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1  | INTRODUC TION

Sociality is widespread in animal populations (Couzin & Laidre, 2009; 
Hirth, 1977; Krause & Ruxton, 2002; Macdonald, 1983) and has 
important implications for the epidemiological dynamics of host–
pathogen relationships because it prevents random‐mixing among 
individuals. In many populations, there is considerable heteroge‐
neity in social contacts capable of transmitting infections among 
members (Craft, 2015; Lloyd‐Smith, Schreiber, Kopp, & Getz, 2005; 
VanderWaal & Ezenwa, 2016; White, Forester, & Craft, 2017). Highly 
connected individuals have received particular attention as they play 

a pivotal role in a number of important human diseases (Lloyd‐Smith 
et al., 2005). However, the role of these highly connected individuals 
in wildlife populations remains uncertain, especially for species that 
tend to live in social groups. The occurrence of spatial or social com‐
munity structures within a population result in a social network with 
high modularity (whereby intra‐group interactions predominate over 
inter‐group interactions; Newman, 2002; Sah, Méndez, & Bansal, 
2018). Populations with more modular social networks typically ex‐
perience smaller and slower‐spreading epidemics (Griffin & Nunn, 
2012; Miller, 2009; Newman, 2003; Salathé & Jones, 2010; Shang, 
Liu, Li, Xie, & Wu, 2015). This reduction in disease spread occurs 
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Abstract
Population structure is critical to infectious disease transmission. As a result, theo‐
retical and empirical contact network models of infectious disease spread are in‐
creasingly providing valuable insights into wildlife epidemiology. Analyzing an 
exceptionally detailed dataset on contact structure within a high‐density population 
of European badgers Meles meles, we show that a modular contact network produced 
by spatially structured stable social groups, lead to smaller epidemics, particularly for 
infections with intermediate transmissibility. The key advance is that we identify con‐
siderable variation among individuals in their role in disease spread, with these new 
insights made possible by the detail in the badger dataset. Furthermore, the impor‐
tant impacts on epidemiology are found even though the modularity of the Badger 
network is much lower than the threshold that previous work suggested was neces‐
sary. These findings reveal the importance of stable social group structure for dis‐
ease dynamics with important management implications for socially structured 
populations.
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because high fragmentation and close‐knit subgroupings delay the 
spread of disease and serve to “trap” infections within networks 
(Sah, Leu, Cross, Hudson, & Bansal, 2017). It is also likely that the 
role of individuals in the spread of disease may change in more mod‐
ular networks, whereby individuals that act as “bridges” between 
different regions of network will be integral to regulating disease 
transmission (Salathé & Jones, 2010). However, the importance of 
these bridging individuals in wildlife populations made up of multiple 
stable social groups has received little attention.

Previously networks derived from empirical observations 
(Rushmore et al., 2014; VanderWaal, Atwill, Isbell, & McCowan, 
2014) have been used to provide insights into the role of network 
structure in disease transmission in nonhuman animals. However, 
recent advances in bio‐logging technology to collect high‐resolution 
social contact data, and methods of network analysis, have enabled 
the quantification of social interactions among wild animals (Blyton, 
Banks, Peakall, Lindenmayer, & Gordon, 2014; Hamede, Bashford, 
McCallum, & Jones, 2009; Hirsch, Reynolds, Gehrt, & Craft, 2016; 
Pinter‐Wollman et al., 2013; Weber, Carter, et al., 2013; White et al., 
2017). This has facilitated modeling work that has provided many 
important insights into how social systems and network structure 
influences the transmission of directly transmitted infections in  
nonhuman animals (e.g., Sah et al., 2018). However, an important gap 
remains in understanding the role of stable social group structure 
at a population level (cf. work within groups; Nunn, Craft, illespie, 
Schaller, & Kappeler, 2015; Sah et al., 2018; VanderWaal et al., 2014; 
Weber, Carter, et al., 2013; White et al., 2017), and in particular how 
it interacts with the role of individuals in the spread of infection.

We exploit a contact network dataset collected in a high‐den‐
sity population of European badgers Meles meles (Figure 1) in 
Gloucestershire (UK) using UHF proximity loggers (Sirtrack Ltd, 
Havelock, New Zealand). In much of the United Kingdom and Ireland, 
badgers live at higher densities than in the rest of the species’ range 
(McDonald, Robertson, & Silk, 2018; Roper, 2010); they live in terri‐
torial social groups that share communal dens known as setts (Roper, 
2010). Individuals in these populations interact very frequently with 
others from the same group but much more sporadically with those 
from neighboring groups (Roper, 2010; Weber, Carter, et al., 2013). 
This results in modular contact networks, in which individuals from 
the same social group are much more closely connected than indi‐
viduals from different social groups. While there are some differ‐
ences in social contacts over the course of a year (Silk et al., 2017), 
the overall structure of the networks persists.

We used disease simulations to examine the implications of so‐
cial group structures for both the risk and size of epidemics in net‐
works generated directly from the empirically derived European 
badger contact network (Weber, Carter, et al., 2013). We also in‐
vestigate the impact, on spread of infection and epidemic size, of 
(a) the duration of contact, (b) identity, and (c) social position of the 
first‐infected individual. We simulated the spread of a generic in‐
fection with SIR (susceptible‐infected‐removed) type dynamics for 
a range of transmission probabilities (and subsequently a range of 
basic reproductive ratios—R0).

2  | METHODS

2.1 | Empirical data collection

Data were collected from a high‐density population of badgers in 
Woodchester Park, Gloucestershire, UK. This population has been 
the subject of a long‐term mark–recapture study since the 1970s 
(Delahay et al., 2013; McDonald et al., 2018). A detailed capture 
history is available for all individuals in the population. Data for the 
social networks used in this study were collected by using proxim‐
ity‐logging radio tags (Sirtrack) to capture the interactions between 
51 individuals living in eight communal setts located at the core of 
this long‐term study population. Data were collected over a 1‐year 
period from June 2009 to May 2010 (Weber, Carter, et al., 2013). 
Individuals used to construct the networks included subadults and 
adults, consisted of 24 males and 27 females, and represents 80% of 
the total population.

2.2 | Generating simulated networks

Simulation of networks based on the observed dataset allowed us to 
incorporate uncertainty in epidemiological estimates. We simulated 
single (static) annual networks as the network structure is qualita‐
tively similar throughout the year, and this approach enabled us to 
incorporate all of the information we had on the contacts of individ‐
uals. Networks were simulated that (a) matched the spatial structure 
of the observed network data (referred to as spatially structured 
networks SSN), (b) matched the degree distribution (individual varia‐
tion in number of connections in the network) but not spatial struc‐
ture of the observed network (referred to as spatially unstructured 
networks SUN), and (c) were random networks with identical density 
(number of edges) to the empirically derived network (referred to as 

F I G U R E  1   European badger, Meles meles
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random unstructured networks RUN). All simulated networks com‐
prised 51 nodes, the same as the number of badgers in the observed 
network.

Spatially structured networks were simulated from the observed 
network data collected by Weber, Bearhop, et al. (2013 and Weber, 
Carter, et al., 2013). The observed association data were fitted with 
a zero‐inflated negative binomial generalized linear model in the R 
package pscl (Zeileis, Kleiber, & Jackman, 2008). The duration (in 
seconds) of interactions between every dyad in the population was 
the response variable in the model. The explanatory variables were 
the distance in meters between the main setts in which two individ‐
uals were caught, the distance in terms of social group territories 
between two individuals and whether or not two individuals were 
the members of the same territorial group (as a binary indicator vari‐
able) according to bait marking studies (Delahay et al., 2000) com‐
pleted in 2009. Using this method, networks were simulated that 
closely matched the observed network in mean degree (Supporting 
Information Table S1), degree distributions and “spatial” structure/
modularity (Figure 2).

We also generated spatially unstructured networks (SUN) with 
the use of the rewire() function in the R package igraph (Csardi & 
Nepusz, 2006) which generated equivalent networks with equal de‐
gree distribution but without “spatial” structure for each simulated. 
Finally the function random.graph.game() in igraph was used to gen‐
erate random networks (RUN) with the equivalent number of edges 
to the binary full networks.

Following Sah et al. (2017), we analyzed unweighted (binary) 
versions of these networks. This is a conservative approach as by 
ignoring the weights of edges the modularity of the observed social 
structure is reduced (i.e., it assigns all connections as being equal; 
therefore, weak between group connections are treated as equally 
important as strong within group connections). An additional ad‐
vantage of this approach, rather than including the contact duration 
as a parameter in disease transmission (see Rushmore et al., 2014), 
is that it allows for stochastic variability in individual susceptibility 
to disease transmission. In order to confirm that our results would 
be similar for infections that required longer contact durations, we 
repeated our main analyses in (a) unfiltered networks including all 

F I G U R E  2   Network structure of the observed and simulated networks used in this study: (a) the distribution of modularity scores 
for networks simulated with equivalent social group and spatial structure (SSN), (b) the distribution of modularity scores in spatially 
unstructured networks SUN, (c) the distribution of modularity scores in random networks (RUN), (d) the structure of the empirical badger 
contact network, (e) an example of a simulated unstructured network (SUN), and (f) an example of a simulated random network (RUN). 
Nodes in each network are colored according to their degree and each boxplot is based on 1,000 generated networks, all modularity scores 
were calculated using the fast greedy algorithm in R package igraph and weighted edges have been transformed to binary according to 
set temporal cut‐offs (NF: all edges are included, F100: only edges with contact durations >100 s are included and F1000: only edges with 
contact durations >1,000 s are included)
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edges (NF), (b) networks filtered to include only edges with con‐
tact durations >100 s (F100), and (c) networks filtered to include 
only edges with contact durations >1,000 s (F1000). Finally, using 
the R package igraph (Csardi & Nepusz, 2006), network community 
structure and modularity scores were determined. We used the fast 
greedy algorithm to define social communities, and report informa‐
tion for the number of communities with the highest modularity 
score.

2.3 | Network measures

Three measures of individual connectedness (centrality) were cal‐
culated for all of the nodes on each of the unfiltered simulated net‐
works: degree (number of edges), eigenvector centrality (rewards 
edges/connections to important nodes), and betweenness cen‐
trality (rewards nodes that act as bridges between other nodes). 
Betweenness centrality and eigenvector centrality were calculated 
in R using the packages igraph (Csardi & Nepusz, 2006) and sna 
(Butts, 2007) and the functions betweenness() and eigen_central‐
ity(), respectively.

2.4 | Epidemic simulation

All simulations started with a single infected individual in a com‐
pletely susceptible population. Following (Sah et al., 2017), all simu‐
lations follow an SIR‐type (Susceptible‐Infected‐Removed) model 
where individuals fall within one compartment, they are either sus‐
ceptible to infection, infectious, or removed. All 51 individuals were 
chosen to be patient zero 100 times. Therefore, for a network of 
a particular class (SSN, SUN or RUN), we ran 5,100 simulations for 
nine unique transmission probabilities T, on 1,000 unique graphs. 
Transmission probabilities were chosen to be between 0.075 and 
0.275.

Simulations proceeded as follows:

1.	 A single individual is infected (patient zero).
2.	 Within the first iteration, patient zero’s neighbors (those con‐

nected by an edge) become infected (and infectious) with proba‐
bility T and patient zero is removed from the network.

3.	 In all subsequent iterations, the neighbors of any infectious indi‐
vidual become infected (and infectious) with probability T, and all 
previously infectious individuals are removed from the network.

Note that the iterative steps do not explicitly represent uni‐
form time units, but follow a bond percolation‐like approach. This 
approach, one that ignores temporal dynamics, has been shown to 
produce similar results to time‐sensitive simulations (Rushmore et 
al., 2014), but is less computationally expensive. The disease will 
work its way through the network as described above, until no 
new individuals can become infected. The termination of an out‐
break can be the result of it burning out due to a lack of successful 
transmission events, or because there are no more susceptible in‐
dividuals to infect.

2.5 | Basic reproduction number and the 
epidemic threshold

For each network, we determine the basic reproduction number: 
R0 = T(<k2>/<k>−1), where, <k>, is the mean degree, <k2>, is the mean 
squared degree and, T, the transmission probability (Newman, 2002). 
This calculation of R0 will produce identical R0 values for networks 
of identical degree (i.e., SSN and SUN networks). The epidemic 
threshold refers to the transmission probability for which R0 = 1. 
Therefore, for each transmission parameter and network, we com‐
pute the corresponding value of R0, which is more easily interpreted 
epidemiologically than simply a transmission probability (Supporting 
Information Table S2).

2.6 | Statistical analysis

2.6.1 | Variation in epidemic size given the 
identity of the initially infected individual

We used data from disease simulations to quantify the variation in (a) 
the number of secondary infections and (b) the epidemic size, given 
the identity of the initially infected individual, for the three different 
network types (SSN, SUN, RUN). This involved calculating the pro‐
portion of variation explained by the initially infected individual (c.f. 
stochastic variation in the number of secondary infections and out‐
break size) using the R package rptR (Schielzeth & Nakagawa, 2011). 
To investigate variation in epidemic size a proportional, binomial gen‐
eralized mixed effects model (GLMM) was used with an intercept and 
individual as the only random effect. A similar Poisson GLMM was 
used to calculate repeatability for the number of secondary infec‐
tions. Repeatabilities were calculated separately for each transmis‐
sion probability in each of the 1,000 networks generated. This made 
it possible to determine whether transmission probabilities affected 
the proportion of variation explained by the choice of the initially 
infected individual, and provided a distribution of 1,000 repeatability 
scores for each combination of network type and transmission prob‐
ability. Additionally, in order to demonstrate the importance of the 
interaction between transmission probability and the type of net‐
work in the repeatability of outbreak size and the number of second‐
ary infections we fitted seven competing Bayesian linear models in 
Stan using the R package brms (Burkner, 2017) in R 3.3.2 and com‐
pared the strength of support for each model with Watanabe–Akaike 
information criterion (WAIC) scores of the models.

2.6.2 | Epidemic size as an outcome of the network 
position of the initially infected individual

We used data on the mean epidemic size for each individual in the 
unfiltered networks to quantify the effect of degree, eigenvector 
centrality, and betweenness centrality on the size of the epidemic 
separately for each transmission probability in each type of network. 
Mean epidemic size was divided by the total size of the network (to 
produce a mean proportion of the population infected), and then, 
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the logit function was used to transform this variable. First we ex‐
amined each centrality measure in separate linear mixed effects 
model to assess differences in their power in predicting epidemic 
size. We included a network measure as a fixed effect variable 
alongside a random effect to control for network identity (includ‐
ing both a random intercept and random slope). Due to the expec‐
tation that the effect of centrality on epidemic size might decline 
for larger centrality values (especially for infections with higher 
transmission probabilities), we fitted two models for each centrality 
measure, one in which the raw values of the measure were used, 
and one which had been log(Measure+1) transformed. Second we 
constructed a combined linear mixed effects model which included 
fixed effect variables of all three centrality measures after they had 
been log(Measure+1) transformed. This model included a random in‐
tercept and uncorrelated random slopes for each network measure 
related to the identity of the network. This second model enabled us 
to identify the importance of indirect connections (measured using 
eigenvector centrality and betweenness centrality) while controlling 
for the effect of direct contacts (degree).

3  | RESULTS

The observed badger social network displayed clear community 
structure (Figure 2d). The weighted contact network was formed 

of six communities with a modularity score of 0.462 for this divi‐
sion. The binary contact network was split into three communi‐
ties with a modularity score of 0.484 for this division. Networks 
simulated using a negative binomial function fitted to the ob‐
served dataset (SSN; see methods) retained this modular structure 
(Figure 2a), as well as having a similar mean (unweighted) degree 
(Supporting Information Table S1) and (unweighted) degree distri‐
bution (Supporting Information Figure S1). Networks rewired to 
maintain the degree distribution without retaining the spatial and 
social group structure of the original network (SUN; Figure 2b) 
and random networks (RUN; Figure 2c) had considerably reduced 
modularity (Figure 2). Networks filtered to only contain edges 
of longer durations had higher modularity scores than unfiltered 
networks (Figure 2). The epidemic threshold, calculated by set‐
ting R0 = 1, was greater in the random network then the struc‐
tured networks (SSN, SUN), regardless of filtering level (NF, F100, 
F1000; Supporting Information Table S3). Additionally, as filtering 
increased, so too did the epidemic threshold. Thus, highly filtered 
networks (F1000) require a more intense infection (higher trans‐
mission probability, T) for an epidemic to occur.

Simulated epidemic outbreaks in realistically spatially and so‐
cially structured networks (SSN) were smaller on average (Figures 
3 and 4; Supporting Information Figure S2) and considerably less 
likely to reach the average epidemic size found in spatially unstruc‐
tured (SUN) or random networks (RUN; Figures 3 and 4, Supporting 

F I G U R E  3   Mean epidemic size for the spatially structured network (SSN), spatially unstructured network (SUN) and random network 
(RUN). Interquartile error bars are calculated from the mean epidemic size per individual after 5,100 simulations (100 per individual) for 
each of the 1,000 unique networks, for each of the edge‐weight filtering levels (NF, F100, F1000). Transmission probabilities are between 
0.075–0.275 and 5,100,000 simulations were run for each transmission probability, for each network type
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Information Figure S2). The difference in mean epidemic size, be‐
tween the SSN and the SUN or RUN, peaked for a transmission prob‐
ability of T = 0.225 (R0 = 2.21), for the unfiltered networks, (NF). For 
filtered networks (F100 and F1000), a similar pattern was evident 
but the peak difference in mean epidemic size occurred at higher 
transmission probabilities as would be expected for a less well‐con‐
nected network. The peak difference occurred at T = 0.25 (R0 = 2.45) 
for the F100 networks and had not occurred by T = 0.275 (R0 = 2.7) 
for the F1000 networks. The effect of transmission probability on 
outbreak size was strongest for unfiltered networks (NF; Supporting 
Information Table S6 and S8).

There were also important differences between the three 
network types in the variation in the number of secondary infec‐
tions (i.e., the number of individuals infected directly by the ini‐
tially infected individual) and epidemic size (Figure 5, Supporting 
Information Table S6 and S7) explained by the selection of the 
initially infected individual. More variation in the number of sec‐
ondary infections was explained by the social position of the ini‐
tially infected individual in spatially structured (SSN) and spatially 
unstructured networks (SUN) than in random networks (RUN), 
and this was independent of transmission probability (Figure 5a, 
Supporting Information Table S7). This similarity between SSN and 
SUN is expected because they have identical degree distributions. 

However, in spatially structured networks (SSN), more variation in 
epidemic size was explained by the choice of the initially infected 
individual than either spatially unstructured (SUN) or random 
networks (RUN; Figure 5b, Supporting Information Figure S3 and 
S4). For networks that retained all edges (NF), we found that the 
importance of the identity of the initially infected individual was 
greatest for intermediate transmission probabilities (Figure 5b). 
However, for filtered networks (F100, F1000), the transmissibility 
(and hence R0) of the pathogen had no impact on the degree of 
variation (Supporting Information Figure S3 and S4). Therefore, 
in networks with realistic social and special structuring, there is 
greater individual heterogeneity in spreader status compared with 
networks that lack this structuring. This reveals that heterogene‐
ity in importance for disease transmission can be greatest in mod‐
ular networks without “superspreader” dynamics, and that the 
role of heterogeneity can vary among pathogens with different 
levels of infectiousness.

For all types of networks the epidemic size increased with increas‐
ing degree (number of direct connections) of the initially infected 
individuals, with the average epidemic size increasing as the degree 
of the initially infected individual increased (Figure 6; Supporting 
Information Tables S4 and S5). This effect was somewhat linear for 
the lowest transmission probabilities, but reached an asymptote 

F I G U R E  4   Distribution of epidemic 
sizes for simulations in unfiltered 
networks (NF) where the transmission 
probability is held at T = 0.15 (left) and 
for simulations in which the transmission 
probability is held at T = 0.25 (right). 
The epidemic size is on the x‐axis (as a 
proportion of the total population) and 
the frequency (the number of times an 
epidemic of that size occurred) is on the 
y‐axis. Each individual plot represents 
results from 5,100,000 simulations. The 
100 simulations for each initially infected 
individual were not averaged, but kept 
as a single simulation result. The color of 
the individual bar represents the mean 
degree of the initially infected individual 
that resulted in an epidemic of that size. 
The larger R0 values (1.5 and 2.4) are the 
values for the networks that share the 
same degree distribution (SUN and SSN) 
while the smaller value (1.4 and 2.3) are 
for the RUN
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when transmission probabilities were high (Figure 6). Similar positive 
effects of other centrality measures that incorporated indirect con‐
nections were also found, but these were considerably weaker than 
those for degree and did not persist in random networks (Supporting 
Information Tables S4). For all centrality measures at all transmis‐
sion probabilities, a log‐linear relationship provided a better fit to the 
simulation data than a linear relationship in realistically structured 
badger networks (Supporting Information Tables S5), indicating that 
even for more slowly spreading pathogens, the rate of increase in 
epidemic size with centrality was higher for less central individuals.

When the effect of all three of the centrality measures were 
considered within the same model, there were important differ‐
ences between the spatially structured networks and the spatially 
unstructured and random networks with regard to the importance 
of indirect connections (Figure 7). In the random networks, neither 
eigenvector centrality nor betweenness centrality had an additional 
effect to degree on epidemic size at any transmission probability 
(Figure 7c). For spatially unstructured networks, eigenvector cen‐
trality had no additional effect on transmission probability and the 
effect of betweenness was very limited, being slightly negative for in‐
fections with higher transmission probabilities (Figure 7b). However, 
in realistic spatially structured networks, both eigenvector centrality 
and betweenness centrality influenced epidemic size in addition to 

the effect of degree (Figure 7a). Eigenvector centrality had an in‐
termediate positive effect that peaked for infections with interme‐
diate transmission probabilities and was lowest for infections with 
high transmission probabilities. Betweenness centrality had a weak 
effect that was opposite to its effect in spatially unstructured net‐
works. Higher betweenness resulted in slight reductions in mean ep‐
idemic size for slow spreading infections and slight increases in mean 
epidemic size for highly transmissible infections while controlling for 
the values of other metrics.

4  | DISCUSSION

Our disease simulations showed that the spatial structure of em‐
pirically derived badger contact networks reduced the probabil‐
ity of large epidemics. This provides evidence for the importance 
of a “social bottleneck” (Nunn, Craft, et al., 2015; Sah et al., 2018; 
VanderWaal et al., 2014; Weber, Carter, et al., 2013; White et al., 
2017) in disease transmission functioning at a population level. We 
also found considerable variation between individuals in the size of 
epidemics they generated in networks with realistic spatial and social 
group structure that varied according to both their local (direct con‐
nections) and global position (role in broader network connectivity) 

F I G U R E  5   (a) The proportion of variation in (a) the number of secondary infections and (b) epidemic size explained by the choice of the 
initially infected individual in the three network types for each transmission probability used in the study. Orange is the structured network 
(SSN), blue is the unstructured network (SUN), and green is the random network (RUN). Points represent the median, wide boxes the 
interquartile range and narrow boxes the range of values calculated from each of the 1,000 simulated networks of each type
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within the social network. Importantly, the impact of indirect con‐
nections on the role of an individual in disease spread depended 
upon the transmissibility of the pathogen involved.

Our results agree with evidence from other simulation studies, 
that networks with higher modularity will have smaller epidemics 
and lower peak prevalence of infection (Newman, 2003; Salathé 
& Jones, 2010). The most modular networks in this study were 
those that were both spatial and socially structured. Interestingly, 
networks with identical social structure (degree distribution), but 
lacked spatial structure, have lower modularity and higher mean 
outbreak size, even when compared to random networks. This 
suggests that social connections, in the absence of spatial struc‐
ture, promote disease spread. Our results highlight that the im‐
portance of community structure extends to much lower levels of 
modularity (Q ~ 0.45) than the high modularity scores used by the 
most directly comparable previous study (Salathé & Jones, 2010). 
Previous simulation models have found that groups with struc‐
ture (and therefore higher modularity) tend to have lower para‐
site prevalence due to the presence of social bottlenecks (Nunn, 
Jordán, McCabe, Verdolin, & Fewell, 2015; VanderWaal et al., 
2014). At a population level, social bottlenecks would be expected 

to result in the aggregation of infection within particular social 
groups for pathogens with low to intermediate transmission prob‐
abilities (Manlove, Cassirer, Cross, Plowright, & Hudson, 2014). By 
exploring the effect of modularity for a greater range of transmis‐
sion probabilities, we were able to reveal that the effect of com‐
munity structure varies, depending on the transmissibility of the 
pathogen being investigated, as well as the duration of contacts 
being considered. While we found a strong relationship between 
modularity and epidemic size, it should be noted that other net‐
work properties might change along with modularity that we do 
not account for. However, it would not be possible to completely 
change the modularity of a network while maintaining identical 
values for all other higher order properties of the network (such 
as degree distribution). Therefore, disentangling these properties, 
while remaining biologically meaningful, is difficult.

The reduction in epidemic size was greatest for pathogens 
with intermediate rather than low or high transmission probabili‐
ties (R0 = 2.2) when all contacts, regardless of duration, were con‐
sidered capable of transmitting infections. This suggests that the 
impact of structural delay and trapping of infection spread that is 
apparent in modular networks (Sah et al., 2017) peaks for infections 

F I G U R E  6   Mean epidemic size given the (a–b) degree, (c–d) eigenvector centrality and (e–f) betweenness centrality, of the initially 
infected individual for disease simulations on the unfiltered (NF), spatially structured network (SSN), for two transmission probabilities. The 
coloring reflects the frequency of observations, with lighter colors reflecting a higher frequency and darker colors lower frequency
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that are able to spread effectively, but do not have sufficiently high 
transmission probabilities to facilitate escape from subregions of 
the network (Cross, Lloyd‐Smith, Johnson, & Getz, 2005). The im‐
portance of social structure in trapping infection further supports 
the idea that badgers that form more out‐of‐group contacts can act 

as “capacitors” in controlling the spread of infection under certain 
conditions (Weber, Carter, et al., 2013), especially for less read‐
ily transmissible pathogens. Additionally, populations with highly 
modular networks often consist of a large proportion of both highly 
central, as well as highly isolated individuals (characteristic of high 
eigenvector centralization; Griffin & Nunn, 2012). For highly trans‐
mittable infections, the isolated nodes can act to limit the outbreak 
size, whereas for lower transmissible infections, the highly central 
individuals may drive an outbreaks.

The contact duration that permitted transmission of infection 
(i.e., level of edge‐weight filtering in disease simulations) had a strong 
impact on the size of the epidemic for a given transmission probabil‐
ity. However, it did not alter the importance of modularity in limiting 
epidemic size compared to networks without spatial structure, tend‐
ing to simply mean that the peak difference occurred for simulations 
with higher pathogen transmissibility. In fact, the increased modu‐
larity of networks that only included long duration contacts meant 
that the modularity of the socially structured contact network had 
a greater limiting effect on the size of an epidemic. Therefore, it is 
likely that understanding what types or durations of social interac‐
tions are required to transmit an infection will be integral to assess‐
ing the impact of modular network structures on disease spread in 
wildlife populations in addition to knowledge of the R0 of a given 
pathogen.

Considerable variation in the number of secondary infections 
and the epidemic size was explained by the choice of initially in‐
fected individual. However, this variation does not result in what 
might be considered conventional superspreader dynamics, in which 
epidemics are less likely but larger in size (Lloyd‐Smith et al., 2005). 
Rather, our findings suggest the opposite, with epidemics being just 
as likely but smaller in size in networks with realistic spatial and so‐
cial structure. Further, the most severe epidemics in networks with 
realistic social structure did not necessarily stem from initially in‐
fected individuals with the highest degree, and depended in part on 
other aspects of network position that accounted for indirect con‐
nections. This emphasizes the potentially conflicting effects of high 
modularity and heterogeneity in network position on disease dy‐
namics. The relationship between superspreader‐type dynamics and 
the limiting effects of spatial and social structure may therefore be 
fundamental in driving the dynamics of host–pathogen interactions 
in natural populations. Finally, the individual network measures, and 
their impact on the epidemic size, are likely to hold true in the com‐
plete badger social network (recall the 51 badgers make up 80% of 
the total population). While concerns have been expressed on the 
reliability of using social networks constructed using a subset of the 
population, it has been found that an individuals social and spatial 
importance should not change with the addition of individuals to the 
network (Silk, Jackson, Croft, Colhoun, & Bearhop, 2015).

Culling of high‐density badger populations has been used as an 
attempt to control disease, but has proved controversial (Mcdonald, 
2014). It has been postulated that culling‐induced perturbation of 
the badger social system comprising increased ranging behavior, 
less clearly defined territorial boundaries and increased dispersal 

F I G U R E  7   The effect of increasing different centrality measures 
on mean epidemic size in (a) spatially structured networks (SSN), 
(b) spatially unstructured networks (SUN) and (c) random networks 
(RUN). Points represent model estimates from model predictions 
and shaded areas represent the estimate ±95% confidence intervals 
(blue: degree, yellow: eigenvector centrality, pink: betweenness 
centrality). Dashed lines represent the model prediction for the 
effect of degree (blue) and eigenvector centrality (yellow) at the 
lowest transmission probability to facilitate comparisons. Effect 
sizes are from a model including all three measures so represent the 
effect of each measure while accounting for variation in the others. 
All centrality measures have been log(Measure+1) transformed and 
then scaled to be mean centered and have unit variance
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has reduced the effectiveness of this approach (Carter et al., 2007; 
McDonald, Delahay, Carter, Smith, & Cheeseman, 2008). By demon‐
strating the importance of host social structure in limiting epidemic 
size at a population level, our results provide a novel insight into 
how social perturbation of badger populations might be detrimen‐
tal from a disease control perspective; decreasing the modularity of 
the social contact network may be integral to increases in disease 
incidence and epidemic size that can result from social perturbation. 
Social perturbation has been suggested to be problematic for dis‐
ease control in wildlife hosts (Laddomada, 2000; McDonald et al., 
2008), and the lessons learned could be applied more generally in 
cases where animal social networks are naturally modular (Weber, 
Carter, et al., 2013) to identify situations where social perturba‐
tion might have particularly important consequences for pathogen 
transmission. For example, social group structure seems likely to be 
important in limiting epidemic size in many species, and therefore, 
perturbation is likely to be especially important in species with sta‐
ble social structures, like badgers, in which social bottlenecks are 
more likely to occur in the absence of perturbation.

From a management perspective, the considerable among‐in‐
dividual variation in importance to transmission, together with the 
importance of indirect connections in the spatially structured net‐
works, suggest that targeting individual badgers with high degree 
might not be the most effective strategy. It has been shown that 
when vaccination coverage is low, vaccination efforts that target be‐
tweenness centrality rather than degree, result in smaller epidemics 
(Rushmore et al., 2014; Salathé & Jones, 2010). However, our results 
suggest that in these networks (with intermediate levels of modu‐
larity), it is important to account for both degree and measures of 
indirect connections, such as betweenness and eigenvector central‐
ity, when assessing the most important individuals for the spread of 
infection. A key challenge now is to identify those individual traits 
that relate to occupation of these network positions, in order to be 
able to target management interventions more efficiently (Delahay, 
Smith, & Hutchings, 2009; VanderWaal & Ezenwa, 2016). For exam‐
ple, in badgers, there is a tendency for individuals that use outlier 
setts (located away from the main setts), to occupy potentially im‐
portant, bridging network positions with high numbers of direct and 
indirect connections (Weber, Carter, et al., 2013). Therefore, being 
able to target management interventions at outlier setts, or being 
able to better define seasonal variation in which individuals are likely 
to use these setts (Weber, Bearhop, et al., 2013) may contribute dis‐
proportionately to successful interventions. However, it has also 
been shown that when time is limited, it may be more effective to 
vaccinate many lower priority animals quickly, rather than waiting 
for opportunities to vaccinate more important individuals (Robinson 
et al., 2018).

In conclusion, using epidemiological simulations, we have shown 
that the stable social group structure of the European badger pop‐
ulation manifests in modular contact networks that are likely to ex‐
perience smaller epidemics than equivalent networks without this 
structure, especially for pathogens with intermediate transmission 
probabilities. The nature of these contact networks also means that 

it is important to take into account both direct and indirect con‐
nections of individuals in the network when determining their role 
in disease transmission, and that important individuals may differ 
for pathogens with different R0s. The design and implementation 
of effective disease management interventions should therefore 
acknowledge that individual variation in network positions, social 
groupings, and pathogen traits closely interact to influence trans‐
mission, and that the social systems of many wildlife populations 
might already be optimized for the containment or mitigation of the 
spread of disease.
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