
fgene-11-573515 November 26, 2020 Time: 20:47 # 1

ORIGINAL RESEARCH
published: 02 December 2020

doi: 10.3389/fgene.2020.573515

Edited by:
Obul Reddy Bandapalli,

Hopp Children’s Cancer Center
Heidelberg (KiTZ), Germany

Reviewed by:
Weifeng Ding,

Nantong University, China
Young-Ho Ahn,

Ewha Womans University,
South Korea

*Correspondence:
Yong-Kook Kang

ykkang@kribb.re.kr

Specialty section:
This article was submitted to

Cancer Genetics,
a section of the journal

Frontiers in Genetics

Received: 17 June 2020
Accepted: 09 November 2020
Published: 02 December 2020

Citation:
Kang Y-K and Min B (2020)

SETDB1 Overexpression Sets an
Intertumoral Transcriptomic

Divergence in Non-small Cell Lung
Carcinoma. Front. Genet. 11:573515.

doi: 10.3389/fgene.2020.573515

SETDB1 Overexpression Sets an
Intertumoral Transcriptomic
Divergence in Non-small Cell Lung
Carcinoma
Yong-Kook Kang1,2* and Byungkuk Min1

1 Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon,
South Korea, 2 Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea

An increasing volume of evidence suggests that SETDB1 plays a role in the
tumorigenesis of various cancers, classifying SETDB1 as an oncoprotein. However,
owing to its numerous protein partners and their global-scale effects, the molecular
mechanism underlying SETDB1-involved oncogenesis remains ambiguous. In this
study, using public transcriptome data of lung adenocarcinoma (ADC) and squamous-
cell carcinoma (SCC), we compared tumors with high-level SETDB1 (SH) and
those with low-level SETDB1 (comparable with normal samples; SL). The results of
principal component analysis revealed a transcriptomic distinction and divergence
between the SH and SL samples in both ADCs and SCCs. The results of gene
set enrichment analysis indicated that genes involved in the “epithelial–mesenchymal
transition,” “innate immune response,” and “autoimmunity” collections were significantly
depleted in SH tumors, whereas those involved in “RNA interference” collections were
enriched. Chromatin-modifying genes were highly expressed in SH tumors, and the
variance in their expression was incomparably high in SCC-SH, which suggested
greater heterogeneity within SCC tumors. DNA methyltransferase genes were also
overrepresented in SH samples, and most differentially methylated CpGs (SH/SL)
were undermethylated in a highly biased manner in ADCs. We identified interesting
molecular signatures associated with the possible roles of SETDB1 in lung cancer. We
expect these SETDB1-associated molecular signatures to facilitate the development of
biologically relevant targeted therapies for particular types of lung cancer.
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INTRODUCTION

Lung cancer, which is the leading cause of cancer-related
morbidity and mortality worldwide (Jemal et al., 2009), can
be categorized into two main clinicopathological categories,
namely, small-cell lung carcinoma (SCLC) and non-SCLC
(NSCLC). NSCLC accounts for 85% of all lung cancers and
is further classified into the following three subtypes: major
adenocarcinoma (ADC, ∼40% of all lung cancers), squamous-
cell carcinoma (SCC, ∼30% of all lung cancers), and large-cell
carcinoma, the occurrence of which is relatively low (Sher et al.,
2008). SCC arises from squamous cells in the airway epithelium
of the bronchial tubes from the center of the lung, whereas ADC
arises from small airway epithelial cells that secrete mucus and
other substances (Noguchi et al., 1995). All major histological
subtypes of NSCLC are associated with smoking; the occurrence
of SCC is strongly associated with smoking compared with ADC,
and the latter is the most common histology in never smokers
(Sun et al., 2007).

Lung cancer is a molecularly heterogeneous disease, and
grasping the underlying biology is essential to develop effective
therapies against it. This is especially the case if the relatively
higher mutation rates in NSCLC are considered; the mutation
frequency has been shown to be 3.5 and 3.9 per megabase
(Mb) in ADC and SCC, respectively, and these values are
approximately twofold higher than the mean rate of 1.8 per
Mb across all tumor types (Kan et al., 2010). A high mutation
frequency indicates a broad diversity and heterogeneity within
that tumor. The different levels of heterogeneity in cancer are as
follows: intertumor heterogeneity, which refers to the diversity
between the primary tumor and its metastases, and intratumor
heterogeneity, which refers to the subclonal diversity within a
single tumor (Burrell et al., 2013; Rich, 2016). Lines of evidence
support the fact that lung cancer is composed of subsets of
cells and clones with distinct molecular features, even within the
same histological subtype (reviewed in Inamura, 2017; Herbst
et al., 2018). This tumor heterogeneity, as a source of concern
in different tumor responses to treatments, has an impact on the
characterization of actionable targets, treatment planning, and
drug resistance (Swanton, 2012; Zhang et al., 2014). Therefore,
research on tumor heterogeneity should be extended from
molecular profiling to epigenetic, phenotypic, and transcriptomic
assessment through regional DNA methylation, chromatin state,
and RNA and/or protein expression studies over time and during
treatment to fully comprehend the impact of tumor heterogeneity
on the biology of this cancer type and its impact on the clinical
phenotype of patients with cancer (Zhang et al., 2014).

Human cancer genomics studies have recognized that point
mutations, translocations, deletions, and gene amplification
events frequently occur in genes encoding histone-modifying
enzymes such as histone methyltransferases, demethylases,
acetyltransferases, and deacetylases (Esteller, 2006; Rodriguez-
Paredes and Esteller, 2011). One of the best examples of
histone methyltransferases is SETDB1 (SET domain, bifurcated
1). It catalyzes the synthesis of trimethylated histone H3
lysine 9 (H3K9me3), which is a repressive mark to which
heterochromatin protein 1 (HP1) is recruited and deposited,

thus inducing heterochromatin formation in that region (Schultz
et al., 2002). An increasing volume of recent evidence supports
that SETDB1 plays a crucial role in the tumorigenesis of
various cancers, validating the classification of SETDB1 as an
oncoprotein (reviewed in Kang, 2018). SETDB1 gene copy
number amplification (CNA) has been frequently observed
in various cancers, including melanoma (Ceol et al., 2011),
lung SCLC, and NSCLC (Rodriguez-Paredes et al., 2014),
hepatocellular carcinoma (Wong et al., 2016), and breast cancer
(Regina et al., 2016); a strong correlation between SETDB1
overexpression and cancer development has been detected in
various cancers (Kang, 2018). In a study on lung cancer, SETDB1
overexpression correlated with the clonogenicity and tumor size
in a xenograft model (Rodriguez-Paredes et al., 2014). In another
study (Lafuente-Sanchis et al., 2016), SETDB1 overexpression
was proposed to be a prognostic marker to predict tumor
recurrence in patients with early stage NSCLC.

Although the findings of studies on SETDB1 have consistently
indicated its oncogenic role in various cancers, the broad ranges
of genomic targets and protein partners of SETDB1 (usually,
transcription factors and associated epidrivers), along with their
global effects, make it challenging to prove an immediate
connection of SETDB1 with certain tumors. Therefore, the
molecular mechanism of SETDB1-involved oncogenesis remains
largely unknown. In this study, based on the SETDB1 levels,
we attempted subtyping of the lung ADC and SCC samples
to measure how SETDB1 overexpression quantitatively and
qualitatively alters the global gene expression profiles of ADC
and SCC samples. For this, we utilized public lung transcriptome
datasets available on The Cancer Genome Atlas (TCGA) site and
analyzed the gene sets involved in the cellular processes that are
suggested to be associated with SETDB1 function. We identified
interesting molecular signatures associated with the roles of
SETDB1 in lung cancer and hope that these findings facilitate
the development of biologically relevant targeted therapies for
particular lung cancer types.

MATERIALS AND METHODS

To investigate the effect of SETDB1 overexpression in non-small
cell lung cancers (NSCLC), we utilized the genomic datasets of
lung adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC) deposited in The Cancer Genome Atlas (TCGA, 2018).
All plots were generated under R-environment or by MS-EXCEL.

SETDB1 Gene Copy-Number Alteration
and Expression Analysis
To examine the relationship between the SETDB1 gene copy
number and the expression level, the copy-number alteration
(CNA) data were download from cBioPortal, and TCGA RNA-
seq HTseq-count datasets of LUAD (534 tumor and 59 normal
samples) and LUSC carcinoma (503 tumor and 49 normal
samples) were downloaded using “TCGAbiolinks” (Colaprico
et al., 2016; Mounir et al., 2019). The RNA-seq count data
were normalized using DESeq2 (Love et al., 2014), and the
SETDB1 expression levels were extracted. The CNA data and
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the RNA-seq data were joined together by the sample names,
and then the samples were grouped by the types of CNA
(amplification, gain, diploid, or loss) and histology (LUAD or
LUSC) to generate box plots for the SETDB1 gene CNA vs.
the expression levels. Correlations between SETDB1 CNA and
expression in ADC and SCC were calculated using “cor” function
with “method = pearson.”

The tumor samples were ranked by SETDB1 levels and the
top 20% (n ∼= 100) and the bottom 20% (n ∼= 100) of them
were arbitrarily chosen as SETDB1-high (SH) and SETDB1-low
(SL) group, respectively, for transcriptomic analysis. In ADC
samples, the mean expression levels of the selected SH and SL
groups were 4,211.15 (ranging from 16,371.35 to 2,983.01) and
1,562.89 (1,723.82–873.64) in normalized counts, respectively,
while in SCC samples they were 3,691.52 (13,308.90–3,002.55)
and 1,468.37 (1,857.16–1,018.27), respectively. Regarding normal
samples, we used all normal samples (n = 108 in total) provided in
the TCGA ADC and SCC datasets weather they were paired with
tumor samples or not. Of 108 samples, 59 were from the TCGA
ADC expression datasets and 49 were from the SCC datasets, with
33 and 17 of them paired with the tumor samples.

Survival Probablility Analysis
For survival analysis, clinical data for TCGA LUAD (ADC) and
LUSC (SCC) patients were downloaded using “GDCquery,”
“GDCdowload,” and “GDCprepare_clinic” functions in
“TCGAbiolinks,” and datasets for SETEDB1 high and low
patients were extracted and labeled as “Top100” and “Bot100,”
respectively. Survival analysis was performed, and result
was plotted using “TCGAanalyze_survival” function in
“TCGAbiolinks.”

Cell Culture, Transfection, and Real-Time
PCR
The human NSCLC cell line A549 was maintained in RPMI 1640
medium (Gibco, United States) supplemented with 10% heat-
inactivated fetal bovine serum (Hyclone, United States), 2 mM
glutamine and antibiotics (100 U/ml penicillin and 100 µg/ml
streptomycin) at 37◦C in a humidified atmosphere of 5% CO2.
Cells were transfected with 4 µg of a CMV promoter-driven RFP-
SETDB1 expression plasmid per well using Lipofectamine 3000
(Invitrogen) and were observed for RFP signal in fluorescence
miscroscope immediately before harvest 48 h after transfection.

Total RNAs were extracted from A549 cells and reverse
transcription was performed by incubating 1 µg of DNase
I−pretreated RNA with Superscript III enzyme (Invitrogen), 20
µM oligo−dT primers (Invitrogen), and 50 ng random hexamers
(Invitrogen) at 50◦C for 1 h. Five nanograms of the synthesized
cDNAs was used for real−time quantitative PCR (QuantStudio3
Real−Time PCR system, ABI) with the specific primer sets for
individual target genes (Supplementary Table S1). PCR was
performed with following program: 5 min of pre-denaturation at
95◦C followed by 40 cycles of 95◦C for 15 s, 55◦C for 15 s, and
72◦C for 1 min. Finally, relative expression levels of target genes
against GAPDH gene were calculated using QuantStudio Design
and Analysis Software (Thermo).

Differential Expression Analysis and
GSEA
To explore the SETDB1 expression dependent transcriptomic
divergences in lung cancer samples, the TCGA LUAD, or
LUSC samples were ordered based on the expression levels of
SETDB1, and top-ranked and bottom-ranked 100 samples were
selected; they were named as SH and SL groups, respectively. For
t-distributed stochastic neighbor embedding (t-SNE), “Rtsne”1,
a R wrapper for t-SNE, was used with “perplexity = 30” and
“pca = true.” Then, transcriptomic data of SH and SL samples
were extracted from the earlier DESeq2-normalized expression
dataset for the differential expression analysis. For gene set
enrichment analysis (GSEA), gene collections for “HALLMARK,”
“KEGG pathways,” and “GO Biological Process” from MSigDB
v7.0 (Liberzon et al., 2011, 2015) were obtained, and gene sets
enriched in either SH or SL group were identified using fGSEA
(Korotkevich et al., 2019).

In addition to the fGSEA that was generated based on group
means, single sample GSEA (ssGSEA) was performed using
gene set variation analysis (GSVA) (Hanzelmann et al., 2013),
a R package for gene set variation analysis among individual
samples. First, the normalized count data from “DESeq2” were
converted to an input matrix for “GSVA” by a home-brew R
code, and enrichment scores (ES) for individual samples were
calculated by the “gsva” function with “method = gsva.” Then,
using “limma” (Ritchie et al., 2015), a R package for differential
expression analysis, gene sets with significantly altered activations
(FDR < 1 × 10−5) were identified, and the results were
visualized on volcano plots and heatmaps generated by “plot” and
“ggplot” functions in R.

DNA Methylome Analysis
To compare the methylation states of SETDB1-high and
SETDB1-low lung cancer samples, Illumina Human Methylation
450 data (level 3) of TCGA of LUAD and LUSC samples were
downloaded using “TCGAbiolinks,” and the pre-processed and
scaled methylation beta-values for SH and SL samples were
extracted. Next, beta-values were converted to M-values for
variance stabilization, and differentially methylated CpG sites
(DMCs) were identified using “limma” (padj < 0.01, log2FC > 0.5)
and annotated with genomic features (e.g., genes and CGIs, hg38
from UCSC genome browser) using “bedtools” (Quinlan and
Hall, 2010). Finally, differential methylation between SH and SL
samples was examined by surveying the methylation fold-change
distributions of CpGs on annotated CGIs and genes.

RESULTS

Enhanced SETDB1 Expression Sets a
Transcriptomic Distinction Among Lung
Tumors
In this study, we investigated the effect of increased SETDB1
transcript levels in the two most frequent histologic subtypes

1https://github.com/jkrijthe/Rtsne
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of NSCLC, ADC, and SCC. We inspected the genome and
transcriptome data that are publicly available from the cBioPortal
and The Cancer Genome Atlas (TCGA). The SETDB1 gene
amplification was more frequent in ADC samples than in SCC
ones [14.3% (74/516) vs. 6.2% (31/501); Figure 1A]. We observed
a correlation between the SETDB1 copy number and the SETDB1
expression level in both types of cancer (p < 2.4 × 10−40;
Figure 1B). We sorted the sample data based on the SETDB1
levels and, then, classified them into the following two groups:
a top-ranked (SETDB1-high, SH; n = 100) group and a bottom-
ranked (SETDB1-low, SL; n = 100) group. The mean fold
difference between the SH and SL groups was 2.69 and 2.53
in the ADCs and SCCs, respectively (Figure 1C). The SETDB1
level significantly differed between SH group samples and the
normal samples, whereas the levels in the SL group samples
and the normal samples were close. t-Distributed Stochastic
Neighbor Embedding (t-SNE) analysis revealed a divergence
between the SH and SL samples within each cancer type,
along with a vivid distinction between the cancer samples and
normal samples or between the ADCs and SCCs (Figure 1D).
We examined the effect of SETDB1 overexpression on the
survival rates of lung cancer patients and found no significant

difference in the 5 years survival rates between SH and SL tumors
(Supplementary Figure S1).

To select marker genes that are specific for the SH samples
against the SL samples, we first chose genes that are differentially
expressed in the ADC-SH and SCC-SH samples compared with
the normal samples (Padj < 1 × 10−50), and then, among the
chosen genes, we selected the ADC-specific (Padj < 1× 10−10 for
ADCs and > 0.01 for SCCs in the comparison between SH and SL
samples) or the SCC-specific SH marker genes (Padj < 1× 10−10

for SCCs and > 0.01 for ADCs). The ADC markers, including
CGA, SNORD17, SPINK4, OBP2A, BPIFA2, CHGB, and SMKR1,
are representatively shown in Figure 1E (see Supplementary
Table S2 for the entire gene list).

For validation, we examined another dataset (GSE41271;
Sato et al., 2013; n = 20 for the SH and SL groups each;
fold change = 2.28) from the lung ADC samples publicly
available (Supplementary Figure S2A). The dataset was obtained
using a microarray platform and thus largely differed in
terms of the numbers and types of transcripts from RNA-seq
datasets; nevertheless, approximately 40% of the DEGs (21/52;
Padj < 0.00001) were found to be shared with the present
dataset (Supplementary Figure S2B). In addition, we transiently

FIGURE 1 | Transcriptomic differences between SETDB1-high and SETDB1-low tumor samples in lung adenocarcinoma (ADC) and squamous-cell carcinoma
(SCC). (A) The frequency of the SETDB1 gene copy number alteration (CNA) in The Cancer Genome Atlas (TCGA)-deposited lung ADC and SCC samples. The
X-axis represents the types of CNAs (Ampl/Gain, more than wild-type copy number; Dipl, wild type; Loss, heterozygous or homozygous deletion), whereas the
Y-axis indicates the fraction of each CNA type in the lung cancer samples. The actual number of samples is denoted on each bar. Ampl, amplification; Dipl, diploid.
(B) A high correlation between the SETDB1 CNA (x-axis) and expression (y-axis). Violin plots showing SETDB1 expression levels in samples with SETDB1 CNA.
A statistical significance (Wilcoxon signed-rank test) of each CNA type against the Dipl group is indicated. (C) The mean SETDB1 expression levels in SETDB1-high
and SETDB1-low samples of lung cancer groups. Adjusted p-values are indicated between sample groups. The error bars indicate standard deviation.
ADC/SCC-high/ADC/SCC-low, ADC, or SCC samples with high or low SETDB1 expression levels. (D) The t-SNE plots of lung cancer samples. Samples are colored
by group names (i.e., the SETDB1 expression level and lung cancer types) in the upper panel and by the SETDB1 expression levels in the lower panel.
(E) Differentially expressed genes (DEGs) in SETDB1-high ADC tumors. ADC SETDB1-high specific DEGs were chosen between ADC SETDB1-high and normal
samples (Padj < 10-50) for the first round, and the resulting groups of genes were compared between SETDB1-high and SETDB1-low samples in ADCs
(Padj < 10-10) and, simultaneously, in SCCs (> 0.01) for the second round. Adjusted p-values are indicated.
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transfected A549 LUAD cells with GFP-SETDB1 expression
plasmid, and found from a quantitative real-time PCR that the
DEGs that were overexpressed in the SH tumor samples were
similarly overrepresented in the GFP-SETDB1 expressing A549
cells compared with the control A549 cells (Supplementary
Figure S3). This finding highlights the fidelity of the markers
that we detected and suggests that these marker genes serve to
discriminate SH tumors from SL tumors, ADCs from SCCs, and
lung cancer samples from normal samples in multiple ways.

Transcriptomic Features of
SETDB1-Overexpressing Lung Cancer
Samples
We performed GSEA on the “HALLMARK,”
“KEGG_PATHWAY,” and “BIOLOGICAL_PROCESS”
collections using the fast pre-ranked GSEA (fGSEA) package to
identify and interpret coordinate changes in the transcriptome
of SH samples over the SL samples. When sorted by the
enrichment scores [ES; absolute ES value (| ES|) > 0.5] and
normalized ES (NES; | NES| > 2.0) that estimate the degree
to which the genes in the terms are overrepresented at either
the top or the bottom of the ranked list of genes, the selected
terms mostly showed negative ES/NES values. It indicated
that those genes in the designated collections were mostly
underrepresented in the SH samples in both the ADC and
SCC groups (Figures 2A–C and see Supplementary Table S3).
Overall, the genes in the inflammation- and immune response-
related terms including “TNFA_SIGNALING_VIA_NFKB,”

“INTERLEUKIN_PRODUCTION,” “INTERFERON_GAMMA_
RESPONSE,” “ALLOGRAFT_REJECTION,” “COMPLEMENT,”
and “ANTIGENE_PROCESSING_AND_PRESENTATION”
were significantly underrepresented in the SH samples,
whereas those in the “G2M_CHECKPOINT,”
“DNA_REPLICATION_CHECKPOINT,” and “E2F TARGETS”
terms were overrepresented. Some terms are notable because
they were previously shown or hypothesized to be a function of
SETDB1, which we have summarized below.

Depletion of Genes Related to
Epithelial–Mesenchymal Transition (EMT)
NSCLC mainly arises from the bronchial and alveolar epithelium;
thus, it is speculated that EMT plays an important role
in the biological behavior of NSCLC and serves as a key
mechanism in cancer cell metastasis (Welch and Hurst, 2019).
The genes appertained to the “EMT” collection were markedly
underrepresented in the SH samples of both ADC and SCC
groups (Figure 3A). The mean expression levels of the
leading-edge genes (the core of a gene set accounting for
the enrichment signal) of the “EMT” collection significantly
differed between the SH and SL samples, particularly in
the ADCs. Although the transcript levels of the epithelial
markers in the SH samples relative to those in the SL
samples varied largely, all the mesenchymal markers, except
CDH2/NCAD, were significantly underrepresented in the SH
samples in both ADCs and SCCs (Figure 3B). In line with
this, the genes in the “IL6_JAK_STAT3_SIGNALING” and
“TGF_BETA_SIGNALING” collections that are known to induce

FIGURE 2 | Gene set enrichment analysis (GSEA) of transcriptomes of SETDB1-high samples over SETDB1-low samples. The bar graphs show the enrichment
scores (ES) of the GSEA on the “HALLMARK” (A), “KEGG_PATHWAY” (B), and “BIOLOGICAL_PROCESS” (C) collections. The ES represents the degree to which
the genes in the sets are overrepresented at either the top or bottom of the ranked list of genes. The fractional numbers (blue) indicate the proportion of leading-edge
genes relative to the whole genes that belong to the corresponding gene set. The approximate adjusted p-values (Padj , Benjamin and Hochberg-corrected
enrichment statistic) are indicated.
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FIGURE 3 | SETDB1-related gene collections from fast pre-ranked gene set enrichment analysis. The GSEA mountain plot shows a significant enrichment (G) or
depletion (A,C–E) of genes for indicated collections in lung SETDB1-high tumors that are presumably related to the SETDB1 function. Light (ADCs) and dark brown
lines (SCCs) indicate the running enrichment scores across the fold change-ranked genes in comparison between the RNA-seq gene-level expression of
SETDB1-high over SETDB1-low samples. Black vertical tick marks below or above the curve indicate the location of individual target genes within the fold
change-ranked gene list. Adjusted p-values (Padj , Benjamin and Hochberg-corrected enrichment statistic) are indicated. In (B) the fold change (SETDB1-high vs.
SETDB1-low tumors) levels of epithelial marker genes and mesenchymal marker genes in the “epithelial–mesenchymal transition” (EMT) gene set in ADCs (blue) and
SCCs (red). Asterisk indicates adjusted p-values (* < 10-2; ** < 10-4; *** < 10-6; **** < 10-10). The box plots in (A,D,F,G) compare the normalized expression levels
of the leading-edge genes of the denoted gene sets between SETDB1-high vs. SETDB1-low tumors of ADCs and SCCs (p-values, paired sample t-test).

cancer cell metastasis (Chang et al., 2013; Bellomo et al., 2016)
were also depleted (Supplementary Table S3 and see below)
in the SH samples. Our results strongly suggest an inverse
relationship between the SETDB1 levels and EMT in lung tumors,
which is in disagreement with the notion that overexpressed
SETDB1 promotes metastasis, as reported in liver (Fei et al.,
2015; Wong et al., 2016) and breast cancers (Weigelt et al., 2010;
Ryu et al., 2019); this probably indicates that SETDB1 behaves
differently in different cancers.

Depletion of Genes Associated With Host Innate
Immune Response
The upregulation of SETDB1 is suggested to be a common
mechanism in tumors to avoid the host innate immune
response and apoptosis through a tighter surveillance
of transposable element (TE) expression (Cuellar et al.,
2017; Kang, 2018). This theory harmonizes well with the
reduced expressions of genes in the SH samples that belong
to the “INTERFERON_ALPHA_RESPONSE,” “TNFα_
SIGNALING_VIA_NFKB,” and “APOPTOSIS” collections
(Figure 3C). The genes in the “IL6_JAK_STAT3_SIGNALING”
set were underrepresented in the SH samples (Figure 3D), and
the fold-change difference in expression level of leading-edge

genes was remarkable between the SH and SL samples of ADCs.
Because the components of the IL6/JAK/STAT3 pathway are
aberrantly hyperactivated in various tumors and targeting
these components can inhibit tumor growth (Johnson et al.,
2018), lung cancer cells in which the levels of SETDB1 are
high are probably supposed to have a natural ability to control
the IL6/JAK/STAT3 pathway, creating an environment that is
unfavorable for tumor growth.

Depletion of Autoimmunity-Related Genes
Genes in the autoimmunity-related collections (“ASTHMA,”
“AUTOIMMUNE_THYROID_DISEASE,” “SYSTEMIC_LU
PUS_ERYTHEMATOSUS,” “TYPE_I_DIABETES_MELLITUS,”
etc.) were largely underrepresented in the SH samples
(Figures 2B, 3E). This suppression of autoimmunity is consistent
with a recent hypothesis stating that SETDB1 overexpression
tightly seals off the expression of various genomic TEs, thus
blocking self-retroelement-derived nucleic acids (RdNAs) to
be piled up in the cytoplasm, which can cause autoimmune
diseases such as Aicardi-Goutieres syndrome (Volkman and
Stetson, 2014). Notably, the genes encoding various nucleic acid
sensors involving TBK1, MAVS, IFI16, STING1, MDA5, RIG1,
DDX41, and TLR1-TLR10 that patrol the cytoplasm and induce
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type-I interferon responses were significantly underrepresented
(p = 0.012, paired sample t-test) in the SH samples in the ADCs
(Figure 3F). The underlying mechanism that links SETDB1
overexpression to the downregulation of nucleic acid sensors in
ADCs should be elucidated in the future.

Enrichment of RNA Interference-Related Genes
SETDB1 also participates in the RNA interference pathway,
particularly in transcriptional gene silencing (TGS) in
association with ARGONAUTE-1 and -2 (Cho et al.,
2014). The genes involved in the “RNA_INTERFERENCE
(RNAi)” and “PRODUCTION_OF_SMALL_RNA_INVOL
VED_IN_GENE_SILENCING_BY_RNA” collections were
overrepresented in the SH samples (Figure 3G). In
line with this, various gene sets related to “small RNA”
were enriched (p < 0.002) in the ADC-SH samples
with positive ES values: “RNA_METABOLIC_PROCESS,”
“PRE_MIRNA_PROCESSING,” “PRODUCTION_OF_SMALL_
RNA_INVOLVED_IN_RNA_INTERFERENCE/GENE_SILENC
ING_BY_RNA,” “RNA/NCRNA_EXPORT_FROM_NUCLEUS,”
etc. (Supplementary Table S3: BIOLOGICAL_PROCESS) We
speculate that these collections are partly associated with an
increased production of endogenous small interfering RNAs
and their busy nucleocytoplasmic trafficking to target loci
through RNAi pathway in the SH cancer cells (Kang, 2018)
although it is unknown how SETDB1 is implicated in the
production of small RNAs.

To further test if the ADC and SCC samples could be divided
by SETDB1 level, we performed single sample GSEA using gene
set variation analysis (GSVA), which assesses separate enrichment
scores for each pairing of a sample and gene set (independent
of phenotype labeling) to find out to what extent the genes in a
certain gene set are coordinately upregulated or downregulated
within a sample (Barbie et al., 2009). The GSVA enrichment
scores for the selected gene sets (FDR < 1 × 10−5) showed that,
consistent with the result in Figure 3, the SH samples showed a
depletion of genes in most of the selected gene sets in the ADCs
(Figure 4) and also in the SCCs (Supplementary Figure S4).
We found the gene sets which we have noticed from the bulk
GSEA result (Figure 3) being reproducibly depleted or enriched
in the GSVA result.

Expression of the Histone Modification
Category Genes in the SETDB1-High
Lung Cancer Samples
Because SETDB1 is one of epigenetic players, or epidrivers, that
function as a writer, reader, and/or eraser of chromatin marks
(Park et al., 2017), the altered expression of SETDB1 may affect
other associated epidrivers and their epigenomic signatures. In
agreement, the GSEA results revealed that histone lysine (H4K20,
H3K27, H3K4, H3K36, and H3K9) methylation-related genes
were enriched in the SH samples (Figure 2C). We explored the
sub-categories of the “HISTONE_MODIFICATION” collection

FIGURE 4 | Single sample gene enrichment analysis (GSEA) with gene sets showing differential enrichments in SETDB1-high (SH) and SETDB1-low (SL) lung
adenocarcinoma samples. Using GSVA, single sample GSEA was performed on three gene collections from MSigDB (v7.0): HALLMARK (A), KEGG (B), and GO:BP
(C). Volcano plot shows the distribution and the number of gene sets with differential enrichments (DE; FDR < 1 × 10-5) between the SH and SL samples in each
collection; each dot indicates a gene set in selected MSigDB collections. In the plot, x-axis designates the difference (SH-SL) of enrichment scores between SH and
SL and y-axis represents the significance of DE scores; red and blue dots indicate gene sets that are enriched and depleted in SH samples, respectively. Heatmaps
show the differential enrichments among individual SH and SL samples. Samples are hierarchically clustered on x-axis (SH, red; SL, blue), and significant DE gene
sets are shown on y-axis. Black bars on the left represent the gene sets mentioned in Figure 3, and the names of the gene sets are denoted on the right. Colors in
GSVA score bar indicate enrichment scores in individual samples.
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for altered gene expression, and the result is summarized in
Table 1. Collectively, the mean expression levels of the genes in
these classes were higher in the SH samples than those in the
SL samples in both ADCs and SCCs (Figure 5A). The variance
of the expression levels of individual histone modification
genes was incomparably high in the SCC-SH samples, which
indicates an enormous discrepancy and heterogeneity among
the SCC samples.

As shown in Table 1, the expression levels of
the “HISTONE_LYSINE_METHYLATION” and
“HISTONE_LYSINE_DEMETHYLATION” category genes
differed (p < 0.02) between the SH and SL samples in both
ADCs and SCCs, and the “HISTONE_UBIQUITINATION”
genes differed in the ADCs (Supplementary Table S4). We
further divided the “HISTONE_METHYLATION” category
because of its largest size (122 genes) and the most significant
difference (p < 1.2 × 10−8, paired sample t-test) between the
SH and SL samples. The genes in the H3K4, H3K9, H3K36, and
H4K20 methylation categories significantly differed (p < 0.01)
in the ADCs, whereas only H3K4 and H3K9 category genes
differed in the SCCs (Figure 5B). The increase in the expression
levels of H3K4 methylation genes was prominent in both the
cancer groups, but the upregulation of the H3K4 demethylation
category genes was also significant, which could offset the
effect of the former on the premise that they share the same
sphere of influence over the genome. Conversely, the H3K9
demethylation category genes did not differ between the SH
and SL samples, suggesting that both the cancer groups can
appreciate the entire impact of the increased expression of the
H3K9 methylation genes.

We examined the genes (n = 154) encoding effector enzymes
and mediators that directly participate in the modification of
nucleosomes (Park et al., 2017; Min et al., 2018). Table 2 presents
the differentially expressed epidriver genes between the SH and
SL samples in the ADCs and SCCs (p < 1 × 10−7 in either
ADCs or SCCs (also see Supplementary Table S5). HR, SETD5,
KMT5B, and KDM6B genes were differentially expressed only
in the ADCs, whereas CBX1, RNF20, and RNF38 genes were
differentially expressed only in the SCCs; these sets of genes
might contribute to the production of characteristic epigenome
signatures of ADCs and SCCs, respectively.

Opposite Pattern of DNA Methylation
Change in ADC and SCC SETDB1-High
Samples
The genes belonging to the DNA methylation category also
showed a significant difference between the SH and SL samples
(Table 1), with the highest root-mean-square deviation (RMSD)
value among the “HISTONE_MODIFICATION” sub-categories
(Supplementary Figure S5), which measures how far off the
genes in the cancer samples are from those in the normal samples
in terms of the mean expression levels (Kwon et al., 2015; Min
et al., 2018). We observed that DNA methyltransferase genes
such as DNMT1, DNMT3A, and DNMT3B were overrepresented
in all cancer groups, with a significant difference between the
SH and SL samples in both ADCs and SCCs (Figure 6A and TA
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FIGURE 5 | Comparison of the mean expression levels of genes in different histone modification categories between SETDB1-high and SETDB1-low samples in
lung ADCs and SCCs. (A) The mean expression levels of genes (fold change; orange bars) and variance of the fold change values (blue line) in the histone
modification category genes. (B) The mean expression levels of “HISTONE METHYLATION” and “HISTONE DEMETHYLATION” category genes. The gene ontology
(GO) identification is indicated below each GO term. Asterisks indicate the significant differences at the denoted levels. The expression levels of individual genes were
normalized to the mean expression levels of normal samples. A significant difference (paired sample t-test) was observed between the SETDB1-high and
SETDB1-low samples of ADCs and SCCs.

also see Table 2), which prompted us to explore the genome
for the methylation states. We looked into the public 450 K
BeadChip array methylome data obtained from the same tumor
samples as those used in the present transcriptome study. The
volcano plots showed that the methylation levels at individual
CpG sites were mostly reduced in the SH samples in the
ADCs, whereas they were increased in the SH samples in the
SCCs (Figure 6B).

The antithetical pattern of the methylation change was also
observed around the CpG island (CGI) regions. In the ADCs,
the differentially methylated CpGs identified between the SH
and SL samples (DMCs; Padj < 0.01 and fold change > 1.5)
were mostly of lower methylation in the SH samples, whereas
they were of higher methylation in the SCCs (Figure 6C).
The pattern was uniform because it was observed at all sub-
CGI compartments such as shelfs, shores, and islands as
well as in the “open_sea” regions. The DMCs in the genic
regions involving distal and proximal promoters, gene body,
and 3’ untranslated regions (3’-UTRs) were, similar to the
CGI DMCs, largely at undermethylated states in the ADC-
SH samples (Figure 6D). In contrast to the overall consistent
and highly biased methylation change in the ADCs, DNA
methylation appeared rather randomly altered in the SCCs,
considering the similar fractions of DMCs with increasing
and decreasing methylation levels. Based on the pattern of
methylation change in the lung cancer samples, we assume that
SETDB1 overexpression is associated with the uniform change
in genomic methylation (i.e., methylation loss) in the ADCs but
not in the SCCs, and the underlying mechanism of this is yet to
be elucidated. In conclusion, our findings indicate that SETDB1
overexpression causes changes in the lung cancer transcriptomes
and the methylomes, drawing a line between the SH and SL
samples and, as a possible result, leads to a within-a-tumor

divergence of cancer cells to a distinctive subpopulation(s), as
illustrated in Figure 6E.

DISCUSSION

This study presented a “within-a-tumor” subtyping result
for ADC and SCC samples. The SH tumor samples were
distinguished from the SL tumor and normal samples based on
the transcriptomes, and these transcriptomes showed various
molecular signatures and interaction networks that are possibly
related to SETDB1 functions. Because the SL samples did not
greatly differ from the normal samples based on the SETDB1 level
alone, the SH sample group might be more diverged than the SL
group among the ADC and SCC sample populations (Figure 1D).
The SH vs. SL difference was larger in the ADCs than in the SCCs
at several points, which are as follows: the fraction of the SETDB1
gene CNA samples; the mean expression levels of SETDB1 in
the SH samples; the overall ES values and the mean expression
levels of leading-edge genes on the GSEA results (Figures 2, 3,
respectively); the number of SH vs. SL DEGs (Supplementary
Table S2); and finally, the number of DMCs and the pattern of
DNA methylation change (Figure 6). Currently, the factors that
cause such a difference between the SH samples of ADCs and
SCCs are unknown; we assume that ADCs are more sensitive to
an altered level of SETDB1, and the histologic difference between
the ADCs and SCCs may explain their different sensitivities (Lin
et al., 2017). Meanwhile, the SH vs. SL comparison performed in
this study is not synonymous with the SH vs. normal comparison
because the SL samples, with respect to the transcriptome, were
not similar to the normal samples at all and to the SH samples.

The regulation of immunity through the control of TE
expression is an emerging research field in cancer, and SETDB1
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TABLE 2 | The mean expression levels of differentially expressed epidriver genes in either of ADCs or SCCs.

Category Gene ID Expression level Fold-change (SH/SL)* Padj-value (SH vs. SL)

ADC-SH ADC-SL SCC-SH SCC-SL Normal ADC SCC ADC SCC

K meth SETDB1 4,211.4 1,560.8 3,693.6 1,467.7 1,678.6 1.430 1.331 9.7E-193 1.1E-208

DNA meth DNMT3A 3,566.2 1,881.1 4,013.7 2,410.1 1,407.5 0.922 0.736 4.8E-28 3.0E-17

K meth EHMT2 4,885.8 2,705.0 4,936.3 3,392.1 2,303.2 0.851 0.541 8.1E-25 1.5E-11

K demeth KDM5B 7,773.7 4,439.9 8,035.3 6,011.6 2,906.4 0.808 0.419 1.1E-24 6.1E-08

K meth ASH1L 6,641.9 3,247.3 5,539.5 2,899.1 3,993.7 1.036 0.934 7.5E-24 2.3E-27

K meth KMT5B 3,500.9 2,412.2 2,885.9 2,477.1 2,600.2 0.536 0.220 1.2E-16 3.0E-03

K meth KMT2D 7,272.7 4,065.7 6,393.4 4,556.7 6,288.7 0.839 0.489 2.0E-15 3.2E-06

PRC CBX2 1,295.1 473.2 2,844.2 1,365.9 180.0 1.448 1.058 1.0E-13 2.4E-09

K meth SETD6 911.3 602.8 889.4 662.5 448.7 0.596 0.425 9.7E-13 5.6E-07

DNA meth TET3 2,199.7 1,379.0 4,603.2 3,046.6 1,486.0 0.675 0.595 7.9E-12 2.5E-09

DNA meth DNMT3B 435.6 207.0 827.7 505.3 88.1 1.073 0.712 8.0E-12 1.1E-05

K meth SETD5 6,065.4 4,280.1 5,645.4 4,728.0 4,195.0 0.503 0.256 9.1E-12 4.5E-04

PRC ASXL1 4,446.9 3,265.4 4,486.6 3,621.0 4,054.7 0.443 0.309 4.8E-11 8.9E-05

K meth EHMT1 3,235.4 2,301.4 3,920.8 2,840.5 2,550.2 0.490 0.465 9.1E-11 1.8E-10

K demeth HR 68.6 173.7 3,183.4 2,542.4 163.7 −1.339 0.324 3.5E-10 1.9E-01

K demeth PHF8 2,813.9 1,902.2 3,682.3 2,463.7 1,770.8 0.564 0.580 5.8E-10 1.1E-10

Acetyl KAT7 2,988.2 2,218.8 3,049.2 2,307.9 2,316.7 0.430 0.402 1.9E-09 2.5E-09

K meth SETD1B 2,504.0 1,777.3 2,818.1 2,036.4 2,043.2 0.493 0.469 1.9E-09 2.9E-09

Acetyl KAT2A 4,042.1 2,634.1 4,291.0 3,146.7 1,159.1 0.615 0.447 7.4E-09 3.2E-06

K meth KMT2B 4,319.8 2,877.6 5,682.8 3,593.2 2,547.8 0.586 0.661 1.0E-08 6.5E-12

R meth PRMT5-AS1 25.6 14.1 19.5 18.5 8.5 0.871 0.072 2.0E-08 7.2E-01

K demeth KDM6B 3,318.4 2,259.2 2,954.0 2,887.4 6,097.4 0.554 0.033 8.2E-08 8.5E-01

Acetyl KAT6B 1,835.0 1,336.1 2,149.9 1,494.4 2,369.4 0.460 0.525 2.4E-06 3.9E-09

K meth SETD1A 2,409.6 1,796.4 2,810.9 2,043.8 1,773.9 0.422 0.460 4.7E-06 1.1E-08

K demeth KDM3B 5,409.5 4,359.2 4,703.8 3,374.5 5,018.0 0.309 0.479 8.7E-06 1.0E-14

PRC CBX5 7,212.4 5,238.4 7,017.1 4,677.5 4,799.1 0.462 0.585 9.4E-06 1.2E-09

K demeth KDM2B 1,648.9 1,338.5 2,501.5 1,884.1 1,661.2 0.300 0.409 1.2E-05 3.8E-09

Acetyl KANSL1 3,698.6 2,872.8 3,717.8 2,536.9 2,862.3 0.366 0.551 1.9E-05 2.3E-14

K meth EZH1 1,829.4 1,472.2 1,657.1 1,194.5 2,514.6 0.312 0.472 5.4E-05 1.0E-09

PRC CBX1 4,579.3 3,670.7 6,577.2 4,517.0 2,268.0 0.317 0.542 9.0E–04 1.4E-10

Ubiquit RNF20 2,404.6 2,146.8 3,226.9 2,432.3 2,721.8 0.161 0.408 2.2E-02 4.7E-10

Ubiquit RNF38 2,095.4 1,907.5 2,493.1 1,749.1 3,353.6 0.136 0.511 1.6E-01 4.3E-09

*Log2 scale. Meth and demeth, methylation and demethylation; Acetyl and Deacetyl, acetylation and deacetylation; Ubiquit, ubiquitination; R meth, arginine methylation;
PRC, Polycomb repressive complex. SH and SL, SETDB1-high and SETDB1-low, respectively.

has been in the spotlight as the key regulator for suppressing
innate immunity by limiting the overall abundance of TE
transcripts in cancer cells (Guler et al., 2017). Genomic TEs,
when derepressed, produce double-stranded RNAs or reverse-
transcribed DNAs into the cytoplasm; these atypical nucleic
acids should be eliminated by metabolism, and if not removed,
they cause an inappropriate activation of nucleic acid-sensing
pathways, ultimately inducing the IFNα response and cell
death (Zeng et al., 2014) or autoimmunity by their chronic
presence (Volkman and Stetson, 2014). The role of nuclear
SETDB1 as the primary effector in the repression of TEs,
particularly endogenous retrovirus (ERV) and LINE1 copies
(Matsui et al., 2010; Liu et al., 2014), can be broadened to
its cytoplasmic function for surveillance of these spin-offs of
TE transcripts. SETDB1 may indirectly recognize TE-derived
nucleic acids and associate with the Argonaute (AGO) protein
(Cho et al., 2014) at the start of the RNAi process before

targeting the genomic TEs of interest in the nucleus to re-
repress their transcription and eventually block the IFNα

response (Kang, 2018). The benefits of this feedback regulation
scenario are that SETDB1 is a well-known TE silencer and,
by virtue of its operating mechanism, can efficiently scan the
chromosomes for complementary sequences of any transcribed
TE-derived sequences. The latter is plausible because SETDB1
can simultaneously access and quickly leaf through a large
fraction of the genome through the association of promyelocytic
leukemia (PML)-nuclear bodies, as suggested (Cho et al., 2011;
Kang, 2015). Consistently, an increase in the number and
size of PML-NBs was observed after viral infection and IFN
treatment (Regad and Chelbi-Alix, 2001). Additionally, double-
stranded RNAs of the TE origin have been demonstrated to
induce the production of endogenous small interfering RNAs
(siRNAs) and subsequently silence TEs by an RNAi-dependent
mechanism in human cells (Yang and Kazazian, 2006). This
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FIGURE 6 | Different pattern of methylation change in ADC and SCC SETDB1-high samples. (A) The expression of DNA methyltransferase genes in lung cancer
samples. The adjusted p-values (Padj ) between each cancer group and normal group (shaded) and between the cancer groups (blue) are shown. (B) The volcano
plots show the differentially methylated CpGs (DMCs) between SETDB1-high (SH) and SETDB1-low (SL) in TCGA LUAD/LUSC methylome data (Infinium
HumanMethylation450 BeadChip). The methylome datasets were derived from the same patients’ tumors that we included in the transcriptome analysis in this study.
The horizontal blue line indicates the threshold for significance (Padj = 0.01), whereas the two vertical blue lines represent the fold change cutoff (log2FC = 0.5). The
number of hypermethylated CpGs in each group is denoted on the top of the plots. (C) The distribution of DMCs on CpG islands (CGIs) and surrounding regions in
lung cancer samples. The violin plots show the fold change levels of significant DMCs in CGIs, shores, and shelves, as schematically depicted in the plots. (D) The
distribution of DMCs in genic regions. The violin plots show the fold change levels of significant DMCs on genes and around the transcription start/end site
(TSS/TES). The number of DMCs in each region is denoted in each plot. The red dotted lines connect the median fold change values of each region. The blue lines
indicate the fold change = 0. (E) Illustration of the generation of SETDB1 level-based, different NSCLC molecular subtype and its singular features in biological
processes.

scenario well harmonizes with our GSEA result, which is as
follows: the depletion of genes belonging to the host innate
immune response and several autoimmunity-related collections,
and the enrichment of genes associated with the RNAi and
small RNA production in the SETDB1-overrepresented samples
(Figures 2, 3). Therefore, results of our meta-analysis of lung
SH tumor transcriptomes provided several clues that support the
generality of SETDB1 functions for controlling innate immunity
and presumably autoimmunity through the surveillance of TE
expressions that have been previously proposed in different types
of cancer cells or cultured cells.

SETDB1 transcriptionally represses TEs as an effector in the
KAP1-built repressive complex (Matsui et al., 2010); therefore, it
stands to reason to give the first consideration to these TEs for
their expression change in the SH tumor samples. Unfortunately,
however, the TE expression data were unavailable in the RNA-seq
datasets analyzed in this study; thus, we were unable to investigate
the extent to which the genomic TE expression would be
affected and altered by SETDB1 overexpression in lung cancers.
If the TE data are available, it would be interesting to examine
whether the depletion of genes related to innate immunity
and autoimmunity-associated collections in the SH samples
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(Figure 3D) correlates with the transcriptional repression of
TEs by SETDB1-involved mechanism and whether the reduced
expression of nucleic acid sensors (Figure 3E) may be intertwined
in this regulatory circuit.

The lack of DNA methylation data on genomic TEs and
other repeated sequences is also a limitation. Compared with
the SL samples, the SH samples expressed the three DNA
methyltransferases DNMT1, DNMT3A, and DNMT3B at higher
levels, but we were unable to completely understand the impact
of DNMT overexpression in lung tumors because the methylome
datasets used in this study were derived from the Infinium 450
K array platform, which can identify methylation changes with
a single CpG resolution at unique genomic loci (Bibikova et al.,
2011) but, in exchange for advantage, may be inadequate in
scrutinizing entire genomic repeats and unique sequences in the
intergenic regions (Min et al., 2019). It might be important to
assess methylation changes over the genomic repeats in lung SH
tumors, particularly when the targets of DNMT3A and DNMT3B
are known to be pericentric heterochromatin (Okano et al.,
1999; Xu et al., 1999; Bachman et al., 2001), intracisternal A
particles (IAP) (Walsh et al., 1998; Kaneda et al., 2004; Kato
et al., 2007), and many other repeated sequences. Genome-wide
DNA methylation studies on lung cancer have mostly focused
on the genic promoter regions for cancer-specific biomarkers
(Kwon et al., 2012; Bjaanaes et al., 2016). In a previous report
(Rauch et al., 2008), the combined bisulfite restriction analysis
(COBRA) method was used, in which SCC samples exhibited
hypomethylation at genomic repeats, including LINE1s and
ERVs. This PCR-based method is still of limited use for studying
the entire genome. Therefore, to comprehensively understand
the lung cancer methylome and the implication of SETDB1
overexpression, we should first determine the methylation change
occurring in the genic loci and in the various genomic repeats that
occupy almost half of the genome.

The DMCs found in the ADCs were mostly undermethylated
in the SH samples compared with the SL samples, whereas
in SCCs, it was the opposite (Figure 6B). The antithetical
pattern of change in DNA methylation was interesting because
both ADCs and SCCs commonly overrepresented the DNMT
gene transcripts in the SH samples (Figure 6A). This suggests
that although SETDB1 overexpression is related to DNMT
overexpression, these proteins may be uncoupled with genomic
DNA methylation in the ADCs. The reason for the inverse
relationship between DNMT expression and DNA methylation
level in the ADCs should be addressed, which, we hope, will
be answered when a genome-wide methylation analysis, such
as MBD sequencing or whole-genome bisulfite sequencing of
lung SH tumor samples, is performed. We hypothesize that
abundant transcriptional activators that prevail in the cancer
cells preoccupy the must-be-methylated regions in collaboration
with other chromatin relaxing epidrivers (such as HATs) and,
thus, ward DNMTs off the spots, causing the regions to
be passively demethylated. Similarly, the increased expression
of DNMT genes may be a feedback response to set the
dwindled, irrelevant genomic methylation right. In this sense,
CGIs, which are frequently hypermethylated in lung (Rauch
et al., 2008; Carvalho et al., 2012) and other human cancers,

including particularly those associated with tumor suppression
and other genome defense pathways (Esteller, 2002), may be
important battlegrounds where both transcriptional activators
and repressors compete for occupancy. Therefore, it is interesting
to notice that the DMCs around the CGIs were undermethylated
in the ADC-SH samples, whereas those in the SCC-SH samples
were mostly relatively highly methylated, although they appeared
to comply with the overall methylation changes of their own
types, as seen in the methylation changes in the “Open_sea”
regions (Figure 6C).

SETDB1 is increasingly attracting researchers’ attention for
brain disorders including Huntington’s disease (Ryu et al., 2006),
schizophrenia (Chase et al., 2013), and autism (Cukier et al.,
2012), in addition to cancers. If the questions on the action
mechanisms and targets of SETDB1 in diseased cells can be
solved, it will be possible to build a therapeutic plan for the targets
and at multiple levels in the SETDB1 pathogenic pathway.
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