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Abstract: Phytocannabinoids are isoprenylated resorcinyl polyketides produced mostly in glan-
dular trichomes of Cannabis sativa L. These discoveries led to the identification of cannabinoid
receptors, which modulate psychotropic and pharmacological reactions and are found primarily
in the human central nervous system. As a result of the biogenetic process, aliphatic ketide phyto-
cannabinoids are exclusively found in the cannabis species and have a limited natural distribution,
whereas phenethyl-type phytocannabinoids are present in higher plants, liverworts, and fungi. The
development of cannabinomics has uncovered evidence of new sources containing various phyto-
cannabinoid derivatives. Phytocannabinoids have been isolated as artifacts from their carboxylated
forms (pre-cannabinoids or acidic cannabinoids) from plant sources. In this review, the overview
of the phytocannabinoid biosynthesis is presented. Different non-cannabis plant sources are de-
scribed either from those belonging to the angiosperm species and bryophytes, together with their
metabolomic structures. Lastly, we discuss the legal framework for the ingestion of these biological
materials which currently receive the attention as a legal high.

Keywords: Cannabis sativa L.; cannabinomic; endocannabinoid; phytocannabinoids; mass spectrometry;
metabolite profiling

1. Introduction

The recent advance in metabolomics including application devices of liquid or gas
chromatography-coupled with mass spectrometry (LC- or GC-MS) or nuclear magnetic
resonance spectroscopy (NMR) together with bioinformatic and chemometric approaches
has prompted the understanding of the metabolite profiling of cannabis plants and re-
lated species [1–3]. More than 500 constituents have recently been elucidated in the
cannabis species, including terpenes (mono-, di-, sesqui-and triterpenes), flavonoids,
alkanes, sugars, nitrogenous compounds (such as spermidine alkaloids or muscarine),
non-cannabinoid phenols, phenylpropanoids, steroids, fatty acids, and other compounds
like stilbenes, lignans and phytosterols [4,5]. Among the most prevalent cannabinoid
class, trans-∆9-tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD) are well recognised
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for their psychotropic and therapeutic properties [6,7]. The others include cannabigerol
(CBG), cannabichromene (CBC), (−)-∆8-trans-tetrahydrocannabinols (∆8-THC), cannabicy-
clol (CBLs), cannabielsoin (CBE), cannabinol (CBN), cannabinodiol (CBND), cannabitriol
(CBT), and the miscellaneous cannabinoids [5,8]. Cannabinoids biosynthesis is primarily
localised on the capitate-stalked trichomes mainly found on the flower and sugar leaf
surface of the pistillate plant [9]. Disk-like structures formed on the trichome head synthe-
sizes and secretes the cannabinoids which are then accumulated in the fibrillar matrix, the
subcuticular wall, and the cuticle [9,10]. Shortly after the recoveries of the cannabinoids,
the cannabinoid receptors (CB1 and CB2) were identified and many endogenous ligands
for the cannabinoid receptors were also recognised [11]. They are collectively known as the
“endocannabinoids” which are produced under the stimulation and released immediately
from neurons [12]. Endocannabinoids are thought to play a role in wide range of physio-
logical processes including pain reduction, mobility, learning recognition and rewarding.
Recently, the pathological alteration of cannabinoid signaling has been elucidated not only
in psychiatric complications but also many non-communicable diseases (NCDs) such as
stroke; cancer; reproductive, cardiovascular, gastrointestinal disorders and neurodegenera-
tive conditions such as Parkinson’s and Alzheimer’s diseases and multiple sclerosis [11,13].
Consequently, the endocannabinoid signaling pathway mainly from the major anandamide
(AEA) and 2-arachidonoylglycerol (2-AG) are targeted as a cornucopia of therapeutic po-
tential. Although ∆9-THC and CBD are well-studied phytocannabinoids from the cannabis
species, new chemotypic structures have been characterised either from the new bred
varieties of the cannabis or from other plant origins [14]. While many countries permit
legal access to and use of botanical cannabis and its phytocannabinoid concentrates for
medicinal purposes, the restrictions still prevail in some regions [15–17]. In Thailand, for
example under the 2021 state law, some parts (mainly inflorescence) with high cannabinoid
content are still prohibited for distribution, consumption and possession [15]. Consequently,
in the light of the cannabinomics, the new inventory of phytocannabinoids along with
their pathological activities should be updated particularly from non-cannabis sources [18].
Furthermore, the booming of the functional ingredients industries has prompted the new
market for cannabinoids supplemented food and beverage products. This review attempts
to compile knowledge on cannabinoid metabolites from non-cannabis plants that can be
utilised as a baseline for cannabinoid research and development.

2. Endocannabinoid System

Human brain receptors for cannabinoids are present in all vertebrate and inverte-
brate animals with the exception of Protozoa and insects [19]. These receptors thereafter
called CB1 and CB2 are the members of the G-protein coupled receptor (GPCR) family that
mediate the biological effects with the endocannabinoids [20]. CB1 is the most common
subtype in the central nervous system (CNS) and is also expressed throughout the human
body [21]. It has attracted considerable interest as a potential therapy for a range of con-
ditions, including neuropsychological problems and neurodegenerative diseases. CB2 is
mostly found in the immune system and to a lesser extent in the central nervous system
(Figure 1). CB2 has become the therapeutic target for immunomodulation, neuropathic
and inflammatory pain, neuroinflammation, and neurodegenerative disorders. AEA was
the first endogenous ligand found in pig brain after the discovery of these receptors [22].
Later, another endogenous cannabis molecule known as 2AG was identified [23,24]. These
two forms of endogenous cannabinoid-like structures were derivatives of arachidonic acid,
while 2AG is the most prevalent endocannabinoid in the human brain. The reference of the
endocannabinoid system (ECs) is the combinations of CB receptors, their ligands, structure–
affinity and all the enzymes and proteins that regulate cannabinomimetic properties [25,26].
The biosynthesis of these endocannabinoids occurs upon postsynaptic neuronal depolari-
sation and calcium influx. N-acylphosphatidylethanolamine-hydrolyzing phospholipase
D (NAPE-PLD) and diacylglycerol (DAG) lipase are then activated by the calcium ion,
forming AEA and 2-AG, respectively. The levels these endocannabinoid constitute varies
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depending on the tissue in which they are located [19]. The specific enzymes involved in
altering this endocannabinoid tone are fatty acid amide hydrolase (FAAH) and monoacyl-
glycerol lipase (MAGL), which are AEA and 2-AG specific Endocannabinoid, and they have
been found in a variety of biological sources and have been shown to bind the receptors,
eliciting signal transduction pathways and have a wide range of effects in peripheral tissues,
illustrating numerous pharmacological effects. They also regulate numerous biological
functions in humans, including memory, mood, reward systems and energy metabolism [8].
Despite their medicinal potential, the psychotropic properties of the cannabinoids have
mainly limited usage in clinical practice [25].
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3. Mass Spectrometry-Based for Discovery of Phytocannabinoids

Metabolomic research employs two complementary methods. Metabolic profiling
examines a group of metabolites from a metabolic pathway or a class of compounds. The
second method is metabolic fingerprinting. Initially, this approach compares patterns or
“fingerprints” of metabolites that change in response to disease, toxin exposure, environ-
mental or genetic alterations [27,28]. Mass spectrometry-based metabolics has proven to
be extremely powerful in screening samples for a variety of signature patterns or clusters
for metabolomic study. Among other approaches like GC-MS and LC-MS, NMR is accus-
tomed to less tractable compounds such as sugars, amines, volatile ketones and relatively
non-reactive compounds [29]. Originally, phytocannabinoids were meroterpenoids with a
resorcinyl core typically decorated with a para-positioned isoprenyl, alkyl, or aralkyl side
chain uniquely biosynthesised by C. sativa L. plants [8,30]. They are capable of directly
interacting within the ECs. The phytocannabinoid structural motif results from the con-
vergence of the mevalonate and the polyketide pathways (Figure 2). In phytocannabinoid
profiling, GC and LC-based approaches have attained equivalent accuracy, selectivity,
linearity, sensitivity, and precision, and are used in both routine and exploratory analysis of
cannabis and cannabis-based products [31]. Mass spectrometry is used for confirmation and
identification of the compounds due to the increased selectivity but also for quantitative
analysis, due to the better sensitivity over other detectors [32]. The metabolic fingerprint of
the examined sample is represented by m/z values, retention times, and intensities, which
are exported for sample categorization utilising multivariate data analysis. Consequently,
approximately 120 known phytocannabinoids which make up to about 24% of the total
natural products of C. sativa have been found [33]. The chemical structure class within the
Cannabaceae is diversely based upon their derivation from a common C21 precursor and
the variation of the polyketide starter and prenyl oligomerisation as mentioned in Thomas
and ElSohly [34]. Phytocannabinoids derived from aliphatic ketide starters are only found
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in C. sativa and have a limited natural distribution, known as the alkyl types, whereas,
the analogues with an aralkyl-type substituent produced from an aromatic ketide starter
have a significantly larger distribution, embracing not only plants but also liverworts and
fungi [14]. The chromophore groups or fluorescent moieties such as the benzene structures
in ∆9-THC, AEA and 2AG makes the direct detection under UV and GC-MS possible, how-
ever, the derivatisation step may also be required [35]. This may, however, interfere with the
genuine cannabinoid content and also consume more time and increase cost. Alternatively,
LC coupled with MS in selected ion monitoring (SIM) mode and MS2 in multi reaction
monitoring (MRM) mode are the most commonly used detectors along with ultra-high
performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and LC
quadrupole-time of flight MS [36,37]. However, the matrix complexion can significantly
affect the ion sources such as electrospray ionization (ESI) and atmospheric pressure chemi-
cal ionization (APCI). Therefore, it is critical to have a pretreatment capable of efficiently
removing interfering compounds that cause ion suppression/enhancement [38].
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Figure 2. Cannabinoid biosynthesis begins with the combination of geranyl pyrophosphate (GPP)
and olivetolic acid (OA) to form cannabigerolic acid (CBGA). CBGA serves as the substrate for
phytocannabinoid synthesis.

Additionally, the advancement of metabolomic tools has prompted the new discovery
of various natural cannabinoids from non-cannabis plants, in addition to the terpenopheno-
lic constituents of the ∆9-THC and several of its naturally occurring derivatives [26]. Many
of these chemicals are referred to as prenylated bibenzyls in the literature, a designation
that masks their link to their more well-known cannabis equivalents. As a result, the term
phytocannabinoid is inherently ambiguous in terms of structure. Presently, eleven distinc-
tive classes of phytocannabinoids have been identified (Table 1) [39,40]. The ∆9-THC class
represents the largest proportion, followed by the cannabigerol. These phytocannabinoid
subclasses are proportionally varied depending on the growing conditions, geographical lo-
cation, methods of extraction, and the varieties which influence the pharmacological effects
the phytocannabinoid mix or entourage with non-cannabinoid content of the plant [4,33,40].

The cytoplasm of gland cells, the plastids, and the extracellular storage cavity are
locations where phytocannabinoid production takes place. Hexanoic acid (C6) is produced
in the cytosol by the oxidative cleavage of fatty acids (C18) such as palmitic acid; it is
then synthesised into olivetolic acid (OA) via enzyme desaturase, lipoxygenase (LOX), and
hydroperoxide lyases. In the plastid, the prenylation of phenolic moiety (the polyketide
derivatives, 5-pentenyl resorcinolic acid, and OA) with the terpenoid geranyl pyrophos-
phate (GPP) happens as a result of the methylerythritol-4-phosphate (MEP) pathway [41].
The reaction of geranyl pyrophosphate (a terpenoid molecule) with either a C10 polyketide
for the propyl (C3 side chain) or a C12 polyketide for the pentyl (C5 side chain) cannabinoid
series produces either cannabigerolic or cannabidivaric acid [40]. Enzymatic conversion of
these compounds produces a wide variety of C21 terpenophenolics including ∆9-THC, CBG,
CBC, CBL, CBD, CBND, CBN and their C19 homologs, namely, ∆9-tetrahydrocannabivarin
(∆9-THCV), cannabivarin (CBV), and cannabidivarin (CBDV) [34].
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Table 1. Phytocannabinoid classes.

Compound Classes Chemical Structure Number of Compounds * Therapeutic Activity

∆9-trans-
tetrahydrocannabinol
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Table 1. Cont.

Compound Classes Chemical Structure Number of Compounds * Therapeutic Activity
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4. Phytocannabinoids from Non-Cannabis Plant Origins

As said previously, the purpose of metabolomics is to analyse a wide range of metabo-
lites in biological samples in a qualitative and quantitative manner [27]. High resolution
mass spectrometry (HR-MS) in couplings with LC has become the most popular way
for characterisation of the phytocannabinoids, as well as other metabolites in cannabis
plants and other biological samples [32,42]. While NMR is sensitive, suited for quanti-
tative studies, and elucidates structure along with and stereochemistry of an unknown
compound, it is not selective and is also expensive for routine analysis [43]. Therefore,
it has been extensively used for discovery of novel phytochemical structures. Besides,
C. sativa rhododendrons produce exclusively alkyl phytocannabinoids, whereas aralkyl
phytocannabinoids are common in the leguminous species and some others [44].

5. Non-Cannabis Sources
5.1. Rhododendron Species (Ericaceae Family)

Rhododendron plants belonging to the woody family of Ericaceae are the largest
genus comprising of more than 1100 species worldwide [45,46]. They are also known as
either medicinal or ornamental plants for attractive blight colour flowers and come in a
variety of forms. The plant is also used in traditional medicines, which have been used
for many years for the treatment of inflammation, skin or gastrointestinal tract disorders,
particularly in Asia such as the Chinese and Ayurvedic medicine due to different secondary
metabolites presented [47]. Bioactive diterpenoids, triterpenoids and polyphenolics have
been previously elucidated from this genus [41,48]. The presence of the specific mono-,
di-, or sesquiterpenoids in crude extract makes rhododendron plants a good candidate
for antibacterial agents [49]. It is used as an expectorant and for chronic bronchitis in
traditional medicine together with its anti-inflammatory properties for treating rheumatoid
arthritis [48,50]. Grayanotoxin, which is the toxic diterpene mostly found in the flowers of
several species, has been of interest lately and trace amounts have been detected in raw
honey [51].

Rhododendron meroterpenoids from the twigs and leaves of Rhododendron antho-
pogonoides Maxim. have been characterised for the first time by comparison of their
1H-NMR spectral data which were structurally confirmed as cannabichromene (CBC),
cannabicyclol (CBL), and cannabicitran (CBT) (Table 2). The fractions had also illustrated
inhibitory effects on histamine release [50]. Twenty meroterpenoids from these plant
parts were identified, including eight pairs of meroterpenoid enantiomers recovered by
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chiral-phase HPLC and four achiral meroterpenoids [48]. In this work, the first rhododen-
dron meroterpenoids, with a hexahydroxanthene motif and a diterpene unit, had been
found. The anthoponoids E, G and H had also suppressed the LPS-induced inflamma-
tory responses in RAW 264.7 macrophages. In addition, daurichromenic acid (DCA), the
meroterpenoid consisting of orsellinic acid and sesquiterpene moieties, that analogued to
the cannabinoid structure was also found [52].

R. dauricum L., widely spread throughout northeastern Asia, also produces unique
secondary metabolites including DCAs (Table 2) [52]. The MeOH extract of the leaves and
twigs had illustrated significant anti-HIV activity [53]. In addition, the evidence showed
that DCA possessed antibacterial and antifungal activities, therefore it could be the product
of a plant defense mechanism [54]. DCA synthase has been also isolated from young leaves
of R. dauricum, and it is important to highlight that the catalytic characteristics of this
DCA synthase are remarkably comparable to those of cannabinoid synthases found in the
cannabis plants [55]. Six chromene and chromene meroterpenoids including rubiginosins
along with anthopogochromenes were isolated from the flowers of R. rubiginosum Franch.
var. rubiginosum. These meroterpenoids were categorised as in the (CBC)-type and
cannabicyclol (CBL)-type based on the isoprenyl moiety topical arrangement [56]. The
fractions had illustrated low cytotoxicity against four human tumor cell lines. R. capitatum
Maxim. is distributed and found particularly in alpine grasslands, meadows, and humid
grasslands at an altitude above 2500 m [57]. Its aerial part had been used to isolate chromene
meroterpenoids known as (+)−/(−)-rhodonoids and capitachromenic acids [58–60]. The
later had also shown α-glucosidase and protein-tyrosine phosphatase 1B (PTP1B) inhibitory
activity [59]. The inhibition of PTP1B consequently prolongs the efficiency of insulins in
glucose homeostasis.

Table 2. Phytocannabinoid characterisation from different Rhododendron spp.

Rhododendron spp. Plant Part Used for
Extraction

Mass Spectrometry-Based
Metabolomics

Novel or Specific
PhytocannaBinoid Identified

R. anthopogonoides
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Table 2. Cont.

Rhododendron spp. Plant Part Used for
Extraction

Mass Spectrometry-Based
Metabolomics

Novel or Specific
PhytocannaBinoid Identified

R. rubiginosum
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The South African indigenous everlasting plant, Helichrysum umbraculigerum Less
(Asteraceae family) and many species of the genus Helichrysum are widely used as tra-
ditional medicine. Besides many secondary metabolites found, the plant also consists of
glandular trichomes in almost all vegetative epigeal parts, which are the source of essential
oils [61,62]. Some African Helichrysum species are also used for ritual fumigations and
recreational narcotics [44]. H. umbraculigerum has been found to contain phytocannabinoids
in both the alkyl and aralkyl forms and cannabigerol has been reported to be the most
abundant (Table 3). Cannabigerol is the precursor of all members of the alkylcannabinoids.
Nonetheless Pollastro et al. [44] argued that the presence of bibenzyl resorcinoid, the lack of
∆9-THC or related alkyl-type cannabinoids make inhaling its vapour unlikely to produce
narcotic effects. In a different study, CBG and CBGA (~0.2% of the aerial parts) as well as
‘abnormal’ CBGA are identified in H. umbraculigerum (Table 3). It is also unclear that the
various oxidised forms of cannabigerol are natural products or rather isolation artifacts.
This abnormal form was due to geranylation of olilvetol that produced CBG and its posi-
tional isomer [14]. Two amorfrutin-type phytocannabinoids were also elucidated, one with
2-methylbutanoyl esterification and another one featuring cyclisation of the prenyl unit to
a chromane-type.

The edible root of licorice, Glycyrrhiza foetida Desf. (Fabaceae family) and the fruit
of bastard indigobush, Amorpha fruticosa L. (Fabaceae family), are significant sources of
amorfrutins, the active ingredients with a cannabinoid backbone as shown in Table 3 [44,63].
The cannabinoid structures carry an aralkyl side chain, providing facile access to resorcinol
precursors of cannabinoids, and are thus categorised as prenylated bibenzyls [8,64]. These
amorfrutins are clinically proven to have antidiabetic and lipid-lowering potentials [63,65].
In animal studies, the natural forms of amorfrutin A and B increased insulin production by
targeting the peroxisome proliferator-activated receptor gamma (PPARγ), regulating fat
and glucose metabolism, and further down streaming the inflammation [64]. The terpenolic
component and active system for cannabinoid biosynthesis along with the m/z value of the
cannabidiol-like structure had also been detected in the flax plant, Linum usitatissimum Linn.
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(Linaceae family) [66–68]. The isolated fraction also regulated inflammatory related genes
including MCP-1, IL6 and SOCS-1 in animal trials, which confirmed the cell immunological
response of the CBD-like structure [68].

Table 3. Phytocannabinoid structures from different angiosperm species.

Everlasting, Helichrysum
umbraculigerum
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5.3. Liverworts (Radulaceae Family)

Bryophytes are an early-diverged lineage of non-vascular, spore-forming plants that
are distinctive and comprise more than 20,000 species [67]. They are also known as the first
plants found on earth during the Cambrian period (~ 543–490 million years ago) [69]. They
are placed in the plant kingdom in between algae and pteridophytes and are categorised
into three classes; including mosses (Bryophyta), liverworts (Marchantiophyta), and horn-
worts (Anthocerotophyta) [70]. Liverworts are the most abundant phylum, comprising
as many as 9000 species with high diversity in their ecology, morphology and genetic
variation, and consequently are used the studies of the evolutionary origins of biodiversity
and plant chemistry [67,69]. The most commonly recognised Radula species are found in all
ecosystems such as trees, rocks, and soils throughout the world, from Antarctica’s coastal
area to the northern hemisphere and from Australian semi-arid regions to the Amazon
rainforest [71].

Produced in the sac-like structures, known as oil bodies, liverworts are reported to
be a rich source of secondary metabolites, including the nitrogen-containing alkaloids
(especially, indole alkaloids), terpenoids, flavonoids and bibenzyl cannabinoids, especially
in Radula marginata Hook.f. & Taylor [72]. These structures are localised in the center of the
cell, which is a prominent and highly distinctive organelle unique to the liverworts [69,70].
Perrottetinene (PET) and perrottetineic acid, which are structurally analogous to ∆9-THC
were isolated from some Radula spp. (Figure 3) [70,73]. These compounds have opposite
stereochemical configuration (a cis configuration) in the cyclohexene ring compared with
∆9-trans-THC [71]. Most notably, (-)-cis-PET and its (-)- trans diastereoisomers demon-
strated potential agonist toward CB1 and CB2 receptors. These compounds reduced basal
prostaglandin levels (PGD2 and E2) in the brain in a CB1 receptor dependent manner,
potentially imitating the action of 2-AG [70,74]. By using a de novo approach, the tran-
scriptome of R. marginata was developed [67]. The upstream genes of the central precursor
of cannabinoid biosynthesis, cannabigerolic acid (CBGA) biosynthesis including stilbene
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acid (SA) and geranyl diphosphate (GPP) intermediates were validated. Additionally, a
homolog structure stilbene synthase (STS) that was a homolog of olivetolic acid had been
characterised. Thus, (-)-cis-PET is a psychoactive cannabinoid from bryophytes, indicat-
ing the convergent development of bioactive cannabinoids in plants [71]. Beside PET, a
chromene -like structure had been also found in R. laxiramea Steph. (Figure 3) [75].
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6. Legal Consumption

Cannabis is known as the most frequently used illicit drug worldwide [76]. Fed-
eral and state governments have made their own regulations to protect public health
and safety, including limiting access to minors, reducing the harms associated with il-
legal sales, and discouraging drunk driving. The ∆9-THC remains the principal psy-
choactive ingredient, while trace amounts (i.e., <0.2%) and the CBD are legal for medical
uses in many countries such as several US states and other jurisdictions in Europe and
South and Central America (Portugal, Spain, Belgium, Portugal, Argentina, Colombia,
Jamaica) and Asia (Thailand) [15,77]. Non-medical use has only been legalized at a fed-
eral level in two countries, Uruguay and Canada, while decriminalized personal use had
been legislated in the Netherlands [78,79]. Growing cannabis plants that contain <0.2%
∆9-THC (referred to as hemp) is legal, and the sale of hemp-based products, if they contain
any detectable amount, are also allowed in some countries like Thailand [15,78]. The
legalization framework focuses on the appropriate regulations concerning the legal age
of possession, retail structures, the home growing of cannabis plants, permitted places
for consumption, and cannabis-specific impaired driving laws [76], while less attention
has been paid particularly to the psychoactive activity of the phytocannabinoids from
non-cannabis organisms [71,80]. Chicca et al. [75] reported that cis-PET is a moderately
potent but efficacious psychoactive cannabinoid that has been identified. Dried R. marginata
collected in the wild is currently sold on the internet as a legal product, making reference to
cis-PET being structurally similar to THC. A legal cannabis-like high can be obtained by con-
suming R. marginata and preparations, according to worldwide anecdotal reports [44,71,81].
Consequently, Food and Drug Administration (FDA)–approved medications have strict
guidelines as to the variability in the content of their active moieties and their biochemical
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attributions with any of its main constituents [77]. We suggest that besides the advancement
in cannabinomics and their inventory, the pharmacological studies of the phytocannabinoid
from non-cannabis sources should be undertaken.

7. Conclusions

The advancement of metabolomics has prompted the analysis of novel phytochemicals
from many biological samples in a qualitative and quantitative manner. Chromatography
coupled with high resolution mass spectrometry with the variation of detectors has become
the most common method for characterizing phytocannabinoids and other metabolites in
non-cannabis plants. The rhododendrons produce exclusively alkyl phytocannabinoids,
whereas aralkyl phytocannabinoids have been found in other angiosperm species along
with the bryophytes with pharmacological properties. While the finding of these active in-
gredients may encourage the legal used of the phytocannabinoids for recreational purposes,
we highlight that the further research on psychoactive activity of the phytocannabinoids
from non-cannabis organisms should be given top priority.

Author Contributions: Conceptualization, S.R.S.; data curation, S.R.S. and P.S. (Piyachat Sunanta);
writing—original draft preparation, S.R.S.; writing—review and editing, N.L., K.J., P.R., P.S. (Phisit
Seesuriyachan), Y.P., K.S., C.C., W.R. and P.J.; visualization, S.R.S. and P.S. (Piyachat Sunanta); funding
acquisition, N.L., K.J., P.R., P.S. (Phisit Seesuriyachan), Y.P., K.S., C.C., W.R. and P.J. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This research project was partially supported by Chiang Mai University.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Vásquez-Ocmín, P.G.; Marti, G.; Bonhomme, M.; Mathis, F.; Fournier, S.; Bertani, S.; Maciuk, A. Cannabinoids vs. whole

metabolome: Relevance of cannabinomics in analyzing Cannabis varieties. Anal. Chim. Acta 2021, 1184, 339020. [CrossRef]
[PubMed]

2. Berman, P.; Futoran, K.; Lewitus, G.M.; Mukha, D.; Benami, M.; Shlomi, T.; Meiri, D. A new ESI-LC/MS approach for comprehen-
sive metabolic profiling of phytocannabinoids in Cannabis. Sci. Rep. 2018, 8, 14280. [CrossRef] [PubMed]

3. Micalizzi, G.; Vento, F.; Alibrando, F.; Donnarumma, D.; Dugo, P.; Mondello, L. Cannabis Sativa L.: A comprehensive review on
the analytical methodologies for cannabinoids and terpenes characterization. J. Chromatogr. A 2021, 1637, 461864. [CrossRef]
[PubMed]

4. Sommano, S.R.; Chittasupho, C.; Ruksiriwanich, W.; Jantrawut, P. The cannabis terpenes. Molecules 2020, 25, 5792. [CrossRef]
5. Gonçalves, J.; Rosado, T.; Soares, S.; Simão, A.Y.; Caramelo, D.; Luís, Â.; Fernández, N.; Barroso, M.; Gallardo, E.; Duarte, A.P.

Cannabis and Its Secondary Metabolites: Their Use as Therapeutic Drugs, Toxicological Aspects, and Analytical Determination.
Medicines 2019, 6, 31. [CrossRef]

6. Monti, M.C.; Frei, P.; Weber, S.; Scheurer, E.; Mercer-Chalmers-Bender, K. Beyond ∆9-tetrahydrocannabinol and cannabidiol:
Chemical differentiation of cannabis varieties applying targeted and untargeted analysis. Anal. Bioanal. Chem. 2022, 414,
3847–3862. [CrossRef]

7. ElSohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis sativa L. In Phytocannabinoids; Springer:
Cham, Switzerland, 2017; pp. 1–36. [CrossRef]

8. Gülck, T.; Møller, B.L. Phytocannabinoids: Origins and biosynthesis. Trends Plant Sci. 2020, 25, 985–1004. [CrossRef]
9. Happyana, N.; Agnolet, S.; Muntendam, R.; Van Dam, A.; Schneider, B.; Kayser, O. Analysis of cannabinoids in laser-

microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR. Phytochemistry 2013, 87, 51–59.
[CrossRef]

10. Mahlberg, P.G.; Kim, E.S. Accumulation of cannabinoids in glandular trichomes of Cannabis (Cannabaceae). J. Ind. Hemp 2004, 9,
15–36. [CrossRef]

11. Marzo, V.D.; Bifulco, M.; Petrocellis, L.D. The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discov.
2004, 3, 771–784. [CrossRef]

12. Fride, E. Endocannabinoids in the central nervous system—An overview. Prostaglandins Leukot. Essent. Fat. Acids 2002, 66,
221–233. [CrossRef] [PubMed]

http://doi.org/10.1016/j.aca.2021.339020
http://www.ncbi.nlm.nih.gov/pubmed/34625242
http://doi.org/10.1038/s41598-018-32651-4
http://www.ncbi.nlm.nih.gov/pubmed/30250104
http://doi.org/10.1016/j.chroma.2020.461864
http://www.ncbi.nlm.nih.gov/pubmed/33422797
http://doi.org/10.3390/molecules25245792
http://doi.org/10.3390/medicines6010031
http://doi.org/10.1007/s00216-022-04026-2
http://doi.org/10.1007/978-3-319-45541-9_1
http://doi.org/10.1016/j.tplants.2020.05.005
http://doi.org/10.1016/j.phytochem.2012.11.001
http://doi.org/10.1300/J237v09n01_04
http://doi.org/10.1038/nrd1495
http://doi.org/10.1054/plef.2001.0360
http://www.ncbi.nlm.nih.gov/pubmed/12052038


Molecules 2022, 27, 3301 12 of 14

13. Maccarrone, M. Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years. Front. Mol. Neurosci. 2017, 10, 166.
[CrossRef] [PubMed]

14. Hanuš, L.O.; Meyer, S.M.; Muñoz, E.; Taglialatela-Scafati, O.; Appendino, G. Phytocannabinoids: A unified critical inventory. Nat.
Prod. Rep. 2016, 33, 1357–1392. [CrossRef] [PubMed]

15. Sommano, S.R.; Tangpao, T.; Pankasemsuk, T.; Ponpanumas, V.; Phimolsiripol, Y.; Rachtanapun, P.; Prasad, S.K. Growing ganja
permission: A real gate-way for Thailand’s promising industrial crop? J. Cannabis Res. 2022, 4, 10. [CrossRef]

16. Ballotta, D.; Bergeron, H.; Hughes, B. Cannabis Control in Europe; EMCDDA Monographs; EMCDDA: Lisbon, Portugal, 2008; p. 99.
17. Decorte, T.; Pardal, M.; Queirolo, R.; Boidi, M.F.; Avilés, C.S.; Franquero, Ò.P. Regulating Cannabis Social Clubs: A comparative

analysis of legal and self-regulatory practices in Spain, Belgium and Uruguay. Int. J. Drug Policy 2017, 43, 44–56. [CrossRef]
18. Aliferis, K.A.; Bernard-Perron, D. Cannabinomics: Application of Metabolomics in Cannabis (Cannabis sativa L.) Research and

Development. Front. Plant Sci. 2020, 11, 554. [CrossRef]
19. Silver, R.J. The Endocannabinoid System of Animals. Animals 2019, 9, 686. [CrossRef]
20. Labar, G.; Wouters, J.; Lambert, D.M. A review on the monoacylglycerol lipase: At the interface between fat and endocannabinoid

signalling. Curr. Med. Chem. 2010, 17, 2588–2607. [CrossRef]
21. Hua, T.; Vemuri, K.; Pu, M.; Qu, L.; Han, G.W.; Wu, Y.; Zhao, S.; Shui, W.; Li, S.; Korde, A.; et al. Crystal Structure of the Human

Cannabinoid Receptor CB (1). Cell 2016, 167, 750–762.e714. [CrossRef]
22. Devane, W.A.; Hanus, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.;

Mechoulam, R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992, 258, 1946–1949.
[CrossRef]

23. Sugiura, T.; Kondo, S.; Sukagawa, A.; Nakane, S.; Shinoda, A.; Itoh, K.; Yamashita, A.; Waku, K. 2-Arachidonoylglycerol: A
possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 1995, 215, 89–97. [CrossRef] [PubMed]

24. Mechoulam, R.; Ben-Shabat, S.; Hanus, L.; Ligumsky, M.; Kaminski, N.E.; Schatz, A.R.; Gopher, A.; Almog, S.; Martin, B.R.;
Compton, D.R.; et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors.
Biochem. Pharmacol. 1995, 50, 83–90. [CrossRef]

25. Chanda, D.; Neumann, D.; Glatz, J.F.C. The endocannabinoid system: Overview of an emerging multi-faceted therapeutic target.
Prostaglandins Leukot. Essent. Fat. Acids 2019, 140, 51–56. [CrossRef] [PubMed]

26. Messina, F.; Rosati, O.; Curini, M.; Marcotullio, M.C. Cannabis and Bioactive Cannabinoids. In Studies in Natural Products
Chemistry; Atta-ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 45, pp. 17–57.

27. Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78.
[CrossRef]

28. Dettmer, K.; Hammock, B.D. Metabolomics—A new exciting field within the ‘omics’ sciences. Environ. Health Perspect. 2004, 112,
A396–A397. [CrossRef]

29. Wishart, D.S. Quantitative metabolomics using NMR. TrAC Trends Anal. Chem. 2008, 27, 228–237. [CrossRef]
30. Schlatter, J. Synthetic Cannabinoids: Synthesis and Biological Activities. In Studies in Natural Products Chemistry; Atta-ur, R., Ed.;

Elsevier: Amsterdam, The Netherlands, 2014; Volume 43, pp. 291–311.
31. Stefkov, G.; Cvetkovikj Karanfilova, I.; Stoilkovska Gjorgievska, V.; Trajkovska, A.; Geskovski, N.; Karapandzova, M.; Kulevanova,

S. Analytical Techniques for Phytocannabinoid Profiling of Cannabis and Cannabis-Based Products—A Comprehensive Review.
Molecules 2022, 27, 975. [CrossRef]

32. Capriotti, A.L.; Cannazza, G.; Catani, M.; Cavaliere, C.; Cavazzini, A.; Cerrato, A.; Citti, C.; Felletti, S.; Montone, C.M.; Piovesana,
S.; et al. Recent applications of mass spectrometry for the characterization of cannabis and hemp phytocannabinoids: From
targeted to untargeted analysis. J. Chromatogr. A 2021, 1655, 462492. [CrossRef]

33. Turner, S.E.; Williams, C.M.; Iversen, L.; Whalley, B.J. Molecular pharmacology of phytocannabinoids. Phytocannabinoids 2017,
103, 61–101. [CrossRef]

34. Thomas, B.F.; ElSohly, M.A. Biosynthesis and Pharmacology of Phytocannabinoids and Related Chemical Constituents. In The
Analytical Chemistry of Cannabis; Thomas, B.F., ElSohly, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 27–41.
[CrossRef]

35. Battista, N.; Sergi, M.; Montesano, C.; Napoletano, S.; Compagnone, D.; Maccarrone, M. Analytical approaches for the determina-
tion of phytocannabinoids and endocannabinoids in human matrices. Drug Test. Anal. 2014, 6, 7–16. [CrossRef]

36. Verstraete, A.; Goessaert, A.-S.; Veramme, J. Comparison of the drug concentrations in oral fluid collected by two sampling
methods (Varian OraLab and Statsure Saliva Sampler). Ann. Toxicol. Anal. 2011, 23, 133–138. [CrossRef]

37. Quintela, O.; Andrenyak, D.M.; Hoggan, A.M.; Crouch, D.J. A validated method for the detection of ∆9-tetrahydrocannabinol
and 11-nor-9-carboxy-∆9-tetrahydrocannabinol in oral fluid samples by liquid chromatography coupled with quadrupole-time-
of-flight mass spectrometry. J. Anal. Toxicol. 2007, 31, 157–164. [CrossRef] [PubMed]

38. Peters, F.T.; Remane, D. Aspects of matrix effects in applications of liquid chromatography–mass spectrometry to forensic and
clinical toxicology—A review. Anal. Bioanal. Chem. 2012, 403, 2155–2172. [CrossRef] [PubMed]

39. Filipiuc, L.E.; Ababei, D.C.; Alexa-Stratulat, T.; Pricope, C.V.; Bild, V.; Stefanescu, R.; Stanciu, G.D.; Tamba, B.-I. Major Phy-
tocannabinoids and Their Related Compounds: Should We Only Search for Drugs That Act on Cannabinoid Receptors?
Pharmaceutics 2021, 13, 1823. [CrossRef] [PubMed]

http://doi.org/10.3389/fnmol.2017.00166
http://www.ncbi.nlm.nih.gov/pubmed/28611591
http://doi.org/10.1039/C6NP00074F
http://www.ncbi.nlm.nih.gov/pubmed/27722705
http://doi.org/10.1186/s42238-022-00121-4
http://doi.org/10.1016/j.drugpo.2016.12.020
http://doi.org/10.3389/fpls.2020.00554
http://doi.org/10.3390/ani9090686
http://doi.org/10.2174/092986710791859414
http://doi.org/10.1016/j.cell.2016.10.004
http://doi.org/10.1126/science.1470919
http://doi.org/10.1006/bbrc.1995.2437
http://www.ncbi.nlm.nih.gov/pubmed/7575630
http://doi.org/10.1016/0006-2952(95)00109-D
http://doi.org/10.1016/j.plefa.2018.11.016
http://www.ncbi.nlm.nih.gov/pubmed/30553404
http://doi.org/10.1002/mas.20108
http://doi.org/10.1289/ehp.112-1241997
http://doi.org/10.1016/j.trac.2007.12.001
http://doi.org/10.3390/molecules27030975
http://doi.org/10.1016/j.chroma.2021.462492
http://doi.org/10.1007/978-3-319-45541-9_3
http://doi.org/10.1016/B978-0-12-804646-3
http://doi.org/10.1002/dta.1574
http://doi.org/10.1051/ata/2011121
http://doi.org/10.1093/jat/31.3.157
http://www.ncbi.nlm.nih.gov/pubmed/17579963
http://doi.org/10.1007/s00216-012-6035-2
http://www.ncbi.nlm.nih.gov/pubmed/22549818
http://doi.org/10.3390/pharmaceutics13111823
http://www.ncbi.nlm.nih.gov/pubmed/34834237


Molecules 2022, 27, 3301 13 of 14

40. Brenneisen, R. Chemistry and analysis of phytocannabinoids and other Cannabis constituents. In Marijuana and the Cannabinoids;
Springer: Berlin, Germany, 2007; pp. 17–49.

41. Arif, Y.; Singh, P.; Bajguz, A.; Hayat, S. Phytocannabinoids Biosynthesis in Angiosperms, Fungi, and Liverworts and Their
Versatile Role. Plants 2021, 10, 1307. [CrossRef] [PubMed]

42. Benes, F.; Fenclova, M.; Peukertova, P.; Binova, Z.; Dzuman, Z.; Hajslova, J. Determination of Seventeen Phytocannabinoids in
Various Matrices by UHPLC-HRMS/MS. LC GC Eur. 2020, 33, 8–16.

43. Citti, C.; Russo, F.; Sgrò, S.; Gallo, A.; Zanotto, A.; Forni, F.; Vandelli, M.A.; Laganà, A.; Montone, C.M.; Gigli, G.; et al. Pitfalls in
the analysis of phytocannabinoids in cannabis inflorescence. Anal. Bioanal. Chem. 2020, 412, 4009–4022. [CrossRef]

44. Pollastro, F.; De Petrocellis, L.; Schiano-Moriello, A.; Chianese, G.; Heyman, H.; Appendino, G.; Taglialatela-Scafati, O. Amorfrutin-
type phytocannabinoids from Helichrysum umbraculigerum. Fitoterapia 2017, 123, 13–17. [CrossRef]

45. Duan, S.-G.; Hong, K.; Tang, M.; Tang, J.; Liu, L.-X.; Gao, G.-F.; Shen, Z.-J.; Zhang, X.-M.; Yi, Y. Untargeted metabolite profiling of
petal blight in field-grown Rhododendron agastum using GC-TOF-MS and UHPLC-QTOF-MS/MS. Phytochemistry 2021, 184, 112655.
[CrossRef]

46. COL. Rhododendron L. In Catalogue of Life; Species 2000 Secretariat: Leiden, The Netherlands, 2022.
47. Popescu, R.; Kopp, B. The genus Rhododendron: An ethnopharmacological and toxicological review. J. Ethnopharmacol. 2013, 147,

42–62. [CrossRef]
48. Shi, Q.; Li, T.-T.; Wu, Y.-M.; Sun, X.-Y.; Lei, C.; Li, J.-Y.; Hou, A.-J. Meroterpenoids with diverse structures and anti-inflammatory

activities from Rhododendron anthopogonoides. Phytochemistry 2020, 180, 112524. [CrossRef] [PubMed]
49. Hakeem Said, I.; Rezk, A.; Hussain, I.; Grimbs, A.; Shrestha, A.; Schepker, H.; Brix, K.; Ullrich, M.S.; Kuhnert, N. Metabolome

Comparison of Bioactive and Inactive Rhododendron Extracts and Identification of an Antibacterial Cannabinoid(s) from
Rhododendron collettianum. Phytochem. Anal. 2017, 28, 454–464. [CrossRef] [PubMed]

50. Iwata, N.; Kitanaka, S. New Cannabinoid-Like Chromane and Chromene Derivatives from Rhododendron anthopogonoides. Chem.
Pharm. Bull. 2011, 59, 1409–1412. [CrossRef] [PubMed]

51. Kuhnert, N.; Hakeem, I.; Said, A.S.; Rezk, A.; Grimbs, A.; Nolzen, J.; Schepker, H.; Brix, K.; Albach, D.; Ullrich, M. Rhododendron
Natural Products as Sources of Novel Antibiotics. Rhododendr. Int. 2019, 3, 141–151.

52. Pollastro, F.; Caprioglio, D.; Del Prete, D.; Rogati, F.; Minassi, A.; Taglialatela-Scafati, O.; Munoz, E.; Appendino, G.
Cannabichromene. Nat. Prod. Commun. 2018, 13, 1934578X1801300922. [CrossRef]

53. Kashiwada, Y.; Yamazaki, K.; Ikeshiro, Y.; Yamagishi, T.; Fujioka, T.; Mihashi, K.; Mizuki, K.; Cosentino, L.M.; Fowke, K.;
Morris-Natschke, S.L.; et al. Isolation of rhododaurichromanic acid B and the anti-HIV principles rhododaurichromanic acid A
and rhododaurichromenic acid from Rhododendron dauricum. Tetrahedron 2001, 57, 1559–1563. [CrossRef]

54. Taura, F.; Iijima, M.; Kurosaki, F. Daurichromenic acid and grifolic acid: Phytotoxic meroterpenoids that induce cell death in cell
culture of their producer Rhododendron dauricum. Plant Signal. Behav. 2018, 13, e1422463. [CrossRef]

55. Taura, F.; Iijima, M.; Lee, J.-B.; Hashimoto, T.; Asakawa, Y.; Kurosaki, F. Daurichromenic Acid-producing Oxidocyclase in the
Young Leaves of Rhododendron dauricum. Nat. Prod. Commun. 2014, 9, 1329–1332. [CrossRef]

56. Yang, Y.-X.; Wang, J.-X.; Wang, Q.; Li, H.-L.; Tao, M.; Luo, Q.; Liu, H. New chromane and chromene meroterpenoids from flowers
of Rhododendron rubiginosum Franch. var. rubiginosum. Fitoterapia 2018, 127, 396–401. [CrossRef]

57. Liu, J.-Y.; Guo, P.-J.; Wang, X.-L.; Chen, H.-M.; Chen, L.-J.; Sang, Y.-L.; Hao, Y.-J.; Lu, J. Study on phytochemical and pharmacologi-
cal activities of four Rhododendron plants endemic to Northeast China. J. Agric. Food Res. 2022, 7, 100255. [CrossRef]

58. Liao, H.-B.; Huang, G.-H.; Yu, M.-H.; Lei, C.; Hou, A.-J. Five Pairs of Meroterpenoid Enantiomers from Rhododendron capitatum. J.
Org. Chem. 2017, 82, 1632–1637. [CrossRef] [PubMed]

59. Liang, C.; Kjaerulff, L.; Hansen, P.R.; Kongstad, K.T.; Staerk, D. Dual High-Resolution α-Glucosidase and PTP1B Inhibition
Profiling Combined with HPLC-PDA-HRMS-SPE-NMR Analysis for the Identification of Potentially Antidiabetic Chromene
Meroterpenoids from Rhododendron capitatum. J. Nat. Prod. 2021, 84, 2454–2467. [CrossRef] [PubMed]

60. Liao, H.-B.; Lei, C.; Gao, L.-X.; Li, J.-Y.; Li, J.; Hou, A.-J. Two Enantiomeric Pairs of Meroterpenoids from Rhododendron capitatum.
Org. Lett. 2015, 17, 5040–5043. [CrossRef] [PubMed]

61. Giovanelli, S.; De Leo, M.; Cervelli, C.; Ruffoni, B.; Ciccarelli, D.; Pistelli, L. Essential Oil Composition and Volatile Profile of
Seven Helichrysum Species Grown in Italy. Chem. Biodivers. 2018, 15, e1700545. [CrossRef]

62. Najar, B.; Pieracci, Y.; Cervelli, C.; Flamini, G.; Pistelli, L. Volatolomics of Three South African Helichrysum Species Grown in Pot
under Protected Environment. Molecules 2021, 26, 7283. [CrossRef]

63. Sauer, S. Amorfrutins: A Promising Class of Natural Products that Are Beneficial to Health. ChemBioChem 2014, 15, 1231–1238.
[CrossRef]

64. Curtis, B.J.; Micikas, R.J.; Burkhardt, R.N.; Smith, R.A.; Pan, J.Y.; Jander, K.; Schroeder, F.C. Syntheses of Amorfrutins and
Derivatives via Tandem Diels–Alder and Anionic Cascade Approaches. J. Org. Chem. 2021, 86, 11269–11276. [CrossRef]

65. Han, J.; Heo, H.; Jeong, M.; Kim, H.; Jang, I. Review on amorfrutin of licorice for type2 diabetes mellitus. J. Intern. Korean Med.
2020, 41, 1078–1088. [CrossRef]

66. Kulma, A.; Skórkowska-Telichowska, K.; Kostyn, K.; Szatkowski, M.; Skała, J.; Drulis-Kawa, Z.; Preisner, M.; Żuk, M.; Szperlik, J.;
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