using the updating strategy of the meta-heuristic
techniques for several iterations. During each iteration, the
best solution Kg (Kg

p, Kg
i and Kg

d) which produce the
best IAE is updated with the best solution founded during
updating of solutions.

In the literature, there are several improvements in meta-
inference for optimal design of a PID controller such as a
constraint PSO (CPSO) [25], dynamic PSO (dPSO) [26],
opposition-based Henry gas solubility optimization algo-
rithm (OBL-HGS) [27], and improved whale optimization
algorithm (IWOA) [28]. Besides various other descriptive
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algorithms that have been used to optimize the parameters of
the PID controller to improve the performance of DC motor
as Invasive Weed Optimization (IWO) [29], Flower Polli-
nation Algorithm (FPA) [30], FireFly [31] and Grey Wolf
Optimization Algorithm (GWO) [32].

For other systems such as controlling the voltage regulator,
Teaching Learning Based Optimization (TLBO) algorithm
was used to optimize the parameters of PID controller [33].
Differential Evolution (DE) and its improved version (PSO-
DE) [34] were used to optimize three liquid level tank
systems.

The theory of No-Free-Lunch (NFL) [35] which states
that “no one optimization algorithm can solve all engineer-
ing problems with the same efficiency”. Hence, upgraded
versions of meta-inference based on embedding operators
within algorithms or mixed meta-inference have been pro-
posed to improve the algorithms for a particular engineering
application. The nature of the optimization problem of the
PID controller parameters is continuous because the search
space has a large number of possible solutions which make
the search fall into local minima besides its nonlinear behav-
ior. Hence, a meta-heuristic algorithm containing efficient
exploration and exploitation schemes is necessary to provide
a better selection of PID controller parameters that achieved
a better fit than those available in the literature.

Arithmetic Optimization Algorithm (AOA) [36] is a
population-based algorithm that relies on the arithmetic oper-
ators of the search strategy. The main advantage of AOA is
its effective exploration scheme which is defined as the abil-
ity of the search agents to visit most portions of the search
space. However, the AOA exploitation scheme is poor result-
ing in a lack of microfitness and needs further enhancement.
In this work, AOA has been improved by combining it with
a heuristic algorithm which has an effective exploit strategy
for tuning PID’s parameters.

A lot of researches were done on AOA; a version of AOA
released was used for multiobjective optimization [37]. AOA
was used for multilevel threshold segmentation optimization
problem of COVID-19 images [38]. Besides, AOA was used
for truss optimization [39], optimal installation of distribu-
tion system [40], Fog computing [41], energy storage system
[42], economic load dispatching [43], optimal power flow
problem [44], brain computer interface [45], photovoltaic
solar cell parameter extraction [46], optimal energy resource
planning [47], intrusion detection system [48], and PEM fuel
cell parameters estimation [49]. AOAwasmergedwith Slime
Mold Algorithm for global optimization [50]. The hybridiza-
tion was tested on 23 mathematical benchmark functions
and three classical engineering problems. AOA was merged
with genetic algorithm for feature selection problem [51]. An
improved version of AOAwas released based on using high-
density distribution function (beta distribution) to enhance
the exploration scheme of AOA [52]. The enhanced version

was tested on 30mathematical benchmark function and engi-
neering problems such as welded beam design, compression
spring design and pressure vessel design. AOA was hybrid
with Aquila optimizer for high-dimensional optimization
problems [53]. A chaotic AOA was released for enhanc-
ing the speed convergence and avoiding local optima [54].
AOA was merged with differential evolution for truss struc-
ture optimization problem [55].

This paper presents a hybrid between AOA and Harris
Hawk Optimization (HHO) [56] which has the benefits of
efficientAOAexploration in addition to the efficient exploita-
tion strategy of the hybrid algorithm. HHO algorithm is a
population algorithm that inspired the attacking strategy of
Harris Hawk for catching a prey [56]. The exploitation of
search space by HHO is based on four schemes based on
rabbit escape energy and rabbit escape chance. The four
schemes diversify the movement patterns of hawksbill posi-
tions toward the best founding position (rabbit site), thus
promoting intensification and head-avoidance in the local
optima. HHO was used for optimizing many optimization
problems such as feature selection [57], photovoltaic solar
cell parameter extraction [58], color multilevel thresholding
image segmentation [59], drug discovery [60], landslide sus-
ceptibility [61], and passive suspension system [22].

HHO was used for enhancing the exploitation of many
meta-heuristic algorithms such as Nelder–Mead simplex
optimization algorithm [62], grasshopper optimization algo-
rithm [63], Salp swarm optimization algorithm [64], and
equilibrium optimization [65],

The main contributions of this work are listed as follows:

1. Enhanced AOA’s exploitation by incorporating HHO for
optimized PID controller design.

2. Avoidance of local AOA minima is enhanced based on
the inclusion of disruption and mutation operators.

3. ADCmotor and three liquid level tankswere used in pilot
tests to test the performance of the developedAOA–HHO
for the optimized design of the PID controller.

The rest of the paper is organized as follows: Sect. 2
describes the strategy of AOA and HHO, Sect. 3 describes
the proposed hybrid algorithm (AOA–HHO), while Sect. 4
describes the procedure for estimating PID controller param-
eters based on AOA–HHO. Experimental results and dis-
cussion are presented in Sect. 5. Finally, the result of the
proposed work is presented in Sect. 6.

2 Preliminaries

In this section, the procedure of AOA [36] and HHO [56] is
presented.

123



Arabian Journal for Science and Engineering

2.1 AOA Algorithm

AOA uses arithmetic operators (addition, subtraction, mul-
tiplication, and division) to update solutions. To explore the
search space, it depends on the multiplication and division
operators, while the addition and subtraction operators are
used for exploitation. The control parameter that balances
diversification and intensification of search space is the accel-
erated Math Optimizer (MOA) which is described in Eq. (2).

MOA(t) = t

T
(2)

where t is the number of current iteration and T is the
number of iterations.

Diversification of the search space based on division and
multiplication factors is performed due to the high distribu-
tion of the generated values which are represented according
to Eq. (3) for a condition (rand > MOA) where rand is a
random generated number.

xi
(t) =

{
best

(
x (t)

) ÷ ((MOP + ε)((UB − LB)μ + LB)) r1 < 0.5
best

(
x (t)

) × (MOP )((UB − LB)μ + LB) else

}

(3)

where x is the solution, i is the index of solution (i=1:N),
best (x) is the best global solution, ε and μ are constants, LB
and UB are the lower and upper bound of the solutions, r1
is a random generated number, Math Optimizer probability
(MOP ) is a scaling parameter that producesmore exploration
and is estimated according to Eq. (4) where α is a constant
parameter.

MOP (t) = 1 − t1/α

T 1/α (4)

In terms of search space condensation, addition and sub-
traction operators are used due to the high density of solutions
generated and implemented for a case (rand > MOA). Equa-
tion 5 expresses the updating strategy during exploitation
where r2 is a random generated number.

xi
(t) =

{
best

(
x (t)

) − ((MOP )((UB − LB)μ + LB)) r2 < 0.5
best

(
x (t)

) + (MOP )((UB − LB)μ + LB) else

}

(5)

AOA’s procedure is listed in Algorithm 1.

2.2 HHO Algorithm

The HHO algorithm is a population-based heuristic that sim-
ulates the surprise-and-hunt mechanism of Harris Hooke.
The prey is surprised by many hawks who cooperate to
pounce on it, and according to the surrounding environment
conditions and the escape method, the technique of chasing
the hawk will be determined.

HHO’s main feature is the hawks’ cooperative way of
attacking prey as more experienced hawks grab it. The attack
mechanism and escape pattern of the prey are mathemati-
cally modeled where the search agents are represented by
the hawks and the best solution is represented by the prey.

The HHO exploration stage is represented by the initial
attack of the prey as it has a high energy which decreases
during escape to a low energy level and can be attackedwhich
represents the exploitation stage as shown in Eq. (6).

Et = 2E0(1 − t

T )
(6)

where (E) represents the energy of the prey, (E0) is the initial
energy of prey, and it has a value between (−1,1) which is
assigned randomly, (t) is the current iteration number, and (T)
is the total iterations number. For (|E | > 1), the exploration
phase is executed, while for (|E | ≤ 1) the exploitation phase
is executed.

The exploration stage is carried out on two mechanisms:
first, the falcons settle according to the positions of other fal-
cons and the location of the prey. SecondMechanismFalcons
can settle into a random position within the range of other
falcons. Equation 7 simulates the exploration phase.

yt+1 =
{

yrand t − r1
∣∣yrand t − 2r2yt

∣∣ c ≥ 0.5
(yrabbit

t − yav
t ) − r3(LB + r4(UB − LB)) c < 0.5

}

(7)
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where yt+1 is the solutions in the next iteration of search
agents, yrand t is a hawk of the search agents is selected ran-
domly, yt is the solutions of the search agents at iteration (t),
yrabbit t is the global solution among the search agents, and
yav

t is the average of all search agents’ solutions at iteration
(t). r1, r2, r3 and r4 and are random generator numbers within
the range (0,1).

During the exploitation phase (|E | ≤ 1), the hawks can
attack hardly (|E | < 0.5) or softly(|E | ≥ 0.5); in addition,
there is a probability for escapping for the rabbit (r) where
(r < 0.5) the rabbit escapes successfully and for (r ≥ 0.5) it
is catched. The various chasing style according to the energy
(E) and the probability of escaping ( r) are as follows:

2.2.1 A. Un-successful escaping (r ≥ 0.5) and Soft besieges
(|E| ≥ 0.5)

Hawks surround the rabbit while it tries to escape and is tired
and then pounced by the hawks. This process is simulated as
in Eq. (8).

yt+1 = (yrabbit
t − yt ) − E

∣∣J yrabbit t − yt
∣∣ (8)

where (J) simulates the rabbit’s jump power randomly
through escaping and J = 2(1-r5), r5 is a parameter its value
is selected randomly within the range [0,1].

2.2.2 B. Successful escaping (r < 0.5) and Soft besieges
(|E| ≥ 0.5)

The rabbit (the prey) escapes in a zigzag pattern simulated
using mega-flying. The hawks search for the best direction
of attack to catch the hare so that the hawks decide the next
attack according to Eq. (9).

X = yrabbit
t − E

∣∣J yrabbit t − yt
∣∣ (9)

Levy’s flight function is used to simulate the random
and irregular attacks of hawks to capture prey according to
Eq. (10).

Z = X + s × LF() (10)

where s is a random value generated within the range (0,1)
and LF() is the levy flight function represented according to
Eq. (11).

LF() = 0.01 × u × σ

|v| 1β
, σ =

⎛
⎝ �(1 + β) × sin(πβ

2 )

�
(

(1+β)
2

)
× β × 2(

β−1
2 )

⎞
⎠

1
β

(11)

where β is a set constant as a value (1.5) and u and v are ran-
domly generated values within the range (0,1). The position
of the falcon is estimated according to Eq. (12).

yt =
{
X i f F

(
yt

)
> F(X)

Z i f F
(
yt

)
> F(Z)

}
(12)

whereZ andX are estimated according to Eq. (10) andEq. (9)
in order.

2.2.3 C. Un-successful escaping (r ≥ 0.5) and Hard
besieges (|E| < 0.5)

The prey is ejected from the air and has a low energy to
lunge, so the hawk veers strongly toward the hare to carry
out Sally’s attack. The update of the current position of the
hawk toward the hare is simulated according to Eq. (13).

yt+1 = yrabbit
t − E

∣∣yrabbit t − yt
∣∣ (13)

2.2.4 D. Successful escaping (r < 0.5) and Hard besieges
(|E| < 0.5)

The hawk glides toward the hare aggressively in order to
deflate, but it attempts to limit prey by a small distance to
the hawk’s average positions. Besides, levy flight is used to
simulate the zigzag way of prey and the rare movements of
falcons. Equations (14) and (15) update the situation, while
Eq. (16) determines the final position.

X = yrabbit
t − E

∣∣J yrabbit t − yav
t
∣∣ (14)

Z = X + s × LF() (15)

yt =
{
X i f F

(
yt

)
> F(X)

Z i f F
(
yt

)
> F(Z)

}
(16)

Algorithm (2) represents the steps of HHO algorithm.
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3 The Proposed Hybrid Algorithm
(AOA–HHO)

The main advantage of AOA is efficient exploration due
to division and multiplication operators due to their strong
ability to generate values with high distribution. However,
it produced poor performance for PID controller’s param-
eters estimation because it is trapped in local minima and
has poor exploitability. Hence, this is the impetus to enhance
avoidance of local minima by using the disruption operator
and the mutation operator. Its poor exploit is improved by
incorporating the exploitation scheme of the HHO algorithm
(Heidari et al., 2019) where its main advantage is the differ-
ent efficient exploitation mechanisms that balance the search
focus on narrow areas and the avoidance of trapping in the
local minima. The disruption factor and mutation operator
are described in subsections 3.1 and 3.2, in order. In sub-
section 3.3, the proposed AOA–HHO hybrid procedure is
described.

3.1 Disruption Operator

The disruption operator inspired by an astrophysical theory
posits that “when a group of gravitationally bound parti-
cles (with a total mass m) is very close to a massive object
(with a mass of M), the group becomes torn apart. Simi-
lar to this, when a solid body, held together by gravitational
forces, approaches a much larger body” [66]. The disruption
operator is used to enhance the diversity of the search space
where the disruption operator is mathematically modeled as
in Eq. (17) [67].

DOP =
{

Di , j ×U (−2, 2)i f Di , best ≥ 1

1 + Di , best ×U
(
− 10−4

2 , 10−4

2

)
Otherwise

(17)

DOP represents the disruption operator, and Di , j is the
distance between the search agent (i) and nearest neighbor-
hood search agent (j). Di , best is the distance between the
search agent (i) and the best solution (best). U(x , y) is a
number generated randomly withing the range(x , y). For
updating the solutions, the disruption operator is used to
enhance its diversity as in Eq. (18).

X =
{
Xpast × DOPi f α > 0.5

XpastOtherwise
(18)

where Xpast represents current value of the solution to be
updated, X is the value after updating the solution, and α is a
randomnumber generatedwithin the range (0,1). The disable
factor has successfully improved many meta-algorithms in
many applications such as feature selection [68, 69], optimal
flow problem [70], image thresholding [71] and photovoltaic
solar cell design [72].

3.2 Mutation Operator

The mutation factor is used to enhance the diversity of the
search space and to avoid falling into local lower bounds
where twowell-known factors are theCauchymutation (CM)
and the Gaussian mutation (GM). The mutation factor has
been used to enhance the diversity of several heuristic algo-
rithms in the literature that has motivated their use [73–78].

CM operator has better ability of efficient search than GM
operator according to previous research [73, 77, 79, 80].
Since the CM operator has a wider distribution of search-
ing in the horizontal direction than the vertical direction in
contrast to the GM operator, so it is the main motive for the
use of the CM operator.

The CM operator’s density function is represented as fol-
lows as shown in Eq. (19):

f(0, g)(γ ) = g

π(g + γ 2)
, γ = tan(π(rand − 0.5)) (19)

where g is the constant parameter with value (1) [77] and
rand is a random number within the range (0,1).

3.3 The Proposed AOA–HHO Procedure

The enhancement of AOA was performed by embedding the
CM operator in the exploration updating mechanism of AOA
as in Eq. (20).
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xi
(t) =

{
best

(
x (t)

) ÷ (MOP + ε) × CM × ((UB − LB)μ + LB) r1 < 0.5
best

(
x (t)

) × (MOP ) × CM × ((UB − LB)μ + LB) else

}

(20)

where CM is the mutation factor and was estimated based
on Eq. (19). Then the inactivation factor was applied by
implementing Eq. (18). During the exploit phase, the AOA
exploit mechanism (Eq. 4) was replaced by the update mech-
anism exploited the HHO algorithm (Eq. 8 to Eq. 16). The
MOA operator that is estimated according to Eq. (2) bal-
ance between exploration and exploitation. The AOA–HHO
hybrid procedure is described inAlgorithm (3). Theflowchart
describing the proposed AOA–HHO procedure is shown in
Fig. 3.

The main advantages of the proposed AOA–HHO algo-
rithm are inferred in the following:

1. Promoting trapping avoidance in the local minima based
on the use of CM operator.

2. Enhancing the diversification of the search space based
on the disruption factor.

3. Enhancing the exploitation system based on the mecha-
nism of exploiting of the HHO algorithm.

4 PID’s Parameter Estimation Based
on AOA–HHO

The integral of the absolute error (IAE) function represented
in Eq. (1) was used as a fitness function for PID controller’s
parameters estimation based on the proposed AOA–HHO
algorithm shown in Fig. 4. Each AOA–HHO search factor

has a vector of three values (Kp, Ki and Kd ), and each solu-
tion is initialized with a random value in the lower and upper
bounds. The IAE function is estimated based on the sign of
e(t) for each research agent to evaluate solutions. The best
solution(Kp

g , Ki
g , Kd

g) is determined based on the search
agents solution that achieved minimum relevance. The vari-
able MOA controls the implementation of the exploration
phase using the AOA or the exploit phase of the HHO algo-
rithm. After completing the execution of iterations, the best
solution(Kp

g , Ki
g , Kd

g) has been founded. Algorithm (4)
describes the procedure for estimating the parameters of the
PID controller using the proposed AOA–HHO algorithm.

5 The Experimental Results and Discussion

Experimental tests were carried out on two systems: the first
was DC motor speed control, and it was common in many
related studies [18, 27–29, 32, 81]. The second system was
controlling the liquid level for three consecutive tank systems
[34]. The experimental results were compared with relevant
studies such as PSO [6], SCA [5], IWO [29], GWO [32],
ASO, PSO-DE [34] and OBL-HGS [27] and Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [82].

The step response characteristics of controlled process
response in time domain are delay time, rise time, peak time,
settling time and overshooting as shown in Fig. 5 which are
defined as follows [1]:
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Fig. 3 The procedure for the
proposed hybrid AOA–HHO
algorithm

Fig. 4 Estimation of PID
parameters based on the
proposed AOA–HHO algorithm

Fig. 5 Time domain specification of controlled process response

1. Delay time (td): it is the time required for the response to
achieve half of the final value for the first time.

2. Peak time (tp): it is the time required for the response to
reach the first peak of the overshoot.

3. Rise time (tr): it is the required time for the response to
rise from 10% to 90 of its final value.

4. Settling time (ts): it is the time required for the response
curve to reach and stay within a range about the final
value of size specified by absolute percentage of the final
value (usually 2% or 5%).

5. Overshooting (Mp): it is the maximum peak value of the
response curve measured from unity.

The fitness function that was used to evaluate solutions
based on IAE according to Eq. (1). The measurement criteria
that were used in the comparisons are as follows:
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Table 1 The parameters setting of various algorithm for DC motor

The parameter Value

All algorithms The population (N) 100

Iteration Number (T) 20

Independent run
number

20

Lower bound of (Kp, Ki

and Kd)

[0.001,0.001,0.001]

Upper bound of (Kp, Ki

and Kd)

[20, 20, 20]

PSO C1 0.5

C2 0.5

w 0.1

CMA-ES Co′ 0.2

Cμ 0.2

μω 0.5

AOA–HHO,
AOA

μ 0.5

ε 2

Table 2 Parameters of DC motor [32]

Parameter Value

Ra 0.4 


La 2.7 H

J 0.0004 kg. m2

D 0.0022 N.m.sec / rad

K 15 e − 03 kg. m / A

Kb 0.05 V.s

1. Integral absolute of difference error between actual and
desired responses (IAE)

2. The step response characteristics as settling time, rise
time and overshooting.

3. The frequency response of the systems.

5.1 Speed Regulator of DCMotor System

The speed regulation of electrical DC motor [27] was con-
trolled by a PID controller where heuristic algorithms were
used to select the best parameters that produce the optimal
response. Parameters setting of PSO, CMA-ES, AOA and the
proposed AOA–HHO algorithm are listed in Table 1 which
were estimated experimentally to get the best results. The
results of other algorithms (SCA, IWO, GWO, ASO, and
OBL-HG) were obtained from their origin manuscript.

The values of the parameters of DC motor which was
used as a case study are listed in Table 2 [32]. Ra represents

armature resistance, La represents inductance of armature
winding, J represents the equivalent moment of inertia of
motor and load referred to motor shaft, D is the equivalent
friction coefficient of motor and load referred to motor shaft,
K represents Motor torque constant, and Kb represents back
EMF constant.

The transfer function of DCmotor closed-loop speed con-
trol systems is expressed in Eq. (16).

G1(S) = 15

1.08s2 + 6.1s + 1.63
(21)

Table 3 presents the best PID controller parameter values
for optimizing DCmotor speed regulation using AOA–HHO
versus standard AOA, and other related algorithms were
used in the comparative study. AOA–HHO optimizes sin-
gle objective which is IAE where the solution is the best
parameters of PID controller that achieve the minimum IAE.
Other specifications such as set time, rise time and overshoot
were measured according to the estimated parameters for
AOA–HHO and other algorithms in the comparative.

As shown in Table 3, AOA–HHO has the superiority over
other algorithms for finding the minimum IAE. It enhances
the IAE of AOA from 14.6156 to 9.0465 which proves the
enhancement of AOA–HHO using disruption and mutation
operator for enhancing exploration and HHO algorithm for
enhancing exploitation. PSO and GWO found the most near-
est value of IAE to that founded by AOA–HHO, but that of
other algorithms is far. AOA–HHO provides IAE better than
that of the hybrid techniques such as CMA-ES and OBL-HG
which prove the powerful of hybrid technique between AOA
and HHO.

For overshoot measurement, AOA–HHO provides over-
shoot very smaller than that of AOA but not the optimum
due to that of GWO and SCA is smaller as shown in Fig. 6.
The overshoot of parameters estimated by ASO and OBL-
HG is 0 which implies that the system response in this case
is over-damping which is the best response shape, but IAE
of ASO and OBL-HG is larger than that of AOA–HHO. The
reason asmentioned before the single objective was optimize
IAE not overshoot.

For rise time, AOA–HHO produces the smallest rise time
according to results ofTable 3,while PSOprovides the largest
one. That is guaranteed from Fig. 6. For set time, AOA–HHO
provides set time smaller than that of AOA, PSO, SCA, IWO
and CMA-EA. However, set time of AOA–HHO is not the
smallest, but it is reasonable because it implies the time
needed for the response to be set around the set point with a
percentage 2% or 5%.

This results implies that AOA–HHO has the superiority
over than AOA and other algorithms for finding the smallest
IAE and reasonable overshoot, set time and rise time.

Figure 7 shows the Bode diagrams for regulating a DC
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Table 3 Step response and IAE specification for various heuristic algorithms

Method Kp Ki Kd Set Time (Sec) Rise Time (Sec) Over-shoot % IAE

PSO 1.5234 0.4372 0.0481 0.3549 1.8016 24 12.36

SCA [83] 4.5012 0.5260 0.5302 0.2037 0.4900 2.36 13.63

IWO [29] 1.5782 1.3801 0.0159 0.4190 1.2533 6.7 18.55

GWO [32] 6.898 0.5626 0.9293 0.1388 0.2053 1.5 10.99

ASO [84] 11.943 2.0521 2.4358 0.0692 0.1535 0 22.27

CMA-ES 17.3347 10.9710 0.2140 0.8170 0.0800 44.46 14.73

OBL-HG [27] 16.9327 0.9508 2.8512 0.0546 0.0949 0 21.58

AOA
AOA-HHO

17.057 4.8488 0.2917 0.7135 0.0821 37.75 14.6156

14.435 0.1636 1.7620 0.2508 0.0743 2.83 9.0465

Fig. 6 DC motor response versus time in seconds

Fig. 7 Bode plots for DC motor based on PID controller
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Fig. 8 Three cascaded tanks liquid level systems [34]

motor using a PID controller where its parameters are calcu-
lated using the proposed AOA–HHO algorithm and related
study algorithms. As shown, AOA–HHO has a wider band-
width better than that of algorithms used in the comparison
except OBL-HGS. This guarantees that AOA–HHO has
smaller rise time than other algorithms except OBL-HGS
as shown in Table 3 and Fig. 6.

In addition, the magnitude margin of AOA–HHO has not
any gain, while that of AOA and CMA-ES has a gain which
implies that it produces larger overshoot which is guaranteed
as shown in Fig. 6.

5.2 Liquid Level Tank

Three cascaded liquid level tank system was used to test the
performance of improved DE with PSO [34] for estimat-
ing the parameters of PID controller. As shown in Fig. 8,
three tanks B, C and D are cascaded, while tank E is the
main tank. Equation 17 expressed the transfer function of
the liquid level tank systems [34]. Table 4 presents the best
estimated parameters of the PID controller usingAOA–HHO
and related algorithms that were used in the experimental
tests. Besides, the step response characteristics have been
added in the table as well as the trap value (IAE).

G2(S) =
(

1

4s + 0.2

)3

= 1

64s3 + 9.6s2 + 0.48s + 0.008
(22)

Table 4 The parameters setting of various algorithms for liquid level
control

The parameter Value

All algorithms The population (N) 100

Iteration Number (T) 20

Independent run
number

20

Lower bound of (Kp, Ki

and Kd)

[0.001,0.001,0.001]

Upper bound of (Kp, Ki

and Kd)

[20, 20, 20]

PSO C1 0.5

C2 0.5

w 0.1

SCA a 3

GWO a0 2

ASO α, β 30

δ 4

CMA-ES Co′ 0.2

Cμ 0.2

μω 0.5

AOA–HHO,
AOA

μ 0.5

ε 2

Parameters setting of PSO, SCA, GWO, ASO, CMA-ES,
AOA and the proposed AOA–HHO algorithm are listed in
Table 4 which were estimated experimentally to get the best
results. The results of PSO-DE were obtained from their ori-
gin manuscript.

As shown in Table 5, AOA–HHO has the minimum IAE
which is better than that of AOA which has the largest IAE
between the comparative algorithms. PSO-DE and GWO
produce the most nearest IAE to that of AOA–HHO which
is 9.13 and 10.76 in order.

For overshoot, AOA–HHO cannot produce the minimum
value, but it is better than that of AOA by difference 50%.
SCA produces the minimum overshoot, while it produces
high value of IAE. GWO produces the largest overshoot,
while it produces reasonable value of IAE. The reason is that
the single objective is minimizing IAE not the specification
of the response, which can be enhanced in the future work
by handling the problem as multi-objectives.

For rise time, AOA–HHO produces reasonable rise time
not the minimum but better than that of AOA by difference
65 s. PSO produces the minimum rise time, while AOA pro-
duces the largest value of rise time.

For set time, AOA–HHO produced 160.363 s of set time
which is larger than that of AOA which has value of 2.65 s.
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Table 5 Step response
specification and IAE using
meta-heuristic algorithms

Method Kp Ki Kd Set time
(sec)

Rise time
(Sec)

Over-shoot
%

IAE

PSO 0.6060 0.0024 14.4250 80.68 2.4078 67.86 18.61

SCA 0.3039 0.1154 6.7231 207.18 3.5526 4.428 15.66

GWO 0.2928 0.0396 4.719 89.51 4.2374 73.22 10.76

ASO 0.1642 0.0048 12.922 70.1 2.6376 57.26 14.47

CMA-ES 0.051 0.0013 0.3914 238.58 15.0019 50.08 14.27

PSO-DE
[34]

0.0419 0.0009 1.000 64.21 12.7790 12.45 09.13

AOA 0.407 0.1184 12.066 2.649 82.756 71.63 16.865

AOA–HHO 0.040 0.0005 0.4269 160.363 17.7783 20.2 8.293

CMA-ES produced the largest value of set time, while AOA
produced the minimum value of set time.

Figure 10 shows Bode diagrams for three liquid level
tank systems using a PID controller where its parameters
are calculated using the proposed AOA–HHO algorithm and
related study algorithms. As shown in the figure, the pro-
posed AOA–HHO algorithm has narrower bandwidth than
other algorithms; hence, it produces larger rise time as shown
in Table 4 and Fig. 9. In addition, according to the magni-
tude margin of AOA–HHO it has small gain in comparison
with that of other algorithms, which implies it has smaller
overshoot as shown in Table 4 and Fig. 9.

As shown from the results of the two case studies,
AOA–HHO has the superiority over than AOA and other
algorithms. The reason is that tuning the parameters of PID
controller is a continuous optimization problem which has
huge number of allowable values in determined search space.
Hence, the balancebetween exploration and exploitation is an
important for achieving the optimal values. In AOA–HHO,
Cauchy mutation operator enhances the avoidance of trap-
ping in local optima, while disruption operator enhances the
exploration capability of AOA. These two operators enhance
the diversification of theAOA–HHO.Regarding the exploita-
tion, HHOwas integrated which has an efficient exploitation
schemes (Fig. 10).

6 Conclusion

In this work, an enhanced version of AOA is presented
to improve the estimation of PID controller parameters.
The improvements were made by incorporating the efficient
exploitation mechanism of the HHO algorithm instead of
exploiting the AOA. In addition, trapping avoidance in the
local minima of the proposed AOA–HHO algorithm was
enhanced by including disruption andmutation factorswhich
enhance the exploration capability. TheAOA–HHOhas been
tested to select the best parameters of the PID controller for

Fig. 9 Liquid level response versus time in seconds
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Fig. 10 Bode plots for liquid level tank system based on PID controller

controlling two engineering applications that are DC motor
regulation and three cascading liquid level tank systems. The
single objective function was an integral part of the absolute
error (IAE) function.

AOA–HHO has outperformed AOA in terms of IAE and
response specification such as overshoot, rise time and set
time in controlling dc motor, while for controlling level of
three cascaded liquid tanks only set time ofAOA is better that
that of AOA–HHO. The frequency response of AOA–HHO
was measured which implies it produces reasonable band-
width and gain magnitude margin better than that of AOA
and other comparative algorithms. From the experimental
study, AOA–HHO has the superiority over AOA and other
comparative study for estimating efficient parameters of PID
controlling which leads to efficient IAE.
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84. Hekimoğlu, B.: Optimal tuning of fractional order PID controller
for DC motor speed control via chaotic atom search optimization
algorithm. IEEE Access 7, 38100–38114 (2019)

123


	Enhanced Arithmetic Optimization Algorithm for Parameter Estimation of PID Controller
	Abstract
	Abbreviations
	1 Introduction
	2 Preliminaries
	2.1 AOA Algorithm
	2.2 HHO Algorithm
	2.2.1 A. Un-successful escaping (rge0.5) and Soft besieges (|E|ge0.5)
	2.2.2 B. Successful escaping  (r<0.5) and Soft besieges (|E|ge0.5)
	2.2.3 C. Un-successful escaping (rge0.5) and Hard besieges  (|E|<0.5)
	2.2.4 D. Successful escaping  (r<0.5) and Hard besieges  (|E|<0.5)


	3 The Proposed Hybrid Algorithm (AOA–HHO)
	3.1 Disruption Operator
	3.2 Mutation Operator
	3.3 The Proposed AOA–HHO Procedure

	4 PID’s Parameter Estimation Based on AOA–HHO
	5 The Experimental Results and Discussion
	5.1 Speed Regulator of DC Motor System
	5.2 Liquid Level Tank

	6 Conclusion
	References




